Skip to main content
Log in

Characterization of the dimeric CMG/pre-initiation complex and its transition into DNA replication forks

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The pre-initiation complex (pre-IC) has been proposed for two decades as an intermediate right before the maturation of the eukaryotic DNA replication fork. However, its existence and biochemical nature remain enigmatic. Here, through combining several enrichment strategies, we are able to isolate an endogenous dimeric CMG-containing complex (designated as d-CMG) distinct from traditional single CMG (s-CMG) and in vitro reconstituted dimeric CMG. D-CMG is assembled upon entry into the S phase and shortly matures into s-CMG/replisome, leading to the fact that only ~ 5% of the total CMG-containing complexes can be detected as d-CMG in vivo. Mass spectra reveal that RPA and DNA Pol α/primase co-purify with s-CMG, but not with d-CMG. Consistently, the former fraction is able to catalyze DNA unwinding and de novo synthesis, while the latter catalyzes neither. The two CMGs in d-CMG display flexibly orientated conformations under an electronic microscope. When DNA Pol α-primase is inactivated, d-CMG % rose up to 29%, indicating an incomplete pre-IC/fork transition. These findings reveal biochemical properties of the d-CMG/pre-IC and provide in vivo evidence to support the pre-IC/fork transition as a bona fide step in replication initiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Parker MW, Botchan MR, Berger JM (2017) Mechanisms and regulation of DNA replication initiation in eukaryotes. Crit Rev Biochem Mol Biol 52(2):107–144. https://doi.org/10.1080/10409238.2016.1274717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bleichert F, Botchan MR, Berger JM (2017) Mechanisms for initiating cellular DNA replication. Science. https://doi.org/10.1126/science.aah6317

    Article  PubMed  Google Scholar 

  3. Evrin C, Clarke P, Zech J, Lurz R, Sun J, Uhle S, Li H, Stillman B, Speck C (2009) A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc Natl Acad Sci 106(48):20240–20245. https://doi.org/10.1073/pnas.0911500106

    Article  PubMed  Google Scholar 

  4. Remus D, Beuron F, Tolun G, Griffith JD, Morris EP, Diffley JF (2009) Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell 139(4):719–730. https://doi.org/10.1016/j.cell.2009.10.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li N, Zhai Y, Zhang Y, Li W, Yang M, Lei J, Tye B-K, Gao N (2015) Structure of the eukaryotic MCM complex at 3.8 A. Nature 524(7564):186–191. https://doi.org/10.1038/nature14685

    Article  CAS  PubMed  Google Scholar 

  6. Coster G, Diffley JFX (2017) Bidirectional eukaryotic DNA replication is established by quasi-symmetrical helicase loading. Science 357(6348):314–318. https://doi.org/10.1126/science.aan0063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Moyer SE, Lewis PW, Botchan MR (2006) Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc Natl Acad Sci USA 103(27):10236–10241. https://doi.org/10.1073/pnas.0602400103

    Article  CAS  PubMed  Google Scholar 

  8. Gambus A, Jones RC, Sanchez-Diaz A, Kanemaki M, van Deursen F, Edmondson RD, Labib K (2006) GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat Cell Biol 8(4):358–366. https://doi.org/10.1038/ncb1382

    Article  CAS  PubMed  Google Scholar 

  9. Pacek M, Tutter AV, Kubota Y, Takisawa H, Walter JC (2006) Localization of MCM2-7, Cdc45, and GINS to the site of DNA unwinding during eukaryotic DNA replication. Mol Cell 21(4):581–587. https://doi.org/10.1016/j.molcel.2006.01.030

    Article  CAS  PubMed  Google Scholar 

  10. Ilves I, Petojevic T, Pesavento JJ, Botchan MR (2010) Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol Cell 37(2):247–258. https://doi.org/10.1016/j.molcel.2009.12.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yardimci H, Loveland AB, Habuchi S, van Oijen AM, Walter JC (2010) Uncoupling of sister replisomes during eukaryotic DNA replication. Mol Cell 40(5):834–840. https://doi.org/10.1016/j.molcel.2010.11.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Costa A, Ilves I, Tamberg N, Petojevic T, Nogales E, Botchan MR, Berger JM (2011) The structural basis for MCM2-7 helicase activation by GINS and Cdc45. Nat Struct Mol Biol 18(4):471–477. https://doi.org/10.1038/nsmb.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Riera A, Barbon M, Noguchi Y, Reuter LM, Schneider S, Speck C (2017) From structure to mechanism—understanding initiation of DNA replication. Genes Dev 31(11):1073–1088. https://doi.org/10.1101/gad.298232.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. O’Donnell ME, Li H (2018) The ring-shaped hexameric helicases that function at DNA replication forks. Nat Struct Mol Biol. https://doi.org/10.1038/s41594-018-0024-x

