Skip to main content

Advertisement

Log in

HOX gene cluster (de)regulation in brain: from neurodevelopment to malignant glial tumours

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

HOX genes encode a family of evolutionarily conserved homeodomain transcription factors that are crucial both during development and adult life. In humans, 39 HOX genes are arranged in four clusters (HOXA, B, C, and D) in chromosomes 7, 17, 12, and 2, respectively. During embryonic development, particular epigenetic states accompany their expression along the anterior–posterior body axis. This tightly regulated temporal–spatial expression pattern reflects their relative chromosomal localization, and is critical for normal embryonic brain development when HOX genes are mainly expressed in the hindbrain and mostly absent in the forebrain region. Epigenetic marks, mostly polycomb-associated, are dynamically regulated at HOX loci and regulatory regions to ensure the finely tuned HOX activation and repression, highlighting a crucial epigenetic plasticity necessary for homeostatic development. HOX genes are essentially absent in healthy adult brain, whereas they are detected in malignant brain tumours, namely gliomas, where HOX genes display critical roles by regulating several hallmarks of cancer. Here, we review the major mechanisms involved in HOX genes (de)regulation in the brain, from embryonic to adult stages, in physiological and oncologic conditions. We focus particularly on the emerging causes of HOX gene deregulation in glioma, as well as on their functional and clinical implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(data adapted from Philippidou, Dasen [89])

Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

3C:

Chromosome conformation capture

3D:

Three-dimensional

4C-seq:

Circularized chromosome conformation capture with deep sequencing

5C:

Chromosome conformation capture carbon copy

AQB:

AC1Q3QWB drug

CAM:

Chicken chorioallantoic membrane

CGGA:

Chinese Glioma Genome Atlas

ChIP:

Chromatin immunoprecipitation

CHROMO:

Chromatin organization modifier

CNS:

Central nervous system

CNV:

Copy-number variations

COMPASS:

Complex proteins associated with Set1

DNA:

Deoxyribonucleic acid

ESCs:

Embryonic stem cells

GBM:

Glioblastoma

G-CIMP:

Glioma CpG island methylator phenotype

GSCs:

GBM stem cells

H2AK119ub:

Ubiquitination of H2AK119 residues

H3K27ac:

Histone H3 lysine 27 acetylation

H3K27me3:

Histone H3 lysine 27 trimethylation

H3K4me3:

Histone H3 lysine 4 trimethylation

Hi-C:

Chromosome capture followed by high-throughput sequencing

HOX:

Homeobox

HUVEC:

Human umbilical vein endothelial cells

lncRNA:

Long non-coding RNA

miRNAs:

Micro-RNA

mRNA:

Messenger RNA

OS:

Overall survival

PARs:

Promoter-associated RNAs

PcG:

Polycomb group

PCR:

Polymerase chain reaction

PDX:

Patient-derived xenograft

PRE:

Polycomb-responsive element

RA:

Retinoic acid

RNA:

Ribonucleic acid

SINE:

Short interspersed nuclear elements

TAD:

Topological associating domain

TCGA:

The Cancer Genome Atlas

TMZ:

Temozolomide

TrxG:

Trithorax-group proteins

TSS:

Transcription start sites

WHO:

World Health Organization

References

  1. Bateson W (1894) Materials for the study of variation: treated with especial regard to discontinuity in the origin of species. Macmillan and Co, London

    Google Scholar 

  2. Bridges CB (1921) Current maps of the location of the mutant genes of Drosophila melanogaster. Proc Natl Acad Sci USA 7(4):127

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kaufman TC, Seeger MA, Olsen G (1990) Molecular and genetic organization of the antennapedia gene complex of Drosophila melanogaster. Advances in genetics, vol 27. Elsevier, Oxford, pp 309–362

    Google Scholar 

  4. Lewis EB (1978) A gene complex controlling segmentation in Drosophila. Genes, development and cancer. Springer, Berlin, pp 205–217

    Google Scholar 

  5. Schneuwly S, Klemenz R, Gehring WJ (1987) Redesigning the body plan of Drosophila by ectopic expression of the homoeotic gene Antennapedia. Nature 325(6107):816

    CAS  PubMed  Google Scholar 

  6. Qian Y, Billeter M, Otting G, Müller M, Gehring W, Wüthrich K (1989) The structure of the Antennapedia homeodomain determined by NMR spectroscopy in solution: comparison with prokaryotic repressors. Cell 59(3):573–580

    CAS  PubMed  Google Scholar 

  7. Hui C-c, Suzuki Y, Kikuchi Y, Mizuno S (1990) Homeodomain binding sites in the 5′ flanking region of the Bombyx mori silk fibroin light-chain gene. J Mol Biol 213(3):395–398

    CAS  PubMed  Google Scholar 

  8. Kissinger CR, Liu BS, Martin-Blanco E, Kornberg TB, Pabo CO (1990) Crystal structure of an engrailed homeodomain-DNA complex at 2.8 A resolution: a framework for understanding homeodomain–DNA interactions. Cell 63(3):579–590. https://doi.org/10.1016/0092-8674(90)90453-l

    Article  CAS  PubMed  Google Scholar 

  9. Ekker SC, Young KE, von Kessler DP, Beachy P (1991) Optimal DNA sequence recognition by the Ultrabithorax homeodomain of Drosophila. EMBO J 10(5):1179–1186

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Benson GV, Nguyen TH, Maas RL (1995) The expression pattern of the murine Hoxa-10 gene and the sequence recognition of its homeodomain reveal specific properties of Abdominal B-like genes. Mol Cell Biol 15(3):1591–1601. https://doi.org/10.1128/mcb.15.3.1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pearson JC, Lemons D, McGinnis W (2005) Modulating Hox gene functions during animal body patterning. Nat Rev Genet 6(12):893–904. https://doi.org/10.1038/nrg1726

    Article  CAS  PubMed  Google Scholar 

  12. Takahashi Y, Hamada J, Murakawa K, Takada M, Tada M, Nogami I, Hayashi N, Nakamori S, Monden M, Miyamoto M, Katoh H, Moriuchi T (2004) Expression profiles of 39 HOX genes in normal human adult organs and anaplastic thyroid cancer cell lines by quantitative real-time RT-PCR system. Exp Cell Res 293(1):144–153

    CAS  PubMed  Google Scholar 

  13. Yamamoto M, Takai D, Yamamoto F (2003) Comprehensive expression profiling of highly homologous 39 hox genes in 26 different human adult tissues by the modified systematic multiplex RT-pCR method reveals tissue-specific expression pattern that suggests an important role of chromosomal structure in the regulation of hox gene expression in adult tissues. Gene Expr 11(3–4):199–210

    CAS  PubMed  Google Scholar 

  14. Morgan R (2006) Hox genes: a continuation of embryonic patterning? Trends Genet 22(2):67–69. https://doi.org/10.1016/j.tig.2005.11.004

    Article  CAS  PubMed  Google Scholar 

  15. Neville SE, Baigent SM, Bicknell AB, Lowry PJ, Gladwell RT (2002) Hox gene expression in adult tissues with particular reference to the adrenal gland. Endocr Res 28(4):669–673

    CAS  PubMed  Google Scholar 

  16. Boncinelli E, Simeone A, Acampora D, Gulisano M (1993) Homeobox genes in the developing central nervous system. Ann Genet 36(1):30–37

    CAS  PubMed  Google Scholar 

  17. Young JJ, Grayson P, Tabin CJ (2019) Developmental biology: hox timing determines limb placement. Curr Biol 29(2):R52–R54. https://doi.org/10.1016/j.cub.2018.11.068

