Skip to main content
Log in

Understanding protein multifunctionality: from short linear motifs to cellular functions

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Moonlighting proteins perform multiple unrelated functions without any change in polypeptide sequence. They can coordinate cellular activities, serving as switches between pathways and helping to respond to changes in the cellular environment. Therefore, regulation of the multiple protein activities, in space and time, is likely to be important for the homeostasis of biological systems. Some moonlighting proteins may perform their multiple functions simultaneously while others alternate between functions due to certain triggers. The switch of the moonlighting protein’s functions can be regulated by several distinct factors, including the binding of other molecules such as proteins. We here review the approaches used to identify moonlighting proteins and existing repositories. We particularly emphasise the role played by short linear motifs and PTMs as regulatory switches of moonlighting functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beadle GW, Tatum EL (1941) Genetic control of biochemical reactions in neurospora. Proc Natl Acad Sci USA 27:499–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Piatigorsky J, Wistow GJ (1989) Enzyme/crystallins: gene sharing as an evolutionary strategy. Cell 57:197–199

    Article  CAS  PubMed  Google Scholar 

  3. Jeffery CJ (1999) Moonlighting proteins. Trends Biochem Sci 24:8–11

    Article  CAS  PubMed  Google Scholar 

  4. Huberts DHEW, van der Klei IJ (2010) Moonlighting proteins: an intriguing mode of multitasking. Biochim Biophys Acta 1803:520–525. https://doi.org/10.1016/j.bbamcr.2010.01.022

    Article  CAS  PubMed  Google Scholar 

  5. Chapple CE, Robisson B, Spinelli L et al (2015) Extreme multifunctional proteins identified from a human protein interaction network. Nat Commun 6:7412. https://doi.org/10.1038/ncomms8412

    Article  PubMed  Google Scholar 

  6. Chapple CE, Brun C (2015) Redefining protein moonlighting. Oncotarget 6:16812–16813. https://doi.org/10.18632/oncotarget.4793

    Article  PubMed  PubMed Central  Google Scholar 

  7. Franco-Serrano L, Hernández S, Calvo A et al (2018) MultitaskProtDB-II: an update of a database of multitasking/moonlighting proteins. Nucleic Acids Res 46:D645–D648. https://doi.org/10.1093/nar/gkx1066

    Article  CAS  PubMed  Google Scholar 

  8. Copley SD (2012) Moonlighting is mainstream: paradigm adjustment required. BioEssays 34:578–588. https://doi.org/10.1002/bies.201100191

    Article  CAS  PubMed  Google Scholar 

  9. Jeffery CJ (2018) Protein moonlighting: what is it, and why is it important? Philos Trans R Soc Lond BBiol Sci. https://doi.org/10.1098/rstb.2016.0523

    Article  Google Scholar 

  10. Jeffery CJ (2014) An introduction to protein moonlighting. Biochem Soc Trans 42:1679–1683. https://doi.org/10.1042/BST20140226

    Article  CAS  PubMed  Google Scholar 

  11. Gancedo C, Flores C-L, Gancedo JM (2016) The expanding landscape of moonlighting proteins in yeasts. Microbiol Mol Biol Rev 80:765–777. https://doi.org/10.1128/MMBR.00012-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Espinosa-Cantú A, Ascencio D, Herrera-Basurto S et al (2018) Protein moonlighting revealed by noncatalytic phenotypes of yeast enzymes. Genetics 208:419–431. https://doi.org/10.1534/genetics.117.300377

    Article  CAS  PubMed  Google Scholar 

  13. Khan I, Chitale M, Rayon C, Kihara D (2012) Evaluation of function predictions by PFP, ESG, and PSI-BLAST for moonlighting proteins. BMC Proc 6(Suppl 7):S5. https://doi.org/10.1186/1753-6561-6-S7-S5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Khan IK, Bhuiyan M, Kihara D (2017) DextMP: deep dive into text for predicting moonlighting proteins. Bioinformatics 33:i83–i91. https://doi.org/10.1093/bioinformatics/btx231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Khan IK, Kihara D (2016) Genome-scale prediction of moonlighting proteins using diverse protein association information. Bioinformatics 32:2281–2288. https://doi.org/10.1093/bioinformatics/btw166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Maxwell CA, McCarthy J, Turley E (2008) Cell-surface and mitotic-spindle RHAMM: moonlighting or dual oncogenic functions? J Cell Sci 121:925–932. https://doi.org/10.1242/jcs.022038

