Skip to main content
Log in

Redundant regulation of localization and protein stability of DmPar3

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Apical–basal polarity is an important characteristic of epithelia and Drosophila neural stem cells. The conserved Par complex, which consists of the atypical protein kinase C and the scaffold proteins Baz and Par6, is a key player in the establishment of apical–basal cell polarity. Membrane recruitment of Baz has been reported to be accomplished by several mechanisms, which might function in redundancy, to ensure the correct localization of the complex. However, none of the described interactions was sufficient to displace the protein from the apical junctions. Here, we dissected the role of the oligomerization domain and the lipid-binding motif of Baz in vivo in the Drosophila embryo. We found that these domains function in redundancy to ensure the apical junctional localization of Baz: inactivation of only one domain is not sufficient to disrupt the function of Baz during apical–basal polarization of epithelial cells and neural stem cells. In contrast, mutation of both domains results in a strongly impaired protein stability and a phenotype characterized by embryonic lethality and an impaired apical–basal polarity in the embryonic epithelium and neural stem cells, resembling a baz-loss of function allele. Strikingly, the binding of Baz to the transmembrane proteins E-Cadherin, Echinoid, and Starry Night was not affected in this mutant protein. Our findings reveal a redundant function of the oligomerization and the lipid-binding domain, which is required for protein stability, correct subcellular localization, and apical–basal cell polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Goldstein B, Macara IG (2007) The PAR proteins. Fundamental players in animal cell polarization. Dev Cell 13(5):609–622. https://doi.org/10.1016/j.devcel.2007.10.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Pocha SM, Knust E (2013) Complexities of Crumbs function and regulation in tissue morphogenesis. Curr Biol 23(7):R289–R293. https://doi.org/10.1016/j.cub.2013.03.001

    Article  PubMed  CAS  Google Scholar 

  3. Harris TJC, Peifer M (2005) The positioning and segregation of apical cues during epithelial polarity establishment in Drosophila. J Cell Biol 170(5):813–823. https://doi.org/10.1083/jcb.200505127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Krahn MP, Bückers J, Kastrup L, Wodarz A (2010) Formation of a Bazooka–Stardust complex is essential for plasma membrane polarity in epithelia. J Cell Biol 190(5):751–760. https://doi.org/10.1083/jcb.201006029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Sen A, Sun R, Krahn MP (2015) Localization and function of Pals1-associated tight junction protein in Drosophila is regulated by two distinct apical complexes. J Biol Chem 290(21):13224–13233. https://doi.org/10.1074/jbc.M114.629014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Koch L, Feicht S, Sun R, Sen A, Krahn MP (2016) Domain-specific functions of Stardust in Drosophila embryonic development. R Soc Open Sci 3(11):160776. https://doi.org/10.1098/rsos.160776

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Suzuki A, Ohno S (2006) The PAR-aPKC system. Lessons in polarity. J Cell Sci 119(Pt 6):979–987. https://doi.org/10.1242/jcs.02898

    Article  PubMed  CAS  Google Scholar 

  8. Petronczki M, Knoblich JA (2001) DmPAR-6 directs epithelial polarity and asymmetric cell division of neuroblasts in Drosophila. Nat Cell Biol 3(1):43–49. https://doi.org/10.1038/35050550

    Article  PubMed  CAS  Google Scholar 

  9. Wodarz A, Ramrath A, Grimm A, Knust E (2000) Drosophila atypical protein kinase C associates with Bazooka and controls polarity of epithelia and neuroblasts. J Cell Biol 150(6):1361–1374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Hutterer A, Betschinger J, Petronczki M, Knoblich JA (2004) Sequential roles of Cdc42, Par-6, aPKC, and Lgl in the establishment of epithelial polarity during Drosophila embryogenesis. Dev Cell 6(6):845–854. https://doi.org/10.1016/j.devcel.2004.05.003

    Article  PubMed  CAS  Google Scholar 

  11. Rodriguez J, Peglion F, Martin J, Hubatsch L, Reich J, Hirani N, Gubieda AG, Roffey J, Fernandes AR, St Johnston D, Ahringer J, Goehring NW (2017) aPKC cycles between functionally distinct PAR protein assemblies to drive cell polarity. Dev Cell 42(4):400–415.e9. https://doi.org/10.1016/j.devcel.2017.07.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Wang S-C, Low TYF, Nishimura Y, Gole L, Yu W, Motegi F (2017) Cortical forces and CDC-42 control clustering of PAR proteins for Caenorhabditis elegans embryonic polarization. Nat Cell Biol 19(8):988–995. https://doi.org/10.1038/ncb3577

    Article  PubMed  CAS  Google Scholar 

  13. Nam S-C, Choi K-W (2003) Interaction of Par-6 and Crumbs complexes is essential for photoreceptor morphogenesis in Drosophila. Development 130(18):4363–4372. https://doi.org/10.1242/dev.00648