    Article  CAS  PubMed  Google Scholar 

  18. Deschamps J, van Nes J (2005) Developmental regulation of the Hox genes during axial morphogenesis in the mouse. Development 132(13):2931–2942

    CAS  PubMed  Google Scholar 

  19. Duverger O, Morasso MI (2008) Role of homeobox genes in the patterning, specification, and differentiation of ectodermal appendages in mammals. J Cell Physiol 216(2):337–346

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Garcia-Fernàndez J (2005) The genesis and evolution of homeobox gene clusters. Nat Rev Genet 6(12):881

    PubMed  Google Scholar 

  21. Rezsohazy R, Saurin AJ, Maurel-Zaffran C, Graba Y (2015) Cellular and molecular insights into Hox protein action. Development 142(7):1212–1227

    CAS  PubMed  Google Scholar 

  22. Grier DG, Thompson A, Kwasniewska A, McGonigle GJ, Halliday HL, Lappin TR (2005) The pathophysiology of HOX genes and their role in cancer. J Pathol 205(2):154–171. https://doi.org/10.1002/path.1710

    Article  CAS  PubMed  Google Scholar 

  23. Krumlauf R (1994) Hox genes in vertebrate development. Cell 78(2):191–201

    CAS  PubMed  Google Scholar 

  24. Scott MP (1992) Vertebrate homeobox gene nomenclature. Cell 71(4):551–553

    CAS  PubMed  Google Scholar 

  25. Kmita M, Duboule D (2003) Organizing axes in time and space; 25 years of colinear tinkering. Science 301(5631):331–333

    CAS  PubMed  Google Scholar 

  26. Montavon T, Soshnikova N (2014) Hox gene regulation and timing in embryogenesis. Semin Cell Dev Biol 34:76–84. https://doi.org/10.1016/j.semcdb.2014.06.005

    Article  CAS  PubMed  Google Scholar 

  27. Noordermeer D, Duboule D (2013) Chromatin architectures and Hox gene collinearity. Current topics in developmental biology, vol 104. Elsevier, Oxford, pp 113–148. https://doi.org/10.1016/B978-0-12-416027-9.00004-8

    Chapter  Google Scholar 

  28. Duboule D (2007) The rise and fall of Hox gene clusters. Development 134(14):2549–2560

    CAS  PubMed  Google Scholar 

  29. Quinonez SC, Innis JW (2014) Human HOX gene disorders. Mol Genet Metab 111(1):4–15. https://doi.org/10.1016/j.ymgme.2013.10.012

    Article  CAS  PubMed  Google Scholar 

  30. Marshall H, Studer M, Pöpperl H, Aparicio S, Kuroiwa A, Brenner S, Krumlauf R (1994) A conserved retinoic acid response element required for early expression of the homeobox gene Hoxb-1. Nature 370(6490):567

    CAS  PubMed  Google Scholar 

  31. Puschel AW, Balling R, Gruss P (1991) Separate elements cause lineage restriction and specify boundaries of Hox-1.1 expression. Development 112(1):279–287

    CAS  PubMed  Google Scholar 

  32. Gentile C, Kmita M (2018) The remote transcriptional control of Hox genes. Int J Dev Biol 62(11–12):685–692

    CAS  PubMed  Google Scholar 

  33. Spitz F, Gonzalez F, Peichel C, Vogt TF, Duboule D, Zákány J (2001) Large scale transgenic and cluster deletion analysis of the HoxD complex separate an ancestral regulatory module from evolutionary innovations. Genes Dev 15(17):2209–2214

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Tümpel S, Cambronero F, Sims C, Krumlauf R, Wiedemann LM (2008) A regulatory module embedded in the coding region of Hoxa2 controls expression in rhombomere 2. Proc Natl Acad Sci 105(51):20077–20082

    PubMed  PubMed Central  Google Scholar 

  35. Ahn Y, Mullan HE, Krumlauf R (2014) Long-range regulation by shared retinoic acid response elements modulates dynamic expression of posterior Hoxb genes in CNS development. Dev Biol 388(1):134–144

    CAS  PubMed  Google Scholar 

  36. Spitz F, Gonzalez F, Duboule D (2003) A global control region defines a chromosomal regulatory landscape containing the HoxD cluster. Cell 113(3):405–417

    CAS  PubMed  Google Scholar 

  37. Spitz F, Herkenne C, Morris MA, Duboule D (2005) Inversion-induced disruption of the Hoxd cluster leads to the partition of regulatory landscapes. Nat Genet 37(8):889

    CAS  PubMed  Google Scholar 

  38. Tarchini B, Duboule D (2006) Control of Hoxd genes' collinearity during early limb development. Dev Cell 10(1):93–103

    CAS  PubMed  Google Scholar 

  39. Berlivet S, Paquette D, Dumouchel A, Langlais D, Dostie J, Kmita M (2013) Clustering of tissue-specific sub-TADs accompanies the regulation of HoxA genes in developing limbs. PLoS Genet 9(12):e1004018

    PubMed  PubMed Central  Google Scholar 

  40. Neijts R, Amin S, Van Rooijen C, Tan S, Creyghton MP, De Laat W, Deschamps J (2016) Polarized regulatory landscape and Wnt responsiveness underlie Hox activation in embryos. Genes Dev 30(17):1937–1942

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Nolte C, Jinks T, Wang X, Pastor MTM, Krumlauf R (2013) Shadow enhancers flanking the HoxB cluster direct dynamic Hox expression in early heart and endoderm development. Dev Biol 383(1):158–173

    CAS  PubMed  Google Scholar 

  42. Denker A, De Laat W (2016) The second decade of 3C technologies: detailed insights into nuclear organization. Genes Dev 30(12):1357–1382

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485(7398):376

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N, Piolot T, van Berkum NL, Meisig J, Sedat J (2012) Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485(7398):381

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Andrey G, Montavon T, Mascrez B, Gonzalez F, Noordermeer D, Leleu M, Trono D, Spitz F, Duboule D (2013) A switch between topological domains underlies HoxD genes collinearity in mouse limbs. Science 340(6137):1234167

    PubMed  Google Scholar 

  46. Bonev B, Cohen NM, Szabo Q, Fritsch L, Papadopoulos GL, Lubling Y, Xu X, Lv X, Hugnot J-P, Tanay A (2017) Multiscale 3D genome rewiring during mouse neural development. Cell 171(3):557. e524–572.e524. https://doi.org/10.1016/j.cell.2017.09.043

    Article  CAS  Google Scholar 

  47. Delpretti S, Montavon T, Leleu M, Joye E, Tzika A, Milinkovitch M, Duboule D (2013) Multiple enhancers regulate Hoxd genes and the Hotdog LncRNA during cecum budding. Cell reports 5(1):137–150

    CAS  PubMed  Google Scholar 

  48. Jin F, Li Y, Dixon JR, Selvaraj S, Ye Z, Lee AY, Yen C-A, Schmitt AD, Espinoza CA, Ren B (2013) A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature 503(7475):290

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Narendra V, Bulajić M, Dekker J, Mazzoni EO, Reinberg D (2016) CTCF-mediated topological boundaries during development foster appropriate gene regulation. Genes Dev 30(24):2657–2662

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Narendra V, Rocha PP, An D, Raviram R, Skok JA, Mazzoni EO, Reinberg D (2015) CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation. Science 347(6225):1017–1021

