Skip to main content
Log in

Megalin mediates plasma membrane to mitochondria cross-talk and regulates mitochondrial metabolism

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Mitochondrial intracrines are extracellular signaling proteins, targeted to the mitochondria. The pathway for mitochondrial targeting of mitochondrial intracrines and actions in the mitochondria remains unknown. Megalin/LRP2 mediates the uptake of vitamins and proteins, and is critical for clearance of amyloid-β protein from the brain. Megalin mutations underlie the pathogenesis of Donnai–Barrow and Lowe syndromes, characterized by brain defects and kidney dysfunction; megalin was not previously known to reside in the mitochondria. Here, we show megalin is present in the mitochondria and associates with mitochondrial anti-oxidant proteins SIRT3 and stanniocalcin-1 (STC1). Megalin shuttles extracellularly-applied STC1, angiotensin II and TGF-β to the mitochondria through the retrograde early endosome-to-Golgi transport pathway and Rab32. Megalin knockout in cultured cells impairs glycolytic and respiratory capacities. Thus, megalin is critical for mitochondrial biology; mitochondrial intracrine signaling is a continuum of the retrograde early endosome-to-Golgi-Rab32 pathway and defects in this pathway may underlie disease processes in many systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

STC1:

Stanniocalcin-1

KO:

Knockout

AMPK:

AMP-activated kinase

megalin/Lrp2:

Low-density lipoprotein-related protein-2

UCP:

Uncoupling protein

Sirt3:

Sirtuin 3

PT:

Proximal tubule

TKPTS:

Mouse proximal tubule cells

HEK293T:

Human embryonic kidney

Raw264.7:

Murine macrophage-like

C2C12:

Murine muscle

CRISPR:

Clustered regularly-interspaced short palindromic repeats

Cas9:

CRISPR-associated protein 9

Golgi 97:

Golgi-associated protein 97

FLAG:

DYKDDDDK epitope tag

Mito-Red:

Red-fluorescent dye

RAB7:

Rab GTPase 7 regulates late endocytic trafficking downstream of multivesicular body

CID1067700:

An inhibitor of Rab7

E-64D:

Lysosome inhibitor

ROS:

Reactive oxygen species

OCRL1:

Inositol polyphosphate 5-phosphatase

NAD:

Nicotinamide adenine dinucleotide

PIKfyve:

Fyve-type zinc finger-containing phosphoinositide kinase

YM201636:

PIKfyve inhibitor

PtdIns3P:

Phosphatidylinositol 3-phosphate

OCR:

Oxygen consumption rate

ECAR:

Extracellular acidification rate

LHRH:

Luteinizing hormone-releasing hormone

TRH:

Thyrotropin-releasing hormone

IGF-1:

Insulin-like growth factor-1

IL-33:

Interleukin-33

INF-α and -γ:

Interferon-α and -γ

PLA2-I:

Phospholipase A2

VIP:

Vasoactive intestinal peptide

ANP:

Atrial natriuretic peptide

Wnt 13:

Wingless/integrated 13

AT1:

Angiotensin II type 1

GLUT4:

Glucose transporter 4

Atg9:

Autophagy-related protein 9

EGFR:

Epidermal growth factor receptor

FCCP:

Carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone

HSP60:

Heat shock protein 60

Vdac1:

Voltage-dependent anion-selective channel 1

VPS:

Vacuolar protein sorting

IHC:

Immunohistochemistry

Mia40/Erv1:

Disulfide relay system that drives the import of cysteine-rich proteins into the inter-mitochondrial space

Mitoblock-6:

An inhibitor of Mia40/Erv1

TOM40:

Subunit of the mitochondrial outer membrane translocase

Rab32:

Ras-related protein, anchors the regulatory subunit of protein kinase A to the mitochondria