    Article  PubMed  CAS  Google Scholar 

  14. Vogelmann R, Nelson WJ (2005) Fractionation of the epithelial apical junctional complex. Reassessment of protein distributions in different substructures. Mol Biol Cell 16(2):701–716. https://doi.org/10.1091/mbc.E04-09-0827

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Martin-Belmonte F, Gassama A, Datta A, Yu W, Rescher U, Gerke V, Mostov K (2007) PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell 128(2):383–397. https://doi.org/10.1016/j.cell.2006.11.051

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Morais-de-Sá E, Mirouse V, St Johnston D (2010) aPKC phosphorylation of Bazooka defines the apical/lateral border in Drosophila epithelial cells. Cell 141(3):509–523. https://doi.org/10.1016/j.cell.2010.02.040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Walther RF, Pichaud F (2010) Crumbs/DaPKC-dependent apical exclusion of Bazooka promotes photoreceptor polarity remodeling. Curr Biol 20(12):1065–1074. https://doi.org/10.1016/j.cub.2010.04.049

    Article  PubMed  CAS  Google Scholar 

  18. Hirose T, Izumi Y, Nagashima Y, Tamai-Nagai Y, Kurihara H, Sakai T, Suzuki Y, Yamanaka T, Suzuki A, Mizuno K, Ohno S (2002) Involvement of ASIP/PAR-3 in the promotion of epithelial tight junction formation. J Cell Sci 115(Pt 12):2485–2495

    PubMed  CAS  Google Scholar 

  19. Harris TJC, Peifer M (2004) Adherens junction-dependent and -independent steps in the establishment of epithelial cell polarity in Drosophila. J Cell Biol 167(1):135–147. https://doi.org/10.1083/jcb.200406024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Chen X, Macara IG (2005) Par-3 controls tight junction assembly through the Rac exchange factor Tiam1. Nat Cell Biol 7(3):262–269. https://doi.org/10.1038/ncb1226

    Article  PubMed  CAS  Google Scholar 

  21. Horikoshi Y, Suzuki A, Yamanaka T, Sasaki K, Mizuno K, Sawada H, Yonemura S, Ohno S (2009) Interaction between PAR-3 and the aPKC-PAR-6 complex is indispensable for apical domain development of epithelial cells. J Cell Sci 122(Pt 10):1595–1606. https://doi.org/10.1242/jcs.043174

    Article  PubMed  CAS  Google Scholar 

  22. Ahmed SM, Macara IG (2017) The Par3 polarity protein is an exocyst receptor essential for mammary cell survival. Nat Commun 8:14867. https://doi.org/10.1038/ncomms14867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Lalli G (2009) RalA and the exocyst complex influence neuronal polarity through PAR-3 and aPKC. J Cell Sci 122(Pt 10):1499–1506. https://doi.org/10.1242/jcs.044339

    Article  PubMed  CAS  Google Scholar 

  24. Wodarz A, Ramrath A, Kuchinke U, Knust E (1999) Bazooka provides an apical cue for Inscuteable localization in Drosophila neuroblasts. Nature 402(6761):544–547. https://doi.org/10.1038/990128

    Article  PubMed  CAS  Google Scholar 

  25. Schober M, Schaefer M, Knoblich JA (1999) Bazooka recruits Inscuteable to orient asymmetric cell divisions in Drosophila neuroblasts. Nature 402(6761):548–551. https://doi.org/10.1038/990135

    Article  PubMed  CAS  Google Scholar 

  26. Kuchinke U, Grawe F, Knust E (1998) Control of spindle orientation in Drosophila by the Par-3-related PDZ-domain protein Bazooka. Curr Biol 8(25):1357–1365. https://doi.org/10.1016/S0960-9822(98)00016-5

    Article  PubMed  CAS  Google Scholar 

  27. Knoblich JA (2008) Mechanisms of asymmetric stem cell division. Cell 132(4):583–597. https://doi.org/10.1016/j.cell.2008.02.007

    Article  PubMed  CAS  Google Scholar 

  28. Wodarz A (2005) Molecular control of cell polarity and asymmetric cell division in Drosophila neuroblasts. Curr Opin Cell Biol 17(5):475–481. https://doi.org/10.1016/j.ceb.2005.08.005

    Article  PubMed  CAS  Google Scholar 

  29. Zhong W, Chia W (2008) Neurogenesis and asymmetric cell division. Curr Opin Neurobiol 18(1):4–11. https://doi.org/10.1016/j.conb.2008.05.002

    Article  PubMed  CAS  Google Scholar 

  30. Benton R, St Johnston D (2003) Drosophila PAR-1 and 14-3-3 inhibit Bazooka/PAR-3 to establish complementary cortical domains in polarized cells. Cell 115(6):691–704. https://doi.org/10.1016/S0092-8674(03)00938-3

    Article  PubMed  CAS  Google Scholar 

  31. Hurd TW, Fan S, Liu C-J, Kweon HK, Hakansson K, Margolis B (2003) Phosphorylation-dependent binding of 14-3-3 to the polarity protein Par3 regulates cell polarity in mammalian epithelia. Curr Biol 13(23):2082–2090. https://doi.org/10.1016/j.cub.2003.11.020