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Phillips-Cremins JE, Corces VG (2013) Chromatin insulators: linking genome organization to cellular function. Mol Cell 50(4):461–474

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Phillips-Cremins JE, Sauria ME, Sanyal A, Gerasimova TI, Lajoie BR, Bell JS, Ong C-T, Hookway TA, Guo C, Sun Y (2013) Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 153(6):1281–1295

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Montavon T, Soshnikova N, Mascrez B, Joye E, Thevenet L, Splinter E, de Laat W, Spitz F, Duboule D (2011) A regulatory archipelago controls Hox genes transcription in digits. Cell 147(5):1132–1145

    CAS  PubMed  Google Scholar 

  54. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125(2):315–326

    CAS  PubMed  Google Scholar 

  55. Soshnikova N, Duboule D (2009) Epigenetic temporal control of mouse Hox genes in vivo. Science 324(5932):1320–1323

    CAS  PubMed  Google Scholar 

  56. Eskeland R, Leeb M, Grimes GR, Kress C, Boyle S, Sproul D, Gilbert N, Fan Y, Skoultchi AI, Wutz A (2010) Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination. Mol Cell 38(3):452–464

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Noordermeer D, Leleu M, Splinter E, Rougemont J, De Laat W, Duboule D (2011) The dynamic architecture of Hox gene clusters. Science 334(6053):222–225

    CAS  PubMed  Google Scholar 

  58. de Napoles M, Mermoud JE, Wakao R, Tang YA, Endoh M, Appanah R, Nesterova TB, Silva J, Otte AP, Vidal M (2004) Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev Cell 7(5):663–676

    PubMed  Google Scholar 

  59. Simon JA, Kingston RE (2013) Occupying chromatin: polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put. Mol Cell 49(5):808–824

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Kanhere A, Viiri K, Araújo CC, Rasaiyaah J, Bouwman RD, Whyte WA, Pereira CF, Brookes E, Walker K, Bell GW (2010) Short RNAs are transcribed from repressed polycomb target genes and interact with polycomb repressive complex-2. Mol Cell 38(5):675–688

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129(7):1311–1323

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhao J, Sun BK, Erwin JA, Song J-J, Lee JT (2008) Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322(5902):750–756

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Tsai M-C, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y, Segal E, Chang HY (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329(5992):689–693

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu G-Y, Zhao G-N, Chen X-F, Hao D-L, Zhao X, Lv X, Liu D-P (2015) The long noncoding RNA Gm15055 represses Hoxa gene expression by recruiting PRC2 to the gene cluster. Nucleic Acids Res 44(6):2613–2627

    PubMed  PubMed Central  Google Scholar 

  65. Lai K-MV, Gong G, Atanasio A, Rojas J, Quispe J, Posca J, White D, Huang M, Fedorova D, Grant C (2015) Diverse phenotypes and specific transcription patterns in twenty mouse lines with ablated LincRNAs. PLoS ONE 10(4):e0125522

    PubMed  PubMed Central  Google Scholar 

  66. Sauvageau M, Goff LA, Lodato S, Bonev B, Groff AF, Gerhardinger C, Sanchez-Gomez DB, Hacisuleyman E, Li E, Spence M (2013) Multiple knockout mouse models reveal lincRNAs are required for life and brain development. Elife 2:e01749. https://doi.org/10.7554/eLife.01749

    Article  PubMed  PubMed Central  Google Scholar 

  67. Amandio AR, Necsulea A, Joye E, Mascrez B, Duboule D (2016) Hotair is dispensible for mouse development. PLoS Genet 12(12):e1006232

    PubMed  PubMed Central  Google Scholar 

  68. Li L, Liu B, Wapinski OL, Tsai M-C, Qu K, Zhang J, Carlson JC, Lin M, Fang F, Gupta RA (2013) Targeted disruption of Hotair leads to homeotic transformation and gene derepression. Cell Rep 5(1):3–12

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Schorderet P, Duboule D (2011) Structural and functional differences in the long non-coding RNA hotair in mouse and human. PLoS Genet 7(5):e1002071

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Klose RJ, Cooper S, Farcas AM, Blackledge NP, Brockdorff N (2013) Chromatin sampling—an emerging perspective on targeting polycomb repressor proteins. PLoS Genet 9(8):e1003717

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Maupetit-Méhouas S, Montibus B, Nury D, Tayama C, Wassef M, Kota SK, Fogli A, Cerqueira Campos F, Hata K, Feil R (2015) Imprinting control regions (ICRs) are marked by mono-allelic bivalent chromatin when transcriptionally inactive. Nucleic Acids Res 44(2):621–635

    PubMed  PubMed Central  Google Scholar 

  72. Riising EM, Comet I, Leblanc B, Wu X, Johansen JV, Helin K (2014) Gene silencing triggers polycomb repressive complex 2 recruitment to CpG islands genome wide. Mol Cell 55(3):347–360

    CAS  PubMed  Google Scholar 

  73. Wang P, Lin C, Smith ER, Guo H, Sanderson BW, Wu M, Gogol M, Alexander T, Seidel C, Wiedemann LM (2009) Global analysis of H3K4 methylation defines MLL family member targets and points to a role for MLL1-mediated H3K4 methylation in the regulation of transcriptional initiation by RNA polymerase II. Mol Cell Biol 29(22):6074–6085

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Agger K, Cloos PA, Christensen J, Pasini D, Rose S, Rappsilber J, Issaeva I, Canaani E, Salcini AE, Helin K (2007) UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449(7163):731

    CAS  PubMed  Google Scholar 

  75. Lan F, Bayliss PE, Rinn JL, Whetstine JR, Wang JK, Chen S, Iwase S, Alpatov R, Issaeva I, Canaani E (2007) A histone H3 lysine 27 demethylase regulates animal posterior development. Nature 449(7163):689

    CAS  PubMed  Google Scholar 

  76. Lee MG, Villa R, Trojer P, Norman J, Yan K-P, Reinberg D, Di Croce L, Shiekhattar R (2007) Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science 318(5849):447–450

    CAS  PubMed  Google Scholar 

  77. Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, Lajoie BR, Protacio A, Flynn RA, Gupta RA (2011) A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472(7341):120

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Ardehali MB, Mei A, Zobeck KL, Caron M, Lis JT, Kusch T (2011) Drosophila Set1 is the major histone H3 lysine 4 trimethyltransferase with role in transcription. The EMBO journal 30(14):2817–2828

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Denholtz M, Bonora G, Chronis C, Splinter E, de Laat W, Ernst J, Pellegrini M, Plath K (2013) Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and polycomb proteins in genome organization. Cell Stem Cell 13(5):602–616

    CAS  PubMed  Google Scholar 

  80. Vieux-Rochas M, Fabre PJ, Leleu M, Duboule D, Noordermeer D (2015) Clustering of mammalian Hox genes with other H3K27me3 targets within an active nuclear domain. Proc Natl Acad Sci 112(15):4672–4677

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Pirrotta V, Li H-B (2012) A view of nuclear Polycomb bodies. Curr Opin Genet Dev 22(2):101–109

    CAS  PubMed  Google Scholar 

  82. Casaca A, Hauswirth GM, Bildsoe H, Mallo M, McGlinn E (2018) Regulatory landscape of the Hox transcriptome

  83. Bartel DP (2018) Metazoan micrornas. Cell 173(1):20–51

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Yekta S, Tabin CJ, Bartel DP (2008) MicroRNAs in the Hox network: an apparent link to posterior prevalence. Nat Rev Genet 9(10):789–796