References

  1. Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell 148:1145–1159

    Article  CAS  Google Scholar 

  2. Re RN, Cook JL (2010) The mitochondrial component of intracrine action. Am J Physiol Heart Circ Physiol 299:H577–H583

    Article  CAS  Google Scholar 

  3. Nielsen R, Christensen EI, Birn H (2016) Megalin and cubilin in proximal tubule protein reabsorption: from experimental models to human disease. Kidney Int 89:58–67

    Article  CAS  Google Scholar 

  4. Marzolo MP, Farfan P (2011) New insights into the roles of megalin/LRP2 and the regulation of its functional expression. Biol Res 44:89–105

    Article  CAS  Google Scholar 

  5. Birn H, Verroust PJ, Nexo E, Hager H, Jacobsen C, Christensen EI, Moestrup SK (1997) Characterization of an epithelial approximately 460-kDa protein that facilitates endocytosis of intrinsic factor-vitamin B12 and binds receptor-associated protein. J Biol Chem 272:26497–26504

    Article  CAS  Google Scholar 

  6. Kantarci S, Al-Gazali L, Hill RS, Donnai D, Black GC, Bieth E, Chassaing N, Lacombe D, Devriendt K, Teebi A, Loscertales M, Robson C, Liu T, MacLaughlin DT, Noonan KM, Russell MK, Walsh CA, Donahoe PK, Pober BR (2007) Mutations in LRP2, which encodes the multiligand receptor megalin, cause Donnai–Barrow and facio-oculo-acoustico-renal syndromes. Nat Genet 39:957–959

    Article  CAS  Google Scholar 

  7. Storm T, Tranebjaerg L, Frykholm C, Birn H, Verroust PJ, Neveus T, Sundelin B, Hertz JM, Holmstrom G, Ericson K, Christensen EI, Nielsen R (2013) Renal phenotypic investigations of megalin-deficient patients: novel insights into tubular proteinuria and albumin filtration. Nephrol Dial Transplant 28:585–591

    Article  CAS  Google Scholar 

  8. Pober BR, Longoni M, Noonan KM (2009) A review of Donnai–Barrow and facio-oculo-acoustico-renal (DB/FOAR) syndrome: clinical features and differential diagnosis. Birth Defects Res A Clin Mol Teratol 85:76–81

    Article  CAS  Google Scholar 

  9. Hou X, Hagemann N, Schoebel S, Blankenfeldt W, Goody RS, Erdmann KS, Itzen A (2011) A structural basis for Lowe syndrome caused by mutations in the Rab-binding domain of OCRL1. EMBO J 30:1659–1670

    Article  CAS  Google Scholar 

  10. Choudhury R, Diao A, Zhang F, Eisenberg E, Saint-Pol A, Williams C, Konstantakopoulos A, Lucocq J, Johannes L, Rabouille C, Greene LE, Lowe M (2005) Lowe syndrome protein OCRL1 interacts with clathrin and regulates protein trafficking between endosomes and the trans-Golgi network. Mol Biol Cell 16:3467–3479

    Article  CAS  Google Scholar 

  11. Willnow TE, Hilpert J, Armstrong SA, Rohlmann A, Hammer RE, Burns DK, Herz J (1996) Defective forebrain development in mice lacking gp330/megalin. Proc Natl Acad Sci USA 93:8460–8464

    Article  CAS  Google Scholar 

  12. Kur E, Mecklenburg N, Cabrera RM, Willnow TE, Hammes A (2014) LRP2 mediates folate uptake in the developing neural tube. J Cell Sci 127:2261–2268

    Article  CAS  Google Scholar 

  13. Spoelgen R, Hammes A, Anzenberger U, Zechner D, Andersen OM, Jerchow B, Willnow TE (2005) LRP2/megalin is required for patterning of the ventral telencephalon. Development 132:405–414

    Article  CAS  Google Scholar 

  14. Gonzalez-Villalobos R, Klassen RB, Allen PL, Navar LG, Hammond TG (2005) Megalin binds and internalizes angiotensin II. Am J Physiol Ren Physiol 288:F420–F427

    Article  CAS  Google Scholar 

  15. Gonzalez-Villalobos R, Klassen RB, Allen PL, Johanson K, Baker CB, Kobori H, Navar LG, Hammond TG (2006) Megalin binds and internalizes angiotensin-(1-7). Am J Physiol Ren Physiol 290:F1270–F1275

    Article  CAS  Google Scholar 

  16. Li XC, Zhuo JL (2014) Mechanisms of AT1a receptor-mediated uptake of angiotensin II by proximal tubule cells: a novel role of the multiligand endocytic receptor megalin. Am J Physiol Ren Physiol 307:F222–F233

    Article  CAS  Google Scholar 

  17. Pohl M, Kaminski H, Castrop H, Bader M, Himmerkus N, Bleich M, Bachmann S, Theilig F (2010) Intrarenal renin angiotensin system revisited: role of megalin-dependent endocytosis along the proximal nephron. J Biol Chem 285:41935–41946

    Article  CAS  Google Scholar 

  18. Leheste JR, Melsen F, Wellner M, Jansen P, Schlichting U, Renner-Muller I, Andreassen TT, Wolf E, Bachmann S, Nykjaer A, Willnow TE (2003) Hypocalcemia and osteopathy in mice with kidney-specific megalin gene defect. FASEB J 17:247–249

    Article  CAS  Google Scholar 

  19. Klassen RB, Crenshaw K, Kozyraki R, Verroust PJ, Tio L, Atrian S, Allen PL, Hammond TG (2004) Megalin mediates renal uptake of heavy metal metallothionein complexes. Am J Physiol Ren Physiol 287:F393–F403

    Article  CAS  Google Scholar 

  20. Shaw G, Morse S, Ararat M, Graham FL (2002) Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells. FASEB J 16:869–871

    Article  CAS  Google Scholar 

  21. Lin YC, Boone M, Meuris L, Lemmens I, Van RN, Soete A, Reumers J, Moisse M, Plaisance S, Drmanac R, Chen J, Speleman F, Lambrechts D, Van de Peer Y, Tavernier J, Callewaert N (2014) Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations. Nat Commun 5:4767

    Article  CAS  Google Scholar 

  22. Cooper HM, Spelbrink JN (2008) The human SIRT3 protein deacetylase is exclusively mitochondrial. Biochem J 411:279–285

    Article  CAS  Google Scholar 

  23. Schwer B, North BJ, Frye RA, Ott M, Verdin E (2002) The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J Cell Biol 158:647–657

    Article  CAS  Google Scholar 

  24. Bause AS, Haigis MC (2013) SIRT3 regulation of mitochondrial oxidative stress. Exp Gerontol 48:634–639

    Article  CAS  Google Scholar 

  25. McCudden CR, James KA, Hasilo C, Wagner GF (2002) Characterization of mammalian stanniocalcin receptors mitochondrial targeting of ligand and receptor for regulation of cellular metabolism. J Biol Chem 277:45249–45258

    Article  CAS  Google Scholar 

  26. Pan JS, Huang L, Belousova T, Lu L, Yang Y, Reddel R, Chang A, Ju H, Dimattia G, Tong Q, Sheikh-Hamad D (2015) Stanniocalcin-1 inhibits renal ischemia/reperfusion injury via an AMP-activated protein kinase-dependent pathway. J Am Soc Nephrol 26:364–378

    Article  Google Scholar 

  27. Huang L, Belousova T, Pan JS, Du J, Ju H, Lu L, Zhang P, Truong LD, Nuotio-Antar A, Sheikh-Hamad D (2014) AKI after conditional and kidney-specific knockdown of stanniocalcin-1. J Am Soc Nephrol 25(10):2303–2315

    Article  CAS  Google Scholar 

  28. Varghese R, Gagliardi AD, Bialek PE, Yee SP, Wagner GF, DiMattia GE (2002) Overexpression of human stanniocalcin affects growth and reproduction in transgenic mice. Endocrinology 143:868–876

    Article  CAS  Google Scholar 

  29. Huang L, Belousova T, Chen M, Dimattia G, Liu D, Sheikh-Hamad D (2012) Overexpression of stanniocalcin-1 inhibits reactive oxygen species and renal ischemia/reperfusion injury in mice. Kidney Int 82(8):867–877

    Article  CAS  Google Scholar 

  30. Brand MD, Esteves TC (2005) Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metab 2:85–93

    Article  CAS  Google Scholar 

  31. Yang Y, Hubbard BP, Sinclair DA, Tong Q (2010) Characterization of murine SIRT3 transcript variants and corresponding protein products. J Cell Biochem 111:1051–1058

    Article  CAS  Google Scholar 

  32. Yang Y, Chen KY, Tong Q (2011) Murine Sirt3 protein isoforms have variable half-lives. Gene 488:46–51

    Article  CAS  Google Scholar 

  33. Jin L, Galonek H, Israelian K, Choy W, Morrison M, Xia Y, Wang X, Xu Y, Yang Y, Smith JJ, Hoffmann E, Carney DP, Perni RB, Jirousek MR, Bemis JE, Milne JC, Sinclair DA, Westphal CH (2009) Biochemical characterization, localization, and tissue distribution of the longer form of mouse SIRT3. Protein Sci 18:514–525

    Article  CAS  Google Scholar 

  34. Heine UI, Burmester JK, Flanders KC, Danielpour D, Munoz EF, Roberts AB, Sporn MB (1991) Localization of transforming growth factor-beta 1 in mitochondria of murine heart and liver. Cell Regul 2:467–477

    Article  CAS  Google Scholar 

  35. Abadir PM, Foster DB, Crow M, Cooke CA, Rucker JJ, Jain A, Smith BJ, Burks TN, Cohn RD, Fedarko NS, Carey RM, O’Rourke B, Walston JD (2011) Identification and characterization of a functional mitochondrial angiotensin system. Proc Natl Acad Sci USA 108:14849–14854

    Article  CAS  Google Scholar 

  36. Bucci C, Thomsen P, Nicoziani P, McCarthy J, van Deurs B (2000) Rab7: a key to lysosome biogenesis. Mol Biol Cell 11:467–480

    Article  CAS  Google Scholar 

  37. Wassmer T, Attar N, Harterink M, van Weering JR, Traer CJ, Oakley J, Goud B, Stephens DJ, Verkade P, Korswagen HC, Cullen PJ (2009) The retromer coat complex coordinates endosomal sorting and dynein-mediated transport, with carrier recognition by the trans-Golgi network. Dev Cell 17:110–122

    Article  CAS  Google Scholar 

  38. Bu G, Schwartz AL (1998) RAP, a novel type of ER chaperone. Trends Cell Biol 8:272–276

    Article  CAS  Google Scholar 

  39. Rutherford AC, Traer C, Wassmer T, Pattni K, Bujny MV, Carlton JG, Stenmark H, Cullen PJ (2006) The mammalian phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) regulates endosome-to-TGN retrograde transport. J Cell Sci 119:3944–3957

    Article  CAS  Google Scholar 

  40. Kost TA, Condreay JP, Jarvis DL (2005) Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat Biotechnol 23:567–575

    Article  CAS  Google Scholar 

  41. Kaneko H, Suzuki H, Abe T, Miyano-Kurosaki N, Takaku H (2006) Inhibition of HIV-1 replication by vesicular stomatitis virus envelope glycoprotein pseudotyped baculovirus vector-transduced ribozyme in mammalian cells. Biochem Biophys Res Commun 349:1220–1227

    Article  CAS  Google Scholar 

  42. Zeng J, Du J, Lin J, Bak XY, Wu C, Wang S (2009) High-efficiency transient transduction of human embryonic stem cell-derived neurons with baculoviral vectors. Mol Ther 17:1585–1593

    Article  CAS  Google Scholar 

  43. Dabir DV, Hasson SA, Setoguchi K, Johnson ME, Wongkongkathep P, Douglas CJ, Zimmerman J, Damoiseaux R, Teitell MA, Koehler CM (2013) A small molecule inhibitor of redox-regulated protein translocation into mitochondria. Dev Cell 25:81–92

    Article  CAS  Google Scholar 

  44. Arasaki K, Shimizu H, Mogari H, Nishida N, Hirota N, Furuno A, Kudo Y, Baba M, Baba N, Cheng J, Fujimoto T, Ishihara N, Ortiz-Sandoval C, Barlow LD, Raturi A, Dohmae N, Wakana Y, Inoue H, Tani K, Dacks JB, Simmen T, Tagaya M (2015) A role for the ancient SNARE syntaxin 17 in regulating mitochondrial division. Dev Cell 32:304–317

    Article  CAS  Google Scholar 

  45. Ortiz-Sandoval CG, Hughes SC, Dacks JB, Simmen T (2014) Interaction with the effector dynamin-related protein 1 (Drp1) is an ancient function of Rab32 subfamily proteins. Cell Logist 4:e986399

    Article  Google Scholar 

  46. Waschbusch D, Michels H, Strassheim S, Ossendorf E, Kessler D, Gloeckner CJ, Barnekow A (2014) LRRK2 transport is regulated by its novel interacting partner Rab32. PLoS One 9:e111632

    Article  Google Scholar 

  47. Wasmeier C, Romao M, Plowright L, Bennett DC, Raposo G, Seabra MC (2006) Rab38 and Rab32 control post-Golgi trafficking of melanogenic enzymes. J Cell Biol 175:271–281

    Article  CAS  Google Scholar 

  48. Oh JY, Ko JH, Lee HJ, Yu JM, Choi H, Kim MK, Wee WR, Prockop DJ (2014) Mesenchymal stem/stromal cells inhibit the NLRP3 inflammasome by decreasing mitochondrial reactive oxygen species. Stem Cells 32:1553–1563

    Article  CAS  Google Scholar 

  49. Mohammadipoor A, Lee RH, Prockop DJ, Bartosh TJ (2016) Stanniocalcin-1 attenuates ischemic cardiac injury and response of differentiating monocytes/macrophages to inflammatory stimuli. Transl Res 117:127–142

    Article  Google Scholar 

  50. Roddy GW, Rosa JR Jr, Youn OJ, Ylostalo JH, Bartosh TJ Jr, Choi H, Lee RH, Yasumura D, Ahern K, Nielsen G, Matthes MT, Lavail MM, Prockop DJ (2012) Stanniocalcin-1 rescued photoreceptor degeneration in two rat models of inherited retinal degeneration. Mol Ther 20(4):788–797

    Article  CAS  Google Scholar 

  51. Westberg JA, Serlachius M, Lankila P, Andersson LC (2007) Hypoxic preconditioning induces elevated expression of stanniocalcin-1 in the heart. Am J Physiol Heart Circ Physiol 293:H1766–H1771

    Article  CAS  Google Scholar 

  52. Westberg JA, Serlachius M, Lankila P, Penkowa M, Hidalgo J, Andersson LC (2007) Hypoxic preconditioning induces neuroprotective stanniocalcin-1 in brain via IL-6 signaling. Stroke 38:1025–1030

    Article  CAS  Google Scholar 

  53. Huang L, Zhang L, Ju H, Li Q, Pan JS, Al-Lawati Z, Sheikh-Hamad D (2015) Stanniocalcin-1 inhibits thrombin-induced signaling and protects from bleomycin-induced lung injury. Sci Rep 5:18117