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sheu YJ, Stillman B (2006) Cdc7-Dbf4 phosphorylates MCM proteins via a docking site-mediated mechanism to promote S phase progression. Mol Cell 24(1):101–113. https://doi.org/10.1016/j.molcel.2006.07.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sheu YJ, Stillman B (2010) The Dbf4-Cdc7 kinase promotes S phase by alleviating an inhibitory activity in Mcm4. Nature 463(7277):113–117. https://doi.org/10.1038/nature08647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Heller RC, Kang S, Lam WM, Chen S, Chan CS, Bell SP (2011) Eukaryotic origin-dependent DNA replication in vitro reveals sequential action of DDK and S-CDK kinases. Cell 146(1):80–91. https://doi.org/10.1016/j.cell.2011.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tanaka S, Araki H (2013) Helicase activation and establishment of replication forks at chromosomal origins of replication. Cold Spring Harb Perspect Bio 5(12):a010371. https://doi.org/10.1101/cshperspect.a010371

    Article  CAS  Google Scholar 

  19. Deegan TD, Yeeles JT, Diffley JF (2016) Phosphopeptide binding by Sld3 links Dbf4-dependent kinase to MCM replicative helicase activation. EMBO J. https://doi.org/10.15252/embj.201593552

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fang D, Cao Q, Lou H (2016) Sld3-MCM interaction facilitated by Dbf4-dependent kinase defines an essential step in eukaryotic DNA replication initiation. Front Microbiol 7:885. https://doi.org/10.3389/fmicb.2016.00885

    Article  PubMed  PubMed Central  Google Scholar 

  21. Siddiqui K, On KF, Diffley JF (2013) Regulating DNA replication in eukarya. Cold Spring Harb Perspect. https://doi.org/10.1101/cshperspect.a012930

    Article  Google Scholar 

  22. Costa A, Renault L, Swuec P, Petojevic T, Pesavento JJ, Ilves I, MacLellan-Gibson K, Fleck RA, Botchan MR, Berger JM (2014) DNA binding polarity, dimerization, and ATPase ring remodeling in the CMG helicase of the eukaryotic replisome. Elife 3:e03273. https://doi.org/10.7554/elife.03273

    Article  PubMed  PubMed Central  Google Scholar 

  23. Quan Y, Xia Y, Liu L, Cui J, Li Z, Cao Q, Chen XS, Campbell JL, Lou H (2015) Cell-cycle-regulated interaction between Mcm10 and double hexameric Mcm2-7 is required for helicase splitting and activation during S Phase. Cell Rep 13(11):2576–2586. https://doi.org/10.1016/j.celrep.2015.11.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Miyazawa-Onami M, Araki H, Tanaka S (2017) Pre-initiation complex assembly functions as a molecular switch that splits the Mcm27 double hexamer. EMBO Rep 18(10):1752–1761

    Article  CAS  Google Scholar 

  25. Douglas ME, Ali FA, Costa A, Diffley JFX (2018) The mechanism of eukaryotic CMG helicase activation. Nature 555:265. https://doi.org/10.1038/nature25787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zou L, Stillman B (1998) Formation of a preinitiation complex by S-phase cyclin CDK-dependent loading of Cdc45p onto chromatin. Science 280(5363):593–596. https://doi.org/10.1126/science.280.5363.593

    Article  CAS  PubMed  Google Scholar 

  27. Douglas ME, Diffley JFX (2016) Recruitment of Mcm10 to sites of replication initiation requires direct binding to the minichromosome maintenance (MCM) complex. J Biol Chem 291(11):5879–6888. https://doi.org/10.1074/jbc.M115.707802

    Article  CAS  PubMed  Google Scholar 

  28. Yeeles JT, Deegan TD, Janska A, Early A, Diffley JF (2015) Regulated eukaryotic DNA replication origin firing with purified proteins. Nature 519(7544):431–435. https://doi.org/10.1038/nature14285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gambus A, van Deursen F, Polychronopoulos D, Foltman M, Jones RC, Edmondson RD, Calzada A, Labib K (2009) A key role for Ctf4 in coupling the MCM2-7 helicase to DNA polymerase alpha within the eukaryotic replisome. EMBO J 28(19):2992–3004. https://doi.org/10.1038/emboj.2009.226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Simon AC, Zhou JC, Perera RL, van Deursen F, Evrin C, Ivanova ME, Kilkenny ML, Renault L, Kjaer S, Matak-Vinkovic D, Labib K, Costa A, Pellegrini L (2014) A Ctf4 trimer couples the CMG helicase to DNA polymerase alpha in the eukaryotic replisome. Nature 510(7504):293–297. https://doi.org/10.1038/nature13234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Villa F, Simon AC, Ortiz Bazan MA, Kilkenny ML, Wirthensohn D, Wightman M, Matak-Vinkovic D, Pellegrini L, Labib K (2016) Ctf4 is a hub in the eukaryotic replisome that Links multiple CIP-box proteins to the CMG helicase. Mol Cell. https://doi.org/10.1016/j.molcel.2016.06.009