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Mansfield JH, McGlinn E (2012) Evolution, expression, and developmental function of Hox-embedded miRNAs. Current topics in developmental biology, vol 99. Elsevier, Oxford, pp 31–57

    Google Scholar 

  86. Asli NS, Kessel M (2010) Spatiotemporally restricted regulation of generic motor neuron programs by miR-196-mediated repression of Hoxb8. Dev Biol 344(2):857–868

    CAS  PubMed  Google Scholar 

  87. Hornstein E, Mansfield JH, Yekta S, Hu JK-H, Harfe BD, McManus MT, Baskerville S, Bartel DP, Tabin CJ (2005) The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature 438(7068):671–674

    CAS  PubMed  Google Scholar 

  88. Di Bonito M, Narita Y, Avallone B, Sequino L, Mancuso M, Andolfi G, Franzè AM, Puelles L, Rijli FM, Studer M (2013) Assembly of the auditory circuitry by a Hox genetic network in the mouse brainstem. PLoS Genet 9(2):e1003249

    PubMed  PubMed Central  Google Scholar 

  89. Philippidou P, Dasen JS (2013) Hox genes: choreographers in neural development, architects of circuit organization. Neuron 80(1):12–34

    CAS  PubMed  Google Scholar 

  90. Dasen JS, Jessell TM (2009) Chapter six Hox networks and the origins of motor neuron diversity. Curr Top Dev Biol 88:169–200

    CAS  PubMed  Google Scholar 

  91. Gonzalez-Quevedo R, Lee Y, Poss KD, Wilkinson DG (2010) Neuronal regulation of the spatial patterning of neurogenesis. Dev Cell 18(1):136–147

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Guthrie S, Prince V, Lumsden A (1993) Selective dispersal of avian rhombomere cells in orthotopic and heterotopic grafts. Development 118(2):527–538

    CAS  PubMed  Google Scholar 

  93. Wingate R, Lumsden A (1996) Persistence of rhombomeric organisation in the postsegmental hindbrain. Development 122(7):2143–2152

    CAS  PubMed  Google Scholar 

  94. Hunt P, Gulisano M, Cook M, Sham M-H, Faiella A, Wilkinson D, Boncinelli E, Krumlauf R (1991) A distinct Hox code for the branchial region of the vertebrate head. Nature 353(6347):861

    CAS  PubMed  Google Scholar 

  95. Lumsden A, Krumlauf R (1996) Patterning the vertebrate neuraxis. Science 274(5290):1109–1115

    CAS  PubMed  Google Scholar 

  96. Wilkinson DG, Bhatt S, Cook M, Boncinelli E, Krumlauf R (1989) Segmental expression of Hox-2 homoeobox-containing genes in the developing mouse hindbrain. Nature 341(6241):405

    CAS  PubMed  Google Scholar 

  97. Dasen JS, Liu J-P, Jessell TM (2003) Motor neuron columnar fate imposed by sequential phases of Hox-c activity. Nature 425(6961):926

    CAS  PubMed  Google Scholar 

  98. Ghosh P, Sagerström CG (2018) Developing roles for Hox proteins in hindbrain gene regulatory networks. Int J Dev Biol 62(11–12):767–774

    CAS  PubMed  Google Scholar 

  99. Jung H, Lacombe J, Mazzoni EO, Liem KF Jr, Grinstein J, Mahony S, Mukhopadhyay D, Gifford DK, Young RA, Anderson KV (2010) Global control of motor neuron topography mediated by the repressive actions of a single hox gene. Neuron 67(5):781–796

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Parker HJ, Bronner ME, Krumlauf R (2016) The vertebrate Hox gene regulatory network for hindbrain segmentation: evolution and diversification: coupling of a Hox gene regulatory network to hindbrain segmentation is an ancient trait originating at the base of vertebrates. BioEssays 38(6):526–538

    CAS  PubMed  Google Scholar 

  101. Catela C, Shin MM, Lee DH, Liu J-P, Dasen JS (2016) Hox proteins coordinate motor neuron differentiation and connectivity programs through Ret/Gfrα genes. Cell Rep 14(8):1901–1915

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Dasen JS, Tice BC, Brenner-Morton S, Jessell TM (2005) A Hox regulatory network establishes motor neuron pool identity and target-muscle connectivity. Cell 123(3):477–491

    CAS  PubMed  Google Scholar 

  103. Philippidou P, Walsh CM, Aubin J, Jeannotte L, Dasen JS (2012) Sustained Hox5 gene activity is required for respiratory motor neuron development. Nat Neurosci 15(12):1636

    CAS  PubMed  PubMed Central  Google Scholar 

  104. del Toro EDN, Borday V, Davenne M, Neun R, Rijli FM, Champagnat J (2001) Generation of a novel functional neuronal circuit inHoxa1 mutant mice. J Neurosci 21(15):5637–5642

    PubMed  PubMed Central  Google Scholar 

  105. Oury F, Murakami Y, Renaud J-S, Pasqualetti M, Charnay P, Ren S-Y, Rijli FM (2006) Hoxa2-and rhombomere-dependent development of the mouse facial somatosensory map. Science 313(5792):1408–1413

    CAS  PubMed  Google Scholar 

  106. Bel-Vialar S, Itasaki N, Krumlauf R (2002) Initiating Hox gene expression: in the early chick neural tube differential sensitivity to FGF and RA signaling subdivides the HoxB genes in two distinct groups. Development 129(22):5103–5115

    CAS  PubMed  Google Scholar 

  107. Alexander T, Nolte C, Krumlauf R (2009) Hox genes and segmentation of the hindbrain and axial skeleton. Annu Rev Cell Dev Biol 25:431–456

    CAS  PubMed  Google Scholar 

  108. Nordström U, Maier E, Jessell TM, Edlund T (2006) An early role for WNT signaling in specifying neural patterns of Cdx and Hox gene expression and motor neuron subtype identity. PLoS Biol 4(8):e252

    PubMed  PubMed Central  Google Scholar 

  109. Tabaries S, Lapointe J, Besch T, Carter M, Woollard J, Tuggle CK, Jeannotte L (2005) Cdx protein interaction with Hoxa5 regulatory sequences contributes to Hoxa5 regional expression along the axial skeleton. Mol Cell Biol 25(4):1389–1401

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Mazzoni EO, Mahony S, Peljto M, Patel T, Thornton SR, McCuine S, Reeder C, Boyer LA, Young RA, Gifford DK (2013) Saltatory remodeling of Hox chromatin in response to rostrocaudal patterning signals. Nat Neurosci 16(9):1191

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Gould A, Morrison A, Sproat G, White R, Krumlauf R (1997) Positive cross-regulation and enhancer sharing: two mechanisms for specifying overlapping Hox expression patterns. Genes Dev 11(7):900–913

    CAS  PubMed  Google Scholar 

  112. Manzanares M, Bel-Vialar S, Ariza-McNaughton L, Ferretti E, Marshall H, Maconochie MM, Blasi F, Krumlauf R (2001) Independent regulation of initiation and maintenance phases of Hoxa3 expression in the vertebrate hindbrain involve auto-and cross-regulatory mechanisms. Development 128(18):3595–3607

    CAS  PubMed  Google Scholar 

  113. Krumlauf R (2016) Hox genes and the hindbrain: a study in segments. In: Curren***t topics in developmental biology, vol 116. Elsevier, New York, pp 581–596. doi:10.1016/bs.ctdb.2015.12.011