    Article  CAS  PubMed  Google Scholar 

  17. Becker E, Robisson B, Chapple CE et al (2012) Multifunctional proteins revealed by overlapping clustering in protein interaction network. Bioinformatics 28:84–90. https://doi.org/10.1093/bioinformatics/btr621

    Article  CAS  PubMed  Google Scholar 

  18. Chapple CE, Herrmann C, Brun C (2015) PrOnto database: GO term functional dissimilarity inferred from biological data. Front Genet 6:200. https://doi.org/10.3389/fgene.2015.00200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Davey NE, Van Roey K, Weatheritt RJ et al (2012) Attributes of short linear motifs. Mol BioSyst 8:268–281. https://doi.org/10.1039/c1mb05231d

    Article  CAS  PubMed  Google Scholar 

  20. Gouw M, Michael S, Sámano-Sánchez H et al (2018) The eukaryotic linear motif resource—2018 update. Nucleic Acids Res 46:D428–D434. https://doi.org/10.1093/nar/gkx1077

    Article  CAS  PubMed  Google Scholar 

  21. Deribe YL, Pawson T, Dikic I (2010) Post-translational modifications in signal integration. Nat Struct Mol Biol 17:666–672. https://doi.org/10.1038/nsmb.1842

    Article  CAS  PubMed  Google Scholar 

  22. Perkins JR, Diboun I, Dessailly BH et al (2010) Transient protein-protein interactions: structural, functional, and network properties. Structure 18:1233–1243. https://doi.org/10.1016/j.str.2010.08.007

    Article  CAS  PubMed  Google Scholar 

  23. Gibson TJ (2009) Cell regulation: determined to signal discrete cooperation. Trends Biochem Sci 34:471–482. https://doi.org/10.1016/j.tibs.2009.06.007

    Article  CAS  PubMed  Google Scholar 

  24. Neduva V, Russell RB (2005) Linear motifs: evolutionary interaction switches. FEBS Lett 579:3342–3345. https://doi.org/10.1016/j.febslet.2005.04.005

    Article  CAS  PubMed  Google Scholar 

  25. Van Roey K, Gibson TJ, Davey NE (2012) Motif switches: decision-making in cell regulation. Curr Opin Struct Biol 22:378–385. https://doi.org/10.1016/j.sbi.2012.03.004

    Article  CAS  PubMed  Google Scholar 

  26. Brooks CL, Li M, Hu M et al (2007) The p53–Mdm2–HAUSP complex is involved in p53 stabilization by HAUSP. Oncogene 26:7262–7266. https://doi.org/10.1038/sj.onc.1210531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Van Roey K, Dinkel H, Weatheritt RJ et al (2013) The switches.ELM resource: a compendium of conditional regulatory interaction interfaces. Sci Signal 6:rs7. https://doi.org/10.1126/scisignal.2003345

    Article  CAS  PubMed  Google Scholar 

  28. Tristan C, Shahani N, Sedlak TW, Sawa A (2011) The diverse functions of GAPDH: views from different subcellular compartments. Cell Signal 23:317–323. https://doi.org/10.1016/j.cellsig.2010.08.003

    Article  CAS  PubMed  Google Scholar 

  29. Hara MR, Agrawal N, Kim SF et al (2005) S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat Cell Biol 7:665–674. https://doi.org/10.1038/ncb1268

    Article  CAS  PubMed  Google Scholar 

  30. Sen N, Hara MR, Kornberg MD et al (2008) Nitric oxide-induced nuclear GAPDH activates p300/CBP and mediates apoptosis. Nat Cell Biol 10:866–873. https://doi.org/10.1038/ncb1747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Volz K (2008) The functional duality of iron regulatory protein 1. Curr Opin Struct Biol 18:106–111. https://doi.org/10.1016/j.sbi.2007.12.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fillebeen C, Caltagirone A, Martelli A et al (2005) IRP1 Ser-711 is a phosphorylation site, critical for regulation of RNA-binding and aconitase activities. Biochem J 388:143–150. https://doi.org/10.1042/BJ20041623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Clarke SL, Vasanthakumar A, Anderson SA et al (2006) Iron-responsive degradation of iron-regulatory protein 1 does not require the Fe–S cluster. EMBO J 25:544–553. https://doi.org/10.1038/sj.emboj.7600954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Deck KM, Vasanthakumar A, Anderson SA et al (2009) Evidence that phosphorylation of iron regulatory protein 1 at Serine 138 destabilizes the [4Fe–4S] cluster in cytosolic aconitase by enhancing 4Fe–3Fe cycling. J Biol Chem 284:12701–12709. https://doi.org/10.1074/jbc.M807717200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lay AJ, Jiang XM, Kisker O et al (2000) Phosphoglycerate kinase acts in tumour angiogenesis as a disulphide reductase. Nature 408:869–873. https://doi.org/10.1038/35048596