    Article  PubMed  PubMed Central  Google Scholar 

  32. Perera RL, Torella R, Klinge S, Kilkenny ML, Maman JD, Pellegrini L (2013) Mechanism for priming DNA synthesis by yeast DNA polymerase alpha. Elife 2:e00482. https://doi.org/10.7554/eLife.00482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Georgescu R, Yuan Z, Bai L, de Luna Almeida Santos R, Sun J, Zhang D, Yurieva O, Li H, O’Donnell ME (2017) Structure of eukaryotic CMG helicase at a replication fork and implications to replisome architecture and origin initiation. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1620500114

    Article  PubMed  Google Scholar 

  34. Yuan Z, Bai L, Sun J, Georgescu R, Liu J, O’Donnell ME, Li H (2016) Structure of the eukaryotic replicative CMG helicase suggests a pumpjack motion for translocation. Nat Struct Mol Biol. https://doi.org/10.1038/nsmb.3170

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sun J, Shi Y, Georgescu RE, Yuan Z, Chait BT, Li H, O’Donnell ME (2015) The architecture of a eukaryotic replisome. Nat Struct Mol Biol 22(12):976–982. https://doi.org/10.1038/nsmb.3113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhou JC, Janska A, Goswami P, Renault L, Abid Ali F, Kotecha A, Diffley JF, Costa A (2017) CMG-Pol epsilon dynamics suggests a mechanism for the establishment of leading-strand synthesis in the eukaryotic replisome. Proc Natl Acad Sci USA 114(16):4141–4146. https://doi.org/10.1073/pnas.1700530114

    Article  CAS  PubMed  Google Scholar 

  37. Maric M, Maculins T, De Piccoli G, Labib K (2014) Cdc48 and a ubiquitin ligase drive disassembly of the CMG helicase at the end of DNA replication. Science 346(6208):1253596. https://doi.org/10.1126/science.1253596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Priego Moreno S, Bailey R, Campion N, Herron S, Gambus A (2014) Polyubiquitylation drives replisome disassembly at the termination of DNA replication. Science 346(6208):477–481. https://doi.org/10.1126/science.1253585

    Article  CAS  Google Scholar 

  39. Dewar JM, Budzowska M, Walter JC (2015) The mechanism of DNA replication termination in vertebrates. Nature 525:345. https://doi.org/10.1038/nature14887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xia Y, Niu Y, Cui J, Fu Y, Chen X, Lou H, Cao Q (2015) The helicase activity of hyperthermophilic archaeal MCM is enhanced at high temperatures by lysine methylation. Front Microbiol 6:1247. https://doi.org/10.3389/fmicb.2015.01247

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chi H, He K, Yang B, Chen Z, Sun R-X, Fan S-B, Zhang K, Liu C, Yuan Z-F, Wang Q-H, Liu S-Q, Dong M-Q, He S-M (2015) pFind–Alioth: a novel unrestricted database search algorithm to improve the interpretation of high-resolution MS/MS data. J Proteomics 125:89–97. https://doi.org/10.1016/j.jprot.2015.05.009

    Article  CAS  PubMed  Google Scholar 

  42. Tang G, Peng L, Baldwin PR, Mann DS, Jiang W, Rees I, Ludtke SJ (2007) EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol 157(1):38–46. https://doi.org/10.1016/j.jsb.2006.05.009

    Article  CAS  PubMed  Google Scholar 

  43. Scheres SHW (2012) RELION: implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 180(3):519–530. https://doi.org/10.1016/j.jsb.2012.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—A visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Costa for sharing unpublished data and superposed CMG-Ctf4 structure shown in Fig. 6e; Dr. Karim Labib for insightful discussion; Drs. Karim Labib, Stephen Bell, and Li-Lin Du for reagents; Drs. Ning Gao, Hao Wu, Qun He, Yisui Xia, Ms. Yawen Bai, and members of the Lou lab for help and comments on the manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (http://www.nsfc.gov.cn/) 31630005 and 31770084 to HL, 31771382 to QC, 31800066 to JZ; the China Postdoctoral Science Foundation (http://jj.chinapostdoctor.org.cn/) 2018M640201 to JZ; the National Basic Research Program (973 Program) of China (http://www.most.gov.cn/) 2014CB849801 to MQD; Program for Extramural Scientists of the State Key Laboratory of Agrobiotechnology (http://en.cau.edu.cn/colleges/biological-science/) (2018SKLAB6-5) to MQD; Opening Project of the State Key Laboratory of Microbial Resources (http://english.im.cas.cn/) to HL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiqiang Lou.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1503 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Zhang, Y., Zhang, J. et al. Characterization of the dimeric CMG/pre-initiation complex and its transition into DNA replication forks. Cell. Mol. Life Sci. 77, 3041–3058 (2020). https://doi.org/10.1007/s00018-019-03333-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03333-9

Keywords

Navigation