  114. Di Meglio T, Kratochwil CF, Vilain N, Loche A, Vitobello A, Yonehara K, Hrycaj SM, Roska B, Peters AH, Eichmann A (2013) Ezh2 orchestrates topographic migration and connectivity of mouse precerebellar neurons. Science 339(6116):204–207

    PubMed  PubMed Central  Google Scholar 

  115. Golden MG, Dasen JS (2012) Polycomb repressive complex 1 activities determine the columnar organization of motor neurons. Genes Dev 26(19):2236–2250

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Gofflot F, Lizen B (2018) Emerging roles for HOX proteins in synaptogenesis. Int J Dev Biol 62(11–12):807–818

    CAS  PubMed  Google Scholar 

  117. Hutlet B, Theys N, Coste C, Ahn M-T, Doshishti-Agolli K, Lizen B, Gofflot F (2016) Systematic expression analysis of Hox genes at adulthood reveals novel patterns in the central nervous system. Brain Struct Funct 221(3):1223–1243

    CAS  PubMed  Google Scholar 

  118. Holland PW (2013) Evolution of homeobox genes. Wiley Interdiscip Rev Dev Biol 2(1):31–45

    CAS  PubMed  Google Scholar 

  119. Salmani BY, Cobeta IM, Rakar J, Bauer S, Curt JR, Starkenberg A, Thor S (2018) Evolutionarily conserved anterior expansion of the central nervous syst***em promoted by a common PcG-Hox program. Development 145:7. doi:10.1242/dev.160747

  120. Bahrampour S, Jonsson C, Thor S (2019) Brain expansion promoted by polycomb-mediated anterior enhancement of a neural stem cell proliferation program. PLoS Biol 17(2):e3000163

    PubMed  PubMed Central  Google Scholar 

  121. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439):531–537. https://doi.org/10.1126/science.286.5439.531

    Article  CAS  PubMed  Google Scholar 

  122. Nakamura T, Largaespada DA, Lee MP, Johnson LA, Ohyashiki K, Toyama K, Chen SJ, Willman CL, Chen IM, Feinberg AP, Jenkins NA, Copeland NG, Shaughnessy JD Jr (1996) Fusion of the nucleoporin gene NUP98 to HOXA9 by the chromosome translocation t(7;11)(p15;p15) in human myeloid leukaemia. Nat Genet 12(2):154–158. https://doi.org/10.1038/ng0296-154

    Article  CAS  PubMed  Google Scholar 

  123. Fujino T, Suzuki A, Ito Y, Ohyashiki K, Hatano Y, Miura I, Nakamura T (2002) Single-translocation and double-chimeric transcripts: detection of NUP98-HOXA9 in myeloid leukemias with HOXA11 or HOXA13 breaks of the chromosomal translocation t(7;11)(p15;p15). Blood 99(4):1428–1433

    CAS  PubMed  Google Scholar 

  124. Borrow J, Shearman AM, Stanton VP Jr, Becher R, Collins T, Williams AJ, Dube I, Katz F, Kwong YL, Morris C, Ohyashiki K, Toyama K, Rowley J, Housman DE (1996) The t(7;11)(p15;p15) translocation in acute myeloid leukaemia fuses the genes for nucleoporin NUP98 and class I homeoprotein HOXA9. Nat Genet 12(2):159–167. https://doi.org/10.1038/ng0296-159

    Article  CAS  PubMed  Google Scholar 

  125. Esposito MT, Zhao L, Fung TK, Rane JK, Wilson A, Martin N, Gil J, Leung AY, Ashworth A, So CW (2015) Synthetic lethal targeting of oncogenic transcription factors in acute leukemia by PARP inhibitors. Nat Med 21(12):1481–1490. https://doi.org/10.1038/nm.3993

    Article  CAS  PubMed  Google Scholar 

  126. Cantile M, Pettinato G, Procino A, Feliciello I, Cindolo L, Cillo C (2003) In vivo expression of the whole HOX gene network in human breast cancer. Eur J Cancer 39(2):257–264

    CAS  PubMed  Google Scholar 

  127. Ma XJ, Dahiya S, Richardson E, Erlander M, Sgroi DC (2009) Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res 11(1):R7. https://doi.org/10.1186/bcr2222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Unger MA, Lakins J, Zhang HX, Foster W, Baxter BJ, Chodosh L, Weaver VM, Weber BL (2002) HoxA9 is a novel breast cancer progression gene identified by microarray analysis. Am J Hum Genet 71(4):181–181

    Google Scholar 

  129. Costa BM, Smith JS, Chen Y, Chen J, Phillips HS, Aldape KD, Zardo G, Nigro J, James CD, Fridlyand J, Reis RM, Costello JF (2010) Reversing HOXA9 oncogene activation by PI3K inhibition: epigenetic mechanism and prognostic significance in human glioblastoma. Cancer Res 70(2):453–462. https://doi.org/10.1158/0008-5472.CAN-09-2189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Gaspar N, Marshall L, Perryman L, Bax DA, Little SE, Viana-Pereira M, Sharp SY, Vassal G, Pearson AD, Reis RM, Hargrave D, Workman P, Jones C (2010) MGMT-independent temozolomide resistance in pediatric glioblastoma cells associated with a PI3-kinase-mediated HOX/stem cell gene signature. Cancer Res 70(22):9243–9252. https://doi.org/10.1158/0008-5472.CAN-10-1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Murat A, Migliavacca E, Gorlia T, Lambiv WL, Shay T, Hamou MF, de Tribolet N, Regli L, Wick W, Kouwenhoven MC, Hainfellner JA, Heppner FL, Dietrich PY, Zimmer Y, Cairncross JG, Janzer RC, Domany E, Delorenzi M, Stupp R, Hegi ME (2008) Stem cell-related "self-renewal" signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J Clin Oncol 26(18):3015–3024. https://doi.org/10.1200/JCO.2007.15.7164

    Article  CAS  PubMed  Google Scholar 

  132. Abdel-Fattah R, Xiao A, Bomgardner D, Pease CS, Lopes MBS, Hussaini IM (2006) Differential expression of HOX genes in neoplastic and non-neoplastic human astrocytes. J Pathol 209(1):15–24. https://doi.org/10.1002/path.1939

    Article  CAS  PubMed  Google Scholar 

  133. Tabuse M, Ohta S, Ohashi Y, Fukaya R, Misawa A, Yoshida K, Kawase T, Saya H, Thirant C, Chneiweiss H, Matsuzaki Y, Okano H, Kawakami Y, Toda M (2011) Functional analysis of HOXD9 in human gliomas and glioma cancer stem cells. Mol Cancer 10(1):60. https://doi.org/10.1186/1476-4598-10-60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Bodey B, Bodey B Jr, Siegel SE, Kaiser HE (2000) Immunocytochemical detection of the homeobox B3, B4, and C6 gene products in childhood medulloblastomas/primitive neuroectodermal tumors. Anticancer Res 20(3A):1769–1780

    CAS  PubMed  Google Scholar 

  135. Tiberio C, Barba P, Magli MC, Arvelo F, Le Chevalier T, Poupon MF, Cillo C (1994) HOX gene expression in human small-cell lung cancers xenografted into nude mice. Int J Cancer 58(4):608–615

    CAS  PubMed  Google Scholar 

  136. Calvo R, West J, Franklin W, Erickson P, Bemis L, Li E, Helfrich B, Bunn P, Roche J, Brambilla E, Rosell R, Gemmill RM, Drabkin HA (2000) Altered HOX and WNT7A expression in human lung cancer. Proc Natl Acad Sci USA 97(23):12776–12781. https://doi.org/10.1073/pnas.97.23.12776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. De Vita G, Barba P, Odartchenko N, Givel JC, Freschi G, Bucciarelli G, Magli MC, Boncinelli E, Cillo C (1993) Expression of homeobox-containing genes in primary and metastatic colorectal cancer. Eur J Cancer 29A(6):887–893

    PubMed  Google Scholar 

  138. Alami Y, Castronovo V, Belotti D, Flagiello D, Clausse N (1999) HOXC5 and HOXC8 expression are selectively turned on in human cervical cancer cells compared to normal keratinocytes. Biochem Biophys Res Commun 257(3):738–745. https://doi.org/10.1006/bbrc.1999.0516

    Article  CAS  PubMed  Google Scholar 

  139. Cantile M, Cindolo L, Napodano G, Altieri V, Cillo C (2003) Hyperexpression of locus C genes in the HOX network is strongly associated in vivo with human bladder transitional cell carcinomas. Oncogene 22(41):6462–6468. https://doi.org/10.1038/sj.onc.1206808

    Article  CAS  PubMed  Google Scholar 

  140. Reinert T, Modin C, Castano FM, Lamy P, Wojdacz TK, Hansen LL, Wiuf C, Borre M, Dyrskjot L, Orntoft TF (2011) Comprehensive genome methylation analysis in bladder cancer: identification and validation of novel methylated genes and application of these as urinary tumor markers. Clin Cancer Res 17(17):5582–5592. https://doi.org/10.1158/1078-0432.Ccr-10-2659

    Article  CAS  PubMed  Google Scholar 

  141. Cillo C, Barba P, Freschi G, Bucciarelli G, Magli MC, Boncinelli E (1992) HOX gene expression in normal and neoplastic human kidney. Int J Cancer 51(6):892–897

    CAS  PubMed  Google Scholar 

  142. Cancer Today (2016) IARC. https://gco.iarc.fr/today. Accessed 2018

  143. Burnet NG, Jefferies SJ, Benson RJ, Hunt DP, Treasure FP (2005) Years of life lost (YLL) from cancer is an important measure of population burden and should be considered when allocating research funds. Br J Cancer 92(2):241–245. https://doi.org/10.1038/sj.bjc.6602321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109. https://doi.org/10.1007/s00401-007-0243-4

    Article  PubMed  PubMed Central  Google Scholar 

  145. Chen R, Smith-Cohn M, Cohen AL, Colman H (2017) Glioma subclassifications and their clinical significance. Neurotherapeutics 14(2):284–297. https://doi.org/10.1007/s13311-017-0519-x

    Article  PubMed  PubMed Central  Google Scholar 

  146. Perry A, Wesseling P (2016) Histologic classification of gliomas. Handb Clin Neurol 134:71–95. https://doi.org/10.1016/B978-0-12-802997-8.00005-0

    Article  PubMed  Google Scholar 

  147. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  148. Masui K, Mischel PS, Reifenberger G (2016) Molecular classification of gliomas. Handb Clin Neurol 134:97–120. https://doi.org/10.1016/B978-0-12-802997-8.00006-2

    Article  PubMed  Google Scholar 

  149. Walsh KM, Ohgaki H, Wrensch MR (2016) Epidemiology. Handb Clin Neurol 134:3–18. https://doi.org/10.1016/B978-0-12-802997-8.00001-3

    Article  PubMed  Google Scholar 

  150. Ostrom QT, Gittleman H, Liao P, Vecchione-Koval T, Wolinsky Y, Kruchko C, Barnholtz-Sloan JS (2017) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014. Neuro Oncol 19(suppl_5):v1–v88. https://doi.org/10.1093/neuonc/nox158

    Article  PubMed  PubMed Central  Google Scholar 

  151. Buccoliero AM, Castiglione F, Degl’Innocenti DR, Ammanati F, Giordano F, Sanzo M, Mussa F, Genitori L, Taddei GL (2009) Hox-D genes expression in pediatric low-grade gliomas: real-time-PCR study. Cell Mol Neurobiol 29(1):1–6

    CAS  PubMed  Google Scholar 

  152. Sun L, Yan W, Wang Y, Sun G, Luo H, Zhang J, Wang X, You Y, Yang Z, Liu N (2011) MicroRNA-10b induces glioma cell invasion by modulating MMP-14 and uPAR expression via HOXD10. Brain Res 1389:9–18

    CAS  PubMed  Google Scholar 

  153. Duan R, Han L, Wang Q, Wei J, Chen L, Zhang J, Kang C, Wang L (2015) HOXA13 is a potential GBM diagnostic marker and promotes glioma invasion by activating the Wnt and TGF-β pathways. Oncotarget 6(29):27778

    PubMed  PubMed Central  Google Scholar 

  154. Se Y-B, Kim SH, Kim JY, Kim JE, Dho Y-S, Kim JW, Kim YH, Woo HG, Kim S-H, Kang S-H (2017) Underexpression of HOXA11 is associated with treatment resistance and poor prognosis in glioblastoma. Cancer Res Treat 49(2):387–398. https://doi.org/10.4143/crt.2016.106

    Article  CAS  PubMed  Google Scholar 

  155. Li Q, Dong C, Cui J, Wang Y, Hong X (2018) Over-expressed lncRNA HOTAIRM1 promotes tumor growth and invasion through up-regulating HOXA1 and sequestering G9a/EZH2/Dnmts away from the HOXA1 gene in glioblastoma multiforme. J Exp Clin Cancer Res 37(1):265

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Pojo M, Goncalves CS, Xavier-Magalhaes A, Oliveira AI, Goncalves T, Correia S, Rodrigues AJ, Costa S, Pinto L, Pinto AA, Lopes JM, Reis RM, Rocha M, Sousa N, Costa BM (2015) A transcriptomic signature mediated by HOXA9 promotes human glioblastoma initiation, aggressiveness and resistance to temozolomide. Oncotarget 6(10):7657–7674. https://doi.org/10.18632/oncotarget.3150

    Article  PubMed  PubMed Central  Google Scholar 

  157. Xu K, Qiu C, Pei H, Mehmood MA, Wang H, Li L, Xia Q (2018) Homeobox B3 promotes tumor cell proliferation and invasion in glioblastoma. Oncol Lett 15(3):3712–3718

    PubMed  PubMed Central  Google Scholar 

  158. Duan X, Liu D, Wang Y, Chen Z (2018) Circular RNA hsa_circ_0074362 promotes glioma cell proliferation, migration, and invasion by attenuating the inhibition of mir-1236-3p on HOXB7 expression. DNA Cell Biol 37(11):917–924

    CAS  PubMed  Google Scholar 

  159. Fang L, Xu Y, Zou L (2014) Overexpressed homeobox B9 regulates oncogenic activities by transforming growth factor-β1 in gliomas. Biochem Biophys Res Commun 446(1):272–279

    CAS  PubMed  Google Scholar 

  160. Yan T-f, Wu M-j, Xiao B, Hu Q, Fan Y-H, Zhu X-G (2018) Knockdown of HOXC6 inhibits glioma cell proliferation and induces cell cycle arrest by targeting WIF-1 in vitro and vivo. Pathol Res Pract 214(11):1818–1824

    CAS  PubMed  Google Scholar 

  161. Okamoto OK, Oba-Shinjo SM, Lopes L, Marie SKN (2007) Expression of HOXC9 and E2F2 are up-regulated in CD133(+) cells isolated from human astrocytomas and associate with transformation of human astrocytes. Biochim Biophys Acta 1769(7–8):437–442. https://doi.org/10.1016/j.bbaexp.2007.05.002

    Article  CAS  PubMed  Google Scholar 

  162. Li S, Zhang W, Wu C, Gao H, Yu J, Wang X, Li B, Jun Z, Zhang W, Zhou P (2018) HOXC 10 promotes proliferation and invasion and induces immunosuppressive gene expression in glioma. FEBS J 285(12):2278–2291

    CAS  PubMed  Google Scholar 

  163. Guan Y, He Y, Lv S, Hou X, Li L, Song J (2019) Overexpression of HOXC10 promotes glioblastoma cell progression to a poor prognosis via the PI3K/AKT signalling pathway. J Drug Target 27(1):60–66

    CAS  PubMed  Google Scholar 

  164. Zhao X-W, Zhan Y-B, Bao J-J, Zhou J-Q, Zhang F-J, Bin Y, Bai Y-H, Wang Y-M, Zhang Z-Y, Liu X-Z (2017) Clinicopathological analysis of HOXD4 expression in diffuse gliomas and its correlation with IDH mutations and 1p/19q co-deletion. Oncotarget 8(70):115657

    PubMed  PubMed Central  Google Scholar 

  165. Han L, Liu D, Li Z, Tian N, Han Z, Wang G, Fu Y, Guo Z, Zhu Z, Du C (2015) HOXB1 is a tumor suppressor gene regulated by miR-3175 in glioma. PLoS ONE 10(11):e0142387

    PubMed  PubMed Central  Google Scholar 

  166. Hu X, Chen D, Cui Y, Li Z, Huang J (2013) Targeting microRNA-23a to inhibit glioma cell invasion via HOXD10. Sci Rep 3:3423

    PubMed  PubMed Central  Google Scholar 

  167. Gallo M, Ho J, Coutinho FJ, Vanner R, Lee L, Head R, Ling EK, Clarke ID, Dirks PB (2013) A tumorigenic MLL-homeobox network in human glioblastoma stem cells. Cancer Res 73(1):417–427

    CAS  PubMed  Google Scholar 

  168. Li B, McCrudden CM, Yuen HF, Xi X, Lyu P, Chan KW, Zhang SD, Kwok HF (2017) CD133 in brain tumor: the prognostic factor. Oncotarget 8(7):11144

    PubMed  Google Scholar 

  169. The Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068. https://doi.org/10.1038/nature07385

    Article  CAS  Google Scholar 

  170. The Cancer Genome Atlas Research Network (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 372(26):2481–2498. https://doi.org/10.1056/NEJMoa1402121

    Article  CAS  PubMed Central  Google Scholar 

  171. Cimino PJ, Kim Y, Wu H-J, Alexander J, Wirsching H-G, Szulzewsky F, Pitter K, Ozawa T, Wang J, Vazquez J (2018) Increased HOXA5 expression provides a selective advantage for gain of whole chromosome 7 in IDH wild-type glioblastoma. Genes Dev 32(7–8):512–523

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Xuan F, Huang M, Liu W, Ding H, Yang L, Cui H (2015) Homeobox C9 suppresses Beclin1-mediated autophagy in glioblastoma by directly inhibiting the transcription of death-associated protein kinase 1. Neuro Oncol 18(6):819–829

    PubMed  PubMed Central  Google Scholar 

  173. Chen B, Liang T, Yang P, Wang H, Liu Y, Yang F, You G (2016) Classifying lower grade glioma cases according to whole genome gene expression. Oncotarget 7(45):74031

    PubMed  PubMed Central  Google Scholar 

  174. Guo YB, Shao YM, Chen J, Xu SB, Zhang XD, Wang MR, Liu HY (2016) Effect of overexpression of HOX genes on its invasive tendency in cerebral glioma. Oncol Lett 11(1):75–80

    CAS  PubMed  Google Scholar 

  175. Tan Z, Chen K, Wu W, Zhou Y, Zhu J, Wu G, Cao L, Zhang X, Guan H, Yang Y (2018) Overexpression of HOXC10 promotes angiogenesis in human glioma via interaction with PRMT5 and upregulation of VEGFA expression. Theranostics 8(18):5143

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Kim JW, Kim JY, Kim JE, Kim S-K, Chung H-T, Park C-K (2014) HOXA10 is associated with temozolomide resistance through regulation of the homologous recombinant DNA repair pathway in glioblastoma cell lines. Genes Cancer 5(5–6):165

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Lin J, Teo S, Lam DH, Jeyaseelan K, Wang S (2012) MicroRNA-10b pleiotropically regulates invasion, angiogenicity and apoptosis of tumor cells resembling mesenchymal subtype of glioblastoma multiforme. Cell Death Dis 3(10):e398

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Yachi K, Tsuda M, Kohsaka S, Wang L, Oda Y, Tanikawa S, Ohba Y, Tanaka S (2018) miR-23a promotes invasion of glioblastoma via HOXD10-regulated glial-mesenchymal transition. Signal Transduct Target Ther 3(1):33

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Court F, Le Boiteux E, Fogli A, Müller-Barthélémy M, Vaurs-Barriére C, Chautard E, Pereira B, Biau J, Kemeny J-L, Khalil T, Karayan-Tapon L, Verelle P, Arnaud P (2019) Transcriptional alterations in glioma result primarily from DNA methylation-independent mechanisms. Genome Res 29(10):1605–1621. https://doi.org/10.1101/gr.249219.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Dong CG, Wu WK, Feng SY, Wang XJ, Shao JF, Qiao J (2012) Co-inhibition of microRNA-10b and microRNA-21 exerts synergistic inhibition on the proliferation and invasion of human glioma cells. Int J Oncol 41(3):1005–1012

    CAS  PubMed  Google Scholar 

  181. Deneberg S, Guardiola P, Lennartsson A, Qu Y, Gaidzik V, Blanchet O, Karimi M, Bengtzén S, Nahi H, Uggla B (2011) Prognostic DNA methylation patterns in cytogenetically normal acute myeloid leukemia are predefined by stem cell chromatin marks. Blood J Am Soc Hematol 118(20):5573–5582

    CAS  Google Scholar 

  182. Ohm JE, McGarvey KM, Yu X, Cheng L, Schuebel KE, Cope L, Mohammad HP, Chen W, Daniel VC, Yu W (2007) A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 39(2):237–242

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Martinez R, Martin-Subero JI, Rohde V, Kirsch M, Alaminos M, Fernandez AF, Ropero S, Schackert G, Esteller M (2009) A microarray-based DNA methylation study of glioblastoma multiforme. Epigenetics 4(4):255–264

    CAS  PubMed  Google Scholar 

  184. Kurscheid S, Bady P, Sciuscio D, Samarzija I, Shay T, Vassallo I, Criekinge WV, Daniel RT, van den Bent MJ, Marosi C (2015) Chromosome 7 gain and DNA hypermethylation at the HOXA10 locus are associated with expression of a stem cell related HOX-signature in glioblastoma. Genome Biol 16(1):16

    PubMed  PubMed Central  Google Scholar 

  185. Court F, Arnaud P (2017) An annotated list of bivalent chromatin regions in human ES cells: a new tool for cancer epigenetic research. Oncotarget 8(3):4110

    PubMed  Google Scholar 

  186. Di Vinci A, Casciano I, Marasco E, Banelli B, Ravetti GL, Borzì L, Brigati C, Forlani A, Dorcaratto A, Allemanni G (2012) Quantitative methylation analysis of HOXA3, 7, 9, and 10 genes in glioma: association with tumor WHO grade and clinical outcome. J Cancer Res Clin Oncol 138(1):35–47

    PubMed  Google Scholar 

  187. Brinkman AB, Gu H, Bartels SJ, Zhang Y, Matarese F, Simmer F, Marks H, Bock C, Gnirke A, Meissner A (2012) Sequential ChIP-bisulfite sequencing enables direct genome-scale investigation of chromatin and DNA methylation cross-talk. Genome Res 22(6):1128–1138

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Reddington JP, Perricone SM, Nestor CE, Reichmann J, Youngson NA, Suzuki M, Reinhardt D, Dunican DS, Prendergast JG, Mjoseng H (2013) Redistribution of H3K27me3 upon DNA hypomethylation results in de-repression of Polycomb target genes. Genome Biol 14(3):R25

    PubMed  PubMed Central  Google Scholar 

  189. Flavahan WA, Drier Y, Liau BB, Gillespie SM, Venteicher AS, Stemmer-Rachamimov AO, Suvà ML, Bernstein BE (2016) Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529(7584):110

    CAS  PubMed  Google Scholar 

  190. Johnston MJ, Nikolic A, Ninkovic N, Guilhamon P, Cavalli FM, Seaman S, Zemp FJ, Lee J, Abdelkareem A, Ellestad K (2019) High-resolution structural genomics reveals new therapeutic vulnerabilities in glioblastoma. Genome Res 29(8):1211–1222

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Goncalves CS, Xavier-Magalhaes A, Pojo M, Oliveira AI, Correia S, Reis RM, Sousa N, Rocha M, Costa BM (2015) Transcriptional profiling of HOXA9-regulated genes in human glioblastoma cell models. Genom Data 5:54–58. https://doi.org/10.1016/j.gdata.2015.05.010

    Article  PubMed  PubMed Central  Google Scholar 

  192. Xavier-Magalhães A, Gonçalves CS, Fogli A, Lourenço T, Pojo M, Pereira B, Rocha M, Lopes MC, Crespo I, Rebelo O (2018) The long non-coding RNA HOTAIR is transcriptionally activated by HOXA9 and is an independent prognostic marker in patients with malignant glioma. Oncotarget 9(21):15740–15756. https://doi.org/10.18632/oncotarget.24597

    Article  PubMed  PubMed Central  Google Scholar 

  193. Gonçalves CS, Xavier-Magalhães A, Martins EP, Pinto AA, Pires MM, Pinheiro C, Reis RM, Sousa N, Costa BM (2020) A novel molecular link between HOXA9 and WNT6 in glioblastoma identifies a subgroup of patients with particular poor prognosis. Mol Oncol. https://doi.org/10.1002/1878-0261.12633

    Article  PubMed  PubMed Central  Google Scholar 

  194. Gonçalves CS, Vieira de Castro J, Pojo M, Martins EP, Queirós S, Chautard E, Taipa R, Pires MM, Pinto AA, Pardal F, Custódia C, Faria CC, Clara C, Reis RM, Sousa N, Costa BM (2018) WNT6 is a novel oncogenic prognostic biomarker in human glioblastoma. Theranostics 8(17):4805–4823. https://doi.org/10.7150/thno.25025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Herrlinger U, Schäfer N, Steinbach JP, Weyerbrock A, Hau P, Goldbrunner R, Friedrich F, Rohde V, Ringel F, Schlegel U (2016) Bevacizumab plus irinotecan versus temozolomide in newly diagnosed O6-methylguanine–DNA methyltransferase nonmethylated glioblastoma: the randomized GLARIUS trial. J Clin Oncol 34(14):1611–1619

    CAS  PubMed  Google Scholar 

  196. Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, Carpentier AF, Hoang-Xuan K, Kavan P, Cernea D (2014) Bevacizumab plus radiotherapy–temozolomide for newly diagnosed glioblastoma. N Engl J Med 370(8):709–722

    CAS  PubMed  Google Scholar 

  197. Sánchez-Higueras C, Rastogi C, Voutev R, Bussemaker HJ, Mann RS, Hombría JCG (2019) In vivo Hox binding specificity revealed by systematic changes to a single cis regulatory module. Nat Commun 10(1):3597–3597. https://doi.org/10.1038/s41467-019-11416-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Mann RS, Affolter M (1998) Hox proteins meet more partners. Curr Opin Genet Dev 8(4):423–429. https://doi.org/10.1016/s0959-437x(98)80113-5

    Article  CAS  PubMed  Google Scholar 

  199. Dard A, Jia Y, Reboulet J, Bleicher F, Lavau C, Merabet S (2019) The human HOXA9 protein uses paralog-specific residues of the homeodomain to interact with TALE-class cofactors. Sci Rep 9(1):5664–5664. https://doi.org/10.1038/s41598-019-42096-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Porcelli D, Fischer B, Russell S, White R (2019) Chromatin accessibility plays a key role in selective targeting of Hox proteins. Genome Biol 20(1):115–115. https://doi.org/10.1186/s13059-019-1721-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Shinawi T, Hill VK, Krex D, Schackert G, Gentle D, Morris MR, Wei W, Cruickshank G, Maher ER, Latif F (2013) DNA methylation profiles of long-and short-term glioblastoma survivors. Epigenetics 8(2):149–156

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Khan AA, Ham S-J, Yen LN, Lee HL, Huh J, Jeon H, Kim MH, Roh T-Y (2018) A novel role of metal response element binding transcription factor 2 at the Hox gene cluster in the regulation of H3K27me3 by polycomb repressive complex 2. Oncotarget 9(41):26572–26585. https://doi.org/10.18632/oncotarget.25505

    Article  PubMed  PubMed Central  Google Scholar 

  203. Li Y, Ren Y, Wang Y, Tan Y, Wang Q, Cai J, Zhou J, Yang C, Zhao K, Yi K, Jin W, Wang L, Liu M, Yang J, Li M, Kang C (2019) A compound AC1Q3QWB selectively disrupts HOTAIR-mediated recruitment of PRC2 and enhances cancer therapy of DZNep. Theranostics 9(16):4608–4623. https://doi.org/10.7150/thno.35188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Miranda TB, Cortez CC, Yoo CB, Liang G, Abe M, Kelly TK, Marquez VE, Jones PA (2009) DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Mol Cancer Ther 8(6):1579–1588. https://doi.org/10.1158/1535-7163.MCT-09-0013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Bertolini I, Terrasi A, Martelli C, Gaudioso G, Di Cristofori A, Storaci AM, Formica M, Braidotti P, Todoerti K, Ferrero S (2019) A GBM-like V-ATPase signature directs cell-cell tumor signaling and reprogramming via large oncosomes. EBioMedicine

  206. Ko SY, Ladanyi A, Lengyel E, Naora H (2014) Expression of the homeobox gene HOXA9 in ovarian cancer induces peritoneal macrophages to acquire an M2 tumor-promoting phenotype. Am J Pathol 184(1):271–281. https://doi.org/10.1016/j.ajpath.2013.09.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno M. Costa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, C.S., Le Boiteux, E., Arnaud, P. et al. HOX gene cluster (de)regulation in brain: from neurodevelopment to malignant glial tumours. Cell. Mol. Life Sci. 77, 3797–3821 (2020). https://doi.org/10.1007/s00018-020-03508-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03508-9

Keywords

Navigation