    Article  CAS  PubMed  Google Scholar 

  36. Shetty P, Velusamy T, Bhandary YP et al (2010) Urokinase receptor expression involves tyrosine phosphorylation of phosphoglycerate kinase. Mol Cell Biochem 335:235–247. https://doi.org/10.1007/s11010-009-0273-4

    Article  CAS  PubMed  Google Scholar 

  37. Royle SJ (2011) Mitotic moonlighting functions for membrane trafficking proteins. Traffic 12:791–798. https://doi.org/10.1111/j.1600-0854.2011.01184.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Smith CM, Chircop M (2012) Clathrin-mediated endocytic proteins are involved in regulating mitotic progression and completion. Traffic 13:1628–1641. https://doi.org/10.1111/tra.12001

    Article  CAS  PubMed  Google Scholar 

  39. Ferguson SM, De Camilli P (2012) Dynamin, a membrane-remodelling GTPase. Nat Rev Mol Cell Biol 13:75–88. https://doi.org/10.1038/nrm3266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Thompson HM, Skop AR, Euteneuer U et al (2002) The large GTPase dynamin associates with the spindle midzone and is required for cytokinesis. Curr Biol 12:2111–2117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chircop M, Sarcevic B, Larsen MR et al (2011) Phosphorylation of dynamin II at serine-764 is associated with cytokinesis. Biochim Biophys Acta 1813:1689–1699. https://doi.org/10.1016/j.bbamcr.2010.12.018

    Article  CAS  PubMed  Google Scholar 

  42. Monaghan RM, Whitmarsh AJ (2015) Mitochondrial proteins moonlighting in the nucleus. Trends Biochem Sci 40:728–735. https://doi.org/10.1016/j.tibs.2015.10.003

    Article  CAS  PubMed  Google Scholar 

  43. Chen L-Y, Liu D, Songyang Z (2007) Telomere maintenance through spatial control of telomeric proteins. Mol Cell Biol 27:5898–5909. https://doi.org/10.1128/MCB.00603-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen L-Y, Zhang Y, Zhang Q et al (2012) Mitochondrial localization of telomeric protein TIN2 links telomere regulation to metabolic control. Mol Cell 47:839–850. https://doi.org/10.1016/j.molcel.2012.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen C, Zabad S, Liu H et al (2018) MoonProt 2.0: an expansion and update of the moonlighting proteins database. Nucleic Acids Res 46:D640–D644. https://doi.org/10.1093/nar/gkx1043

    Article  CAS  PubMed  Google Scholar 

  46. Amberger JS, Bocchini CA, Schiettecatte F et al (2015) OMIM.org: online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res 43:D789–D798. https://doi.org/10.1093/nar/gku1205

    Article  CAS  PubMed  Google Scholar 

  47. wwPDB consortium (2018) Protein data bank: the single global archive for 3D macromolecular structure data. Nucleic Acids Res. https://doi.org/10.1093/nar/gky949

    Article  Google Scholar 

  48. Ribeiro DM, Briere G, Bely B et al (2019) MoonDB 2.0: an updated database of extreme multifunctional and moonlighting proteins. Nucleic Acids Res. https://doi.org/10.1093/nar/gky1039

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zanzoni A, Chapple CE, Brun C (2015) Relationships between predicted moonlighting proteins, human diseases, and comorbidities from a network perspective. Front Physiol 6:171. https://doi.org/10.3389/fphys.2015.00171

    Article  PubMed  PubMed Central  Google Scholar 

  50. Corbi-Verge C, Kim PM (2016) Motif mediated protein-protein interactions as drug targets. Cell Commun Signal 14:8. https://doi.org/10.1186/s12964-016-0131-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The project leading to this publication has received funding from Excellence Initiative of Aix-Marseille University - A*MIDEX, a French “Investissements d’Avenir” programme (to CB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Brun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanzoni, A., Ribeiro, D.M. & Brun, C. Understanding protein multifunctionality: from short linear motifs to cellular functions. Cell. Mol. Life Sci. 76, 4407–4412 (2019). https://doi.org/10.1007/s00018-019-03273-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03273-4

Keywords

Navigation