    Article  PubMed  CAS  Google Scholar 

  32. Krahn MP, Egger-Adam D, Wodarz A (2009) PP2A antagonizes phosphorylation of Bazooka by PAR-1 to control apical–basal polarity in dividing embryonic neuroblasts. Dev Cell 16(6):901–908. https://doi.org/10.1016/j.devcel.2009.04.011

    Article  PubMed  CAS  Google Scholar 

  33. Hurov JB, Watkins JL, Piwnica-Worms H (2004) Atypical PKC phosphorylates PAR-1 kinases to regulate localization and activity. Curr Biol 14(8):736–741. https://doi.org/10.1016/j.cub.2004.04.007

    Article  PubMed  CAS  Google Scholar 

  34. Betschinger J, Mechtler K, Knoblich JA (2003) The Par complex directs asymmetric cell division by phosphorylating the cytoskeletal protein Lgl. Nature 422(6929):326–330. https://doi.org/10.1038/nature01486

    Article  PubMed  CAS  Google Scholar 

  35. Wirtz-Peitz F, Nishimura T, Knoblich JA (2008) Linking cell cycle to asymmetric division. Aurora-A phosphorylates the Par complex to regulate Numb localization. Cell 135(1):161–173. https://doi.org/10.1016/j.cell.2008.07.049

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Graybill C, Wee B, Atwood SX, Prehoda KE (2012) Partitioning-defective protein 6 (Par-6) activates atypical protein kinase C (aPKC) by pseudosubstrate displacement. J Biol Chem 287(25):21003–21011. https://doi.org/10.1074/jbc.M112.360495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Soriano EV, Ivanova ME, Fletcher G, Riou P, Knowles PP, Barnouin K, Purkiss A, Kostelecky B, Saiu P, Linch M, Elbediwy A, Kjær S, O’Reilly N, Snijders AP, Parker PJ, Thompson BJ, McDonald NQ (2016) aPKC inhibition by Par3 CR3 flanking regions controls substrate access and underpins apical-junctional polarization. Dev Cell 38(4):384–398. https://doi.org/10.1016/j.devcel.2016.07.018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Nagai-Tamai Y, Mizuno K, Hirose T, Suzuki A, Ohno S (2002) Regulated protein-protein interaction between aPKC and PAR-3 plays an essential role in the polarization of epithelial cells. Genes Cells 7(11):1161–1171

    Article  PubMed  CAS  Google Scholar 

  39. Choi W, Harris NJ, Sumigray KD, Peifer M (2013) Rap1 and Canoe/afadin are essential for establishment of apical–basal polarity in the Drosophila embryo. Mol Biol Cell 24(7):945–963. https://doi.org/10.1091/mbc.E12-10-0736

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Benton R, St Johnston D (2003) A conserved oligomerization domain in drosophila Bazooka/PAR-3 is important for apical localization and epithelial polarity. Curr Biol 13(15):1330–1334

    Article  PubMed  CAS  Google Scholar 

  41. Mizuno K, Suzuki A, Hirose T, Kitamura K, Kutsuzawa K, Futaki M, Amano Y, Ohno S (2003) Self-association of PAR-3-mediated by the conserved N-terminal domain contributes to the development of epithelial tight junctions. J Biol Chem 278(33):31240–31250. https://doi.org/10.1074/jbc.M303593200

    Article  PubMed  CAS  Google Scholar 

  42. Feng W, Wu H, Chan L-N, Zhang M (2007) The Par-3 NTD adopts a PB1-like structure required for Par-3 oligomerization and membrane localization. EMBO J 26(11):2786–2796. https://doi.org/10.1038/sj.emboj.7601702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Li B, Kim H, Beers M, Kemphues K (2010) Different domains of C. elegans PAR-3 are required at different times in development. Dev Biol 344(2):745–757. https://doi.org/10.1016/j.ydbio.2010.05.506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Zhang Y, Wang W, Chen J, Zhang K, Gao F, Gao B, Zhang S, Dong M, Besenbacher F, Gong W, Zhang M, Sun F, Feng W (2013) Structural insights into the intrinsic self-assembly of Par-3 N-terminal domain. Structure 21(6):997–1006. https://doi.org/10.1016/j.str.2013.04.004

    Article  PubMed  CAS  Google Scholar 

  45. Wei S-Y, Escudero LM, Yu F, Chang L-H, Chen L-Y, Ho Y-H, Lin C-M, Chou C-S, Chia W, Modolell J, Hsu J-C (2005) Echinoid is a component of adherens junctions that cooperates with DE-Cadherin to mediate cell adhesion. Dev Cell 8(4):493–504. https://doi.org/10.1016/j.devcel.2005.03.015

    Article  PubMed  CAS  Google Scholar 

  46. Wu H, Feng W, Chen J, Chan L-N, Huang S, Zhang M (2007) PDZ domains of Par-3 as potential phosphoinositide signaling integrