Skip to main content
Log in

Structural and functional analysis of “non-smelly” proteins

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Cysteine and aromatic residues are major structure-promoting residues. We assessed the abundance, structural coverage, and functional characteristics of the “non-smelly” proteins, i.e., proteins that do not contain cysteine residues (C-depleted) or cysteine and aromatic residues (CFYWH-depleted), across 817 proteomes from all domains of life. The analysis revealed that although these proteomes contained significant levels of the C-depleted proteins, with prokaryotes being significantly more enriched in such proteins than eukaryotes, the CFYWH-depleted proteins were relatively rare, accounting for about 0.05% of proteomes. Furthermore, CFYWH-depleted proteins were virtually never found in PDB. Depletion in cysteine and in aromatic residues was associated with the substantially increased intrinsic disorder levels across all domains of life. Archaeal and eukaryotic organisms with higher levels of the C-depleted proteins were shown to have higher levels of the intrinsic disorder and lower levels of structural coverage. We also showed that the “non-smelly” proteins typically did not independently fold into monomeric structures, and instead, they fold by interacting with nucleic acids as constituents of the ribosome and nucleosome complexes. They were shown to be involved in translation, transcription, nucleosome assembly, transmembrane transport, and protein folding functions, all of which are known to be associated with the intrinsic disorder. Our data suggested that, in general, structure of monomeric proteins is crucially dependent on the presence of cysteine and aromatic residues.

Highlights

  • Cysteine-depleted proteins are abundant in all domains of life.

  • Prokaryotes are significantly enriched in cysteine-depleted proteins compared to eukaryotes.

  • Only about 0.05% of proteins are depleted in aromatic residues and cysteine.

  • Proteins depleted in aromatic residues and cysteine have high levels of intrinsic disorder.

  • Organisms with higher levels of cysteine-depleted proteins have higher levels of the intrinsic disorder.

  • “Non-smelly” proteins are involved in translation, transcription, nucleosome assembly, protein folding, and transmembrane transport functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xue B, Williams RW, Oldfield CJ, Dunker AK, Uversky VN (2010) Archaic chaos: intrinsically disordered proteins in Archaea. BMC Syst Biol 4(Suppl 1):S1. https://doi.org/10.1186/1752-0509-4-S1-S1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Peng Z, Yan J, Fan X, Mizianty MJ, Xue B, Wang K, Hu G, Uversky VN, Kurgan L (2015) Exceptionally abundant exceptions: comprehensive characterization of intrinsic disorder in all domains of life. Cell Mol Life Sci 72(1):137–151. https://doi.org/10.1007/s00018-014-1661-9

    Article  CAS  PubMed  Google Scholar 

  3. Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337(3):635–645. https://doi.org/10.1016/j.jmb.2004.02.002

    Article  CAS  PubMed  Google Scholar 

  4. Dunker AK, Obradovic Z, Romero P, Garner EC, Brown CJ (2000) Intrinsic protein disorder in complete genomes. Genome Inform Ser Workshop Genome Inform 11:161–171

    CAS  PubMed  Google Scholar 

  5. Peng Z, Mizianty MJ, Kurgan L (2014) Genome-scale prediction of proteins with long intrinsically disordered regions. Proteins 82(1):145–158. https://doi.org/10.1002/prot.24348

    Article  CAS  PubMed  Google Scholar 

  6. Yan J, Mizianty MJ, Filipow PL, Uversky VN, Kurgan L (2013) RAPID: fast and accurate sequence-based prediction of intrinsic disorder content on proteomic scale. Biochim Biophys Acta 1834(8):1671–1680. https://doi.org/10.1016/j.bbapap.2013.05.022

    Article  CAS  PubMed  Google Scholar 

  7. Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW, Ausio J, Nissen MS, Reeves R, Kang C-H, Kissinger CR, Bailey RW, Griswold MD, Chiu W, Garner EC, Obradovic Z (2001) Intrinsically disordered protein. J Mol Graph Model 19(1):26–59. https://doi.org/10.1016/S1093-3263(00)00138-8

    Article  CAS  PubMed  Google Scholar 

  8. Hu G, Wang K, Song J, Uversky VN, Kurgan L (2018) Taxonomic landscape of the dark proteomes: whole-proteome scale interplay between structural darkness, intrinsic disorder, and crystallization propensity. Proteomics. https://doi.org/10.1002/pmic.201800243

    Article  PubMed  Google Scholar 

  9. Linding R, Jensen LJ, Diella F, Bork P, Gibson TJ, Russell RB (2003) Protein disorder prediction: implications for structural proteomics. Structure 11(11):1453–1459

    Article  CAS  PubMed  Google Scholar 

  10. Oldfield CJ, Xue B, Van YY, Ulrich EL, Markley JL, Dunker AK, Uversky VN (2013) Utilization of protein intrinsic disorder knowledge in structural proteomics. Biochim Biophys Acta 1834(2):487–498. https://doi.org/10.1016/j.bbapap.2012.12.003

    Article  CAS  PubMed  Google Scholar 

  11. Bhowmick A, Brookes DH, Yost SR, Dyson HJ, Forman-Kay JD, Gunter D, Head-Gordon M, Hura GL, Pande VS, Wemmer DE, Wright PE, Head-Gordon T (2016) Finding our way in the dark proteome. J Am Chem Soc 138(31):9730–9742. https://doi.org/10.1021/jacs.6b06543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kruger R (2016) Illuminating the dark proteome. Cell 166(5):1074–1077. https://doi.org/10.1016/j.cell.2016.08.012

    Article  CAS  Google Scholar 

  13. Uversky VN, Dunker AK (2010) Understanding protein non-folding. Biochim Biophys Acta 1804(6):1231–1264. https://doi.org/10.1016/j.bbapap.2010.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Uversky VN, Oldfield CJ, Dunker AK (2008) Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu Rev Biophys 37:215–246. https://doi.org/10.1146/annurev.biophys.37.032807.125924

    Article  CAS  PubMed  Google Scholar 

  15. Fuxreiter M, Toth-Petroczy A, Kraut DA, Matouschek A, Lim RY, Xue B, Kurgan L, Uversky VN (2014) Disordered proteinaceous machines. Chem Rev 114(13):6806–6843. https://doi.org/10.1021/cr4007329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Oates ME, Romero P, Ishida T, Ghalwash M, Mizianty MJ, Xue B, Dosztanyi Z, Uversky VN, Obradovic Z, Kurgan L, Dunker AK, Gough J (2013) D2P2: database of disordered protein predictions. Nucleic Acids Res 41:D508–D516. https://doi.org/10.1093/nar/gks1226

    Article  CAS  PubMed  Google Scholar 

  17. Romero PR, Zaidi S, Fang YY, Uversky VN, Radivojac P, Oldfield CJ, Cortese MS, Sickmeier M, LeGall T, Obradovic Z, Dunker AK (2006) Alternative splicing in concert with protein intrinsic disorder enables increased functional diversity in multicellular organisms. Proc Natl Acad Sci USA 103(22):8390–8395. https://doi.org/10.1073/pnas.0507916103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jakob U, Kriwacki R, Uversky VN (2014) Conditionally and transiently disordered proteins: awakening cryptic disorder to regulate protein function. Chem Rev 114(13):6779–6805. https://doi.org/10.1021/cr400459c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yan J, Dunker AK, Uversky VN, Kurgan L (2016) Molecular recognition features (MoRFs) in three domains of life. Mol BioSyst 12(3):697–710. https://doi.org/10.1039/c5mb00640f

    Article  CAS  PubMed  Google Scholar 

  20. Patil A, Kinoshita K, Nakamura H (2010) Hub promiscuity in protein–protein interaction networks. Int J Mol Sci 11(4):1930–1943. https://doi.org/10.3390/ijms11041930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gsponer J, Babu MM (2009) The rules of disorder or why disorder rules. Prog Biophys Mol Biol 99(2–3):94–103. https://doi.org/10.1016/j.pbiomolbio.2009.03.001

    Article  CAS  PubMed  Google Scholar 

  22. Haynes C, Oldfield CJ, Ji F, Klitgord N, Cusick ME, Radivojac P, Uversky VN, Vidal M, Iakoucheva LM (2006) Intrinsic disorder is a common feature of hub proteins from four eukaryotic interactomes. PLoS Comput Biol 2(8):e100. https://doi.org/10.1371/journal.pcbi.0020100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hu G, Wu Z, Uversky VN, Kurgan L (2017) Functional analysis of human hub proteins and their interactors involved in the intrinsic disorder-enriched interactions. Int J Mol Sci. https://doi.org/10.3390/ijms18122761

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN (2005) Flexible nets. The roles of intrinsic disorder in protein interaction networks. FEBS J 272(20):5129–5148. https://doi.org/10.1111/j.1742-4658.2005.04948.x

    Article  CAS  PubMed  Google Scholar 

  25. Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5(2):101–113. https://doi.org/10.1038/nrg1272