    Article  CAS  Google Scholar 

  54. Liu D, Huang L, Wang Y, Wang W, Wehrens XH, Belousova T, Abdelrahim M, Dimattia G, Sheikh-Hamad D (2012) Human stanniocalcin-1 suppresses angiotensin II-induced superoxide generation in cardiomyocytes through UCP3-mediated anti-oxidant pathway. PLoS One 7:e36994

    Article  CAS  Google Scholar 

  55. Inagami T (2011) Mitochondrial angiotensin receptors and aging. Circ Res 109:1323–1324

    Article  CAS  Google Scholar 

  56. Casalena G, Daehn I, Bottinger E (2012) Transforming growth factor-beta, bioenergetics, and mitochondria in renal disease. Semin Nephrol 32:295–303

    Article  CAS  Google Scholar 

  57. Johannes L, Popoff V (2008) Tracing the retrograde route in protein trafficking. Cell 135:1175–1187

    Article  CAS  Google Scholar 

  58. Christensen EI, Birn H (2002) Megalin and cubilin: multifunctional endocytic receptors. Nat Rev Mol Cell Biol 3:256–266

    Article  CAS  Google Scholar 

  59. Perez Bay AE, Schreiner R, Benedicto I, Paz MM, Banfelder J, Weinstein AM, Rodriguez-Boulan EJ (2016) The fast-recycling receptor megalin defines the apical recycling pathway of epithelial cells. Nat Commun 7:11550

    Article  CAS  Google Scholar 

  60. Rice WL, Van Hoek AN, Paunescu TG, Huynh C, Goetze B, Singh B, Scipioni L, Stern LA, Brown D (2013) High resolution helium ion scanning microscopy of the rat kidney. PLoS One 8:e57051

    Article  CAS  Google Scholar 

  61. Vedovelli L, Rothermel JT, Finberg KE, Wagner CA, Azroyan A, Hill E, Breton S, Brown D, Paunescu TG (2013) Altered V-ATPase expression in renal intercalated cells isolated from B1 subunit-deficient mice by fluorescence-activated cell sorting. Am J Physiol Ren Physiol 304:F522–F532

    Article  CAS  Google Scholar 

  62. Saito N, Konishi K, Takeda H, Kato M, Sugiyama T, Asaka M (2003) Antigen retrieval trial for post-embedding immunoelectron microscopy by heating with several unmasking solutions. J Histochem Cytochem 51:989–994

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from: The Veteran Administration (BX002006 and IK2 BX002912); National Institute of Diabetes and Digestive and Kidney Diseases at the National Institutes of Health (R01 DK080306); USDA CRIS 3092-5-001-059, and a generous gift from Dr. and Mrs. Harold Selzman. This project was also supported by the Pathology and Histology Core at Baylor College of Medicine, with funding from the NIH (NCI P30-CA125123), and the expert assistance of Michael Ittmann, M.D., Ph.D. We thank Dr. Stuart Dryer for critical reading of the manuscript. Imaging for this project was supported by the Integrated Microscopy Core at Baylor College of Medicine with funding from NIH (DK56338, and CA125123), CPRIT (RP150578), the Dan L. Duncan Comprehensive Cancer Center, and the John S. Dunn Gulf Coast Consortium for Chemical Genomics.

Author information

Authors and Affiliations

Authors

Contributions

QL: design, cloning, carried out experiments, prepared figures and edited manuscript; LF: carried out experiments; YT: carried out experiments; JSCP: carried out experiments and edited manuscript; QT: generation of SIRT3 plasmids; YS: design and edited manuscript; DSH: conception, design, manuscript writing and figures preparation, communication.

Corresponding author

Correspondence to David Sheikh-Hamad.

Ethics declarations

Conflict of interest

No financial interests to disclose.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1903 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Lei, F., Tang, Y. et al. Megalin mediates plasma membrane to mitochondria cross-talk and regulates mitochondrial metabolism. Cell. Mol. Life Sci. 75, 4021–4040 (2018). https://doi.org/10.1007/s00018-018-2847-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2847-3

Keywords

Navigation