    Article  CAS  PubMed  Google Scholar 

  26. Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512

    Article  CAS  PubMed  Google Scholar 

  27. Vavouri T, Semple JI, Garcia-Verdugo R, Lehner B (2009) Intrinsic protein disorder and interaction promiscuity are widely associated with dosage sensitivity. Cell 138(1):198–208. https://doi.org/10.1016/j.cell.2009.04.029

    Article  CAS  PubMed  Google Scholar 

  28. Oldfield CJ, Meng J, Yang JY, Yang MQ, Uversky VN, Dunker AK (2008) Flexible nets: disorder and induced fit in the associations of p53 and 14-3-3 with their partners. BMC Genom 9(Suppl 1):S1. https://doi.org/10.1186/1471-2164-9-S1-S1

    Article  CAS  Google Scholar 

  29. Buljan M, Chalancon G, Dunker AK, Bateman A, Balaji S, Fuxreiter M, Babu MM (2013) Alternative splicing of intrinsically disordered regions and rewiring of protein interactions. Curr Opin Struct Biol 23(3):443–450. https://doi.org/10.1016/j.sbi.2013.03.006

    Article  CAS  PubMed  Google Scholar 

  30. Uversky VN, Gillespie JR, Fink AL (2000) Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 41(3):415–427. https://doi.org/10.1002/1097-0134(20001115)41:3%3c415:aid-prot130%3e3.0.co;2-7

    Article  CAS  PubMed  Google Scholar 

  31. Dunker AK, Garner E, Guilliot S, Romero P, Albrecht K, Hart J, Obradovic Z, Kissinger C, Villafranca JE (1998) Protein disorder and the evolution of molecular recognition: theory, predictions and observations. Pac Symp Biocomput 3:473–484

    Google Scholar 

  32. Radivojac P, Iakoucheva LM, Oldfield CJ, Obradovic Z, Uversky VN, Dunker AK (2007) Intrinsic disorder and functional proteomics. Biophys J 92(5):1439–1456. https://doi.org/10.1529/biophysj.106.094045

    Article  CAS  PubMed  Google Scholar 

  33. Vacic V, Uversky VN, Dunker AK, Lonardi S (2007) Composition profiler: a tool for discovery and visualization of amino acid composition differences. BMC Bioinform 8:211. https://doi.org/10.1186/1471-2105-8-211

    Article  CAS  Google Scholar 

  34. Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, Dunker AK (2001) Sequence complexity of disordered protein. Proteins 42(1):38–48

    Article  CAS  PubMed  Google Scholar 

  35. Campen A, Williams RM, Brown CJ, Meng J, Uversky VN, Dunker AK (2008) TOP-IDP-scale: a new amino acid scale measuring propensity for intrinsic disorder. Protein Pept Lett 15(9):956–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Williams RM, Obradovi Z, Mathura V, Braun W, Garner EC, Young J, Takayama S, Brown CJ, Dunker AK (2001) The protein non-folding problem: amino acid determinants of intrinsic order and disorder. Pac Symp Biocomput 6:89–100

    Google Scholar 

  37. Daly NL, Craik DJ (2011) Bioactive cystine knot proteins. Curr Opin Chem Biol 15(3):362–368. https://doi.org/10.1016/j.cbpa.2011.02.008

    Article  CAS  PubMed  Google Scholar 

  38. Craik DJ, Daly NL, Waine C (2001) The cystine knot motif in toxins and implications for drug design. Toxicon 39(1):43–60

    Article  CAS  PubMed  Google Scholar 

  39. Trivedi MV, Laurence JS, Siahaan TJ (2009) The role of thiols and disulfides on protein stability. Curr Protein Pept Sci 10(6):614–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hagihara Y, Saerens D (2014) Engineering disulfide bonds within an antibody. Biochim Biophys Acta 1844(11):2016–2023. https://doi.org/10.1016/j.bbapap.2014.07.005

    Article  CAS  PubMed  Google Scholar 

  41. Bechtel TJ, Weerapana E (2017) From structure to redox: the diverse functional roles of disulfides and implications in disease. Proteomics. https://doi.org/10.1002/pmic.201600391

    Article  PubMed  PubMed Central  Google Scholar 

  42. Darling AL, Uversky VN (2018) Intrinsic disorder and posttranslational modifications: the darker side of the biological dark matter. Front Genet 9:158. https://doi.org/10.3389/fgene.2018.00158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pace NJ, Weerapana E (2014) Zinc-binding cysteines: diverse functions and structural motifs. Biomolecules 4(2):419–434. https://doi.org/10.3390/biom4020419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Krishna SS, Majumdar I, Grishin NV (2003) Structural classification of zinc fingers: survey and summary. Nucleic Acids Res 31(2):532–550. https://doi.org/10.1093/nar/gkg161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Negi S, Itazu M, Imanishi M, Nomura A, Sugiura Y (2004) Creation and characteristics of unnatural CysHis3-type zinc finger protein. Biochem Biophys Res Commun 325(2):421–425. https://doi.org/10.1016/j.bbrc.2004.10.045

    Article  CAS  PubMed  Google Scholar 

  46. Harding MM (2004) The architecture of metal coordination groups in proteins. Acta Crystallogr D Biol Crystallogr 60(Pt 5):849–859. https://doi.org/10.1107/S0907444904004081

    Article  CAS  PubMed  Google Scholar 

  47. Laska M (2010) Olfactory perception of 6 amino acids by human subjects. Chem Senses 35(4):279–287. https://doi.org/10.1093/chemse/bjq017

    Article  CAS  PubMed  Google Scholar 

  48. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Burley SK, Berman HM, Kleywegt GJ, Markley JL, Nakamura H, Velankar S (2017) Protein data bank (PDB): the single global macromolecular structure archive. Methods Mol Biol 1607:627–641. https://doi.org/10.1007/978-1-4939-7000-1_26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. The UniProt C (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45(D1):D158–D169. https://doi.org/10.1093/nar/gkw1099

    Article  CAS  Google Scholar 

  51. UniProt C (2015) UniProt: a hub for protein information. Nucleic Acids Res 43(Database issue):D204–D212. https://doi.org/10.1093/nar/gku989

    Article  CAS  Google Scholar 

  52. Hu G, Wu Z, Oldfield CJ, Wang C, Kurgan L (2019) Quality assessment for the putative intrinsic disorder in proteins. Bioinformatics 35(10):1692–1700. https://doi.org/10.1093/bioinformatics/bty881

    Article  CAS  PubMed  Google Scholar 

  53. Katuwawala A, Oldfield CJ, Kurgan L (2019) Accuracy of protein-level disorder predictions. Brief Bioinform 46:48

    Google Scholar 

  54. Walsh I, Giollo M, Di Domenico T, Ferrari C, Zimmermann O, Tosatto SC (2015) Comprehensive large-scale assessment of intrinsic protein disorder. Bioinformatics 31(2):201–208. https://doi.org/10.1093/bioinformatics/btu625

    Article  CAS  PubMed  Google Scholar 

  55. Monastyrskyy B, Kryshtafovych A, Moult J, Tramontano A, Fidelis K (2014) Assessment of protein disorder region predictions in CASP10. Proteins 82(Suppl 2):127–137. https://doi.org/10.1002/prot.24391

    Article  CAS  PubMed  Google Scholar 

  56. Peng ZL, Kurgan L (2012) Comprehensive comparative assessment of in silico predictors of disordered regions. Curr Protein Pept Sci 13(1):6–18

    Article  CAS  PubMed  Google Scholar 

  57. Meng F, Uversky VN, Kurgan L (2017) Comprehensive review of methods for prediction of intrinsic disorder and its molecular functions. Cell Mol Life Sci 74(17):3069–3090. https://doi.org/10.1007/s00018-017-2555-4

    Article  CAS  PubMed  Google Scholar 

  58. Meng F, Uversky V, Kurgan L (2017) Computational prediction of intrinsic disorder in proteins. Curr Protoc Protein Sci 88:2–16. https://doi.org/10.1002/cpps.28

    Article  CAS  PubMed  Google Scholar 

  59. Peng Z, Kurgan L (2012) On the complementarity of the consensus-based disorder prediction. Pac Symp Biocomput 17:176–187

    Google Scholar 

  60. Fan X, Kurgan L (2014) Accurate prediction of disorder in protein chains with a comprehensive and empirically designed consensus. J Biomol Struct Dyn 32(3):448–464. https://doi.org/10.1080/07391102.2013.775969

    Article  CAS  PubMed  Google Scholar 

  61. Necci M, Piovesan D, Dosztanyi Z, Tosatto SCE (2017) MobiDB-lite: fast and highly specific consensus prediction of intrinsic disorder in proteins. Bioinformatics 33(9):1402–1404. https://doi.org/10.1093/bioinformatics/btx015

    Article  CAS  PubMed  Google Scholar 

  62. Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. J Mol Biol 347(4):827–839. https://doi.org/10.1016/j.jmb.2005.01.071

    Article  CAS  PubMed  Google Scholar 

  63. Walsh I, Martin AJ, Di Domenico T, Tosatto SC (2012) ESpritz: accurate and fast prediction of protein disorder. Bioinformatics 28(4):503–509. https://doi.org/10.1093/bioinformatics/btr682

    Article  CAS  PubMed  Google Scholar 

  64. Piovesan D, Tabaro F, Micetic I, Necci M, Quaglia F, Oldfield CJ, Aspromonte MC, Davey NE, Davidovic R, Dosztanyi Z, Elofsson A, Gasparini A, Hatos A, Kajava AV, Kalmar L, Leonardi E, Lazar T, Macedo-Ribeiro S, Macossay-Castillo M, Meszaros A, Minervini G, Murvai N, Pujols J, Roche DB, Salladini E, Schad E, Schramm A, Szabo B, Tantos A, Tonello F, Tsirigos KD, Veljkovic N, Ventura S, Vranken W, Warholm P, Uversky VN, Dunker AK, Longhi S, Tompa P, Tosatto SC (2016) DisProt 7.0: a major update of the database of disordered proteins. Nucleic Acids Res D1:D219–D227. https://doi.org/10.1093/nar/gkw1056

    Article  CAS  Google Scholar 

  65. Vucetic S, Obradovic Z, Vacic V, Radivojac P, Peng K, Iakoucheva LM, Cortese MS, Lawson JD, Brown CJ, Sikes JG, Newton CD, Dunker AK (2005) DisProt: a database of protein disorder. Bioinformatics 21(1):137–140. https://doi.org/10.1093/bioinformatics/bth476

    Article  CAS  PubMed  Google Scholar 

  66. Na I, Meng F, Kurgan L, Uversky VN (2016) Autophagy-related intrinsically disordered proteins in intra-nuclear compartments. Mol BioSyst 12(9):2798–2817. https://doi.org/10.1039/c6mb00069j

    Article  CAS  PubMed  Google Scholar 

  67. Meng F, Na I, Kurgan L, Uversky VN (2016) Compartmentalization and functionality of nuclear disorder: intrinsic disorder and protein–protein interactions in intra-nuclear compartments. Int J Mol Sci. https://doi.org/10.3390/ijms17010024

    Article  PubMed  PubMed Central  Google Scholar 

  68. Peng Z, Oldfield CJ, Xue B, Mizianty MJ, Dunker AK, Kurgan L, Uversky VN (2014) A creature with a hundred waggly tails: intrinsically disordered proteins in the ribosome. Cell Mol Life Sci 71(8):1477–1504. https://doi.org/10.1007/s00018-013-1446-6

    Article  CAS  PubMed  Google Scholar 

  69. Hu G, Wu Z, Wang K, Uversky VN, Kurgan L (2016) Untapped potential of disordered proteins in current druggable human proteome. Curr Drug Targets 17(10):1198–1205

    Article  CAS  PubMed  Google Scholar 

  70. Wang C, Uversky VN, Kurgan L (2016) Disordered nucleiome: abundance of intrinsic disorder in the DNA- and RNA-binding proteins in 1121 species from Eukaryota, Bacteria and Archaea. Proteomics 16(10):1486–1498. https://doi.org/10.1002/pmic.201500177

    Article  CAS  PubMed  Google Scholar 

  71. Peng Z, Uversky VN, Kurgan L (2016) Genes encoding intrinsic disorder in Eukaryota have high GC content. Intrinsically Disord Proteins 4(1):e1262225. https://doi.org/10.1080/21690707.2016.1262225

    Article  PubMed  PubMed Central  Google Scholar 

  72. Di Domenico T, Walsh I, Martin AJM, Tosatto SCE (2012) MobiDB: a comprehensive database of intrinsic protein disorder annotations. Bioinformatics 28(15):2080–2081. https://doi.org/10.1093/bioinformatics/bts327

    Article  CAS  PubMed  Google Scholar 

  73. Potenza E, Di Domenico T, Walsh I, Tosatto SC (2015) MobiDB 2.0: an improved database of intrinsically disordered and mobile proteins. Nucleic Acids Res 43(Database issue):D315–D320. https://doi.org/10.1093/nar/gku982

    Article  CAS  PubMed  Google Scholar 

  74. Vitkup D, Melamud E, Moult J, Sander C (2001) Completeness in structural genomics. Nat Struct Biol 8(6):559–566. https://doi.org/10.1038/88640

    Article  CAS  PubMed  Google Scholar 

  75. Mizianty MJ, Fan X, Yan J, Chalmers E, Woloschuk C, Joachimiak A, Kurgan L (2014) Covering complete proteomes with X-ray structures: a current snapshot. Acta Crystallogr D Biol Crystallogr 70(Pt 11):2781–2793. https://doi.org/10.1107/S1399004714019427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mariani V, Kiefer F, Schmidt T, Haas J, Schwede T (2011) Assessment of template based protein structure predictions in CASP9. Proteins 79(Suppl 10):37–58. https://doi.org/10.1002/prot.23177

    Article  PubMed  Google Scholar 

  78. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER Suite: protein structure and function prediction. Nat Methods 12(1):7–8. https://doi.org/10.1038/nmeth.3213. http://www.nature.com/nmeth/journal/v12/n1/abs/nmeth.3213.html#supplementary-information

  79. Yang J, Zhang Y (2015) I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res 43(W1):W174–W181. https://doi.org/10.1093/nar/gkv342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Soding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244–W248. https://doi.org/10.1093/nar/gki408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hildebrand A, Remmert M, Biegert A, Soding J (2009) Fast and accurate automatic structure prediction with HHpred. Proteins 77(Suppl 9):128–132. https://doi.org/10.1002/prot.22499

    Article  CAS  PubMed  Google Scholar 

  82. Webb B, Sali A (2017) Protein structure modeling with MODELLER. Methods Mol Biol 1654:39–54. https://doi.org/10.1007/978-1-4939-7231-9_4

    Article  CAS  PubMed  Google Scholar 

  83. Sali A, Potterton L, Yuan F, van Vlijmen H, Karplus M (1995) Evaluation of comparative protein modeling by MODELLER. Proteins 23(3):318–326. https://doi.org/10.1002/prot.340230306

    Article  CAS  PubMed  Google Scholar 

  84. Pieper U, Webb BM, Dong GQ, Schneidman-Duhovny D, Fan H, Kim SJ, Khuri N, Spill YG, Weinkam P, Hammel M, Tainer JA, Nilges M, Sali A (2014) ModBase, a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res 42:D336–D346. https://doi.org/10.1093/nar/gkt1144

    Article  CAS  PubMed  Google Scholar 

  85. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G, The Gene Ontology Consortium (2000) Gene ontology: tool for the unification of biology. Nat Genet 25(1):25–29. https://doi.org/10.1038/75556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Howell M, Green R, Killeen A, Wedderburn L, Picascio V, Rabionet A, Peng ZL, Larina M, Xue B, Kurgan L, Uversky VN (2012) Not that rigid midgets and not so flexible giants: on the abundance and roles of intrinsic disorder in short and long proteins. J Biol Syst 20(4):471–511. https://doi.org/10.1142/S0218339012400086

    Article  CAS  Google Scholar 

  87. Hennessey JP Jr, Johnson WC Jr, Bahler C, Wood HG (1982) Subunit interactions of transcarboxylase as studied by circular dichroism. Biochemistry 21(4):642–646

    Article  CAS  PubMed  Google Scholar 

  88. Shenoy BC, Wood HG (1988) Purification and properties of the synthetase catalyzing the biotination of the aposubunit of transcarboxylase from Propionibacterium shermanii. FASEB J 2(8):2396–2401

    Article  CAS  PubMed  Google Scholar 

  89. Reddy DV, Shenoy BC, Carey PR, Sonnichsen FD (2000) High resolution solution structure of the 1.3S subunit of transcarboxylase from Propionibacterium shermanii. Biochemistry 39(10):2509–2516

    Article  CAS  PubMed  Google Scholar 

  90. Jank MM, Sadowsky JD, Peikert C, Berger S (2002) NMR studies on the solution structure of a deletion mutant of the transcarboxylase biotin carrier subunit. Int J Biol Macromol 30(5):233–242

    Article  CAS  PubMed  Google Scholar 

  91. Schuttelkopf AW, Harrison JA, Boxer DH, Hunter WN (2002) Passive acquisition of ligand by the MopII molbindin from Clostridium pasteurianum: structures of apo and oxyanion-bound forms. J Biol Chem 277(17):15013–15020. https://doi.org/10.1074/jbc.M201005200

    Article  CAS  PubMed  Google Scholar 

  92. Braun W, Vasak M, Robbins AH, Stout CD, Wagner G, Kagi JH, Wuthrich K (1992) Comparison of the NMR solution structure and the X-ray crystal structure of rat metallothionein-2. Proc Natl Acad Sci USA 89(21):10124–10128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Johansson J, Szyperski T, Curstedt T, Wuthrich K (1994) The NMR structure of the pulmonary surfactant-associated polypeptide SP-C in an apolar solvent contains a valyl-rich alpha-helix. Biochemistry 33(19):6015–6023

    Article  CAS  PubMed  Google Scholar 

  94. Peng K, Radivojac P, Vucetic S, Dunker AK, Obradovic Z (2006) Length-dependent prediction of protein intrinsic disorder. BMC Bioinform 7:208. https://doi.org/10.1186/1471-2105-7-208

    Article  CAS  Google Scholar 

  95. Peng K, Vucetic S, Radivojac P, Brown CJ, Dunker AK, Obradovic Z (2005) Optimizing long intrinsic disorder predictors with protein evolutionary information. J Bioinform Comput Biol 3(1):35–60. https://doi.org/10.1142/s0219720005000886

    Article  CAS  PubMed  Google Scholar 

  96. Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21(16):3433–3434. https://doi.org/10.1093/bioinformatics/bti541

    Article  CAS  PubMed  Google Scholar 

  97. Xue B, Dunbrack RL, Williams RW, Dunker AK, Uversky VN (2010) PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim Biophys Acta 1804(4):996–1010. https://doi.org/10.1016/j.bbapap.2010.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Oldfield CJ, Ulrich EL, Cheng Y, Dunker AK, Markley JL (2005) Addressing the intrinsic disorder bottleneck in structural proteomics. Proteins 59(3):444–453. https://doi.org/10.1002/prot.20446

    Article  CAS  PubMed  Google Scholar 

  99. Grabowski M, Niedzialkowska E, Zimmerman MD, Minor W (2016) The impact of structural genomics: the first quindecennial. J Struct Funct Genom 17(1):1–16. https://doi.org/10.1007/s10969-016-9201-5

    Article  CAS  Google Scholar 

  100. Basu S, Bahadur RP (2016) A structural perspective of RNA recognition by intrinsically disordered proteins. Cell Mol Life Sci 73(21):4075–4084. https://doi.org/10.1007/s00018-016-2283-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Peng Z, Mizianty MJ, Xue B, Kurgan L, Uversky VN (2012) More than just tails: intrinsic disorder in histone proteins. Mol BioSyst 8(7):1886–1901. https://doi.org/10.1039/c2mb25102g

    Article  CAS  PubMed  Google Scholar 

  102. Varadi M, Zsolyomi F, Guharoy M, Tompa P (2015) Functional advantages of conserved intrinsic disorder in RNA-binding proteins. PLoS One 10(10):e0139731. https://doi.org/10.1371/journal.pone.0139731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27(10):527–533

    Article  CAS  PubMed  Google Scholar 

  104. Dunker AK, Brown CJ, Lawson JD, Iakoucheva LM, Obradovic Z (2002) Intrinsic disorder and protein function. Biochemistry 41(21):6573–6582

    Article  CAS  PubMed  Google Scholar 

  105. Chowdhury S, Zhang J, Kurgan L (2018) In silico prediction and validation of novel RNA binding proteins and residues in the human proteome. Proteomics. https://doi.org/10.1002/pmic.201800064

    Article  PubMed  Google Scholar 

  106. Wu Z, Hu G, Yang J, Peng Z, Uversky VN, Kurgan L (2015) In various protein complexes, disordered protomers have large per-residue surface areas and area of protein-, DNA- and RNA-binding interfaces. FEBS Lett 589(19 Pt A):2561–2569. https://doi.org/10.1016/j.febslet.2015.08.014

    Article  CAS  PubMed  Google Scholar 

  107. Fuxreiter M, Tompa P, Simon I, Uversky VN, Hansen JC, Asturias FJ (2008) Malleable machines take shape in eukaryotic transcriptional regulation. Nat Chem Biol 4(12):728–737. https://doi.org/10.1038/nchembio.127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Rochman M, Taher L, Kurahashi T, Cherukuri S, Uversky VN, Landsman D, Ovcharenko I, Bustin M (2011) Effects of HMGN variants on the cellular transcription profile. Nucleic Acids Res 39(10):4076–4087. https://doi.org/10.1093/nar/gkq1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Latchman DS (1997) Transcription factors: an overview. Int J Biochem Cell Biol 29(12):1305–1312. https://doi.org/10.1016/S1357-2725(97)00085-X

    Article  CAS  PubMed  Google Scholar 

  110. Liu J, Perumal NB, Oldfield CJ, Su EW, Uversky VN, Dunker AK (2006) Intrinsic disorder in transcription factors. Biochemistry 45(22):6873–6888. https://doi.org/10.1021/bi0602718

    Article  CAS  PubMed  Google Scholar 

  111. Minezaki Y, Homma K, Kinjo AR, Nishikawa K (2006) Human transcription factors contain a high fraction of intrinsically disordered regions essential for transcriptional regulation. J Mol Biol 359(4):1137–1149. https://doi.org/10.1016/j.jmb.2006.04.016

    Article  CAS  PubMed  Google Scholar 

  112. Staby L, O’Shea C, Willemoes M, Theisen F, Kragelund BB, Skriver K (2017) Eukaryotic transcription factors: paradigms of protein intrinsic disorder. Biochem J 474(15):2509–2532. https://doi.org/10.1042/bcj20160631

    Article  CAS  PubMed  Google Scholar 

  113. Toth-Petroczy A, Oldfield CJ, Simon I, Takagi Y, Dunker AK, Uversky VN, Fuxreiter M (2008) Malleable machines in transcription regulation: the mediator complex. PLoS Comput Biol 4(12):e1000243. https://doi.org/10.1371/journal.pcbi.1000243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Di Mauro E, Dunker AK, Trifonov EN (2012) Disorder to order, non-life to life: in the beginning there was a mistake. In: Seckbach J (ed) Genesis—In the beginning. Precursors of life, chemical models and early biological evolution. Springer, Dordrecht

    Google Scholar 

  115. Uversky VN (2013) A decade and a half of protein intrinsic disorder: biology still waits for physics. Protein Sci 22(6):693–724. https://doi.org/10.1002/pro.2261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kulkarni P, Uversky VN (2018) Intrinsically disordered proteins: the dark horse of the dark proteome. Proteomics 18(21–22):e1800061. https://doi.org/10.1002/pmic.201800061

    Article  CAS  PubMed  Google Scholar 

  117. Longo LM, Blaber M (2012) Protein design at the interface of the pre-biotic and biotic worlds. Arch Biochem Biophys 526(1):16–21. https://doi.org/10.1016/j.abb.2012.06.009

    Article  CAS  PubMed  Google Scholar 

  118. Longo LM, Blaber M (2014) Prebiotic protein design supports a halophile origin of foldable proteins. Front Microbiol. https://doi.org/10.3389/fmicb.2013.00418

    Article  PubMed  PubMed Central  Google Scholar 

  119. Trifonov EN (2000) Consensus temporal order of amino acids and evolution of the triplet code. Gene 261(1):139–151

    Article  CAS  PubMed  Google Scholar 

  120. Brooks DJ, Fresco JR, Lesk AM, Singh M (2002) Evolution of amino acid frequencies in proteins over deep time: inferred order of introduction of amino acids into the genetic code. Mol Biol Evol 19(10):1645–1655. https://doi.org/10.1093/oxfordjournals.molbev.a003988

    Article  CAS  PubMed  Google Scholar 

  121. Longo LM, Tenorio CA, Kumru OS, Middaugh CR, Blaber M (2015) A single aromatic core mutation converts a designed “primitive” protein from halophile to mesophile folding. Protein Sci 24(1):27–37. https://doi.org/10.1002/pro.2580

    Article  CAS  PubMed  Google Scholar 

  122. Poole AM, Jeffares DC, Penny D (1998) The path from the RNA world. J Mol Evol 46(1):1–17

    Article  CAS  PubMed  Google Scholar 

  123. Tompa P, Csermely P (2004) The role of structural disorder in the function of RNA and protein chaperones. FASEB J 18(11):1169–1175. https://doi.org/10.1096/fj.04-1584rev

    Article  CAS  PubMed  Google Scholar 

  124. Treiber DK, Williamson JR (2001) Beyond kinetic traps in RNA folding. Curr Opin Struct Biol 11(3):309–314. https://doi.org/10.1016/S0959-440X(00)00206-2

    Article  CAS  PubMed  Google Scholar 

  125. Cristofari G, Darlix JL (2002) The ubiquitous nature of RNA chaperone proteins. Prog Nucleic Acid Res Mol Biol 72:223–268

    Article  CAS  PubMed  Google Scholar 

  126. Gilbert W (1986) Origin of life—the RNA world. Nature 319(6055):618. https://doi.org/10.1038/319618a0

    Article  Google Scholar 

  127. Shatsky M, Nussinov R, Wolfson HJ (2004) A method for simultaneous alignment of multiple protein structures. Proteins 56(1):143–156. https://doi.org/10.1002/prot.10628

    Article  CAS  PubMed  Google Scholar 

  128. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the Qimonda Endowment and the National Science Foundation Grant 1617369 to Lukasz Kurgan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lukasz Kurgan or Vladimir N. Uversky.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 557 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Cheng, J., Kurgan, L. et al. Structural and functional analysis of “non-smelly” proteins. Cell. Mol. Life Sci. 77, 2423–2440 (2020). https://doi.org/10.1007/s00018-019-03292-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03292-1

Keywords

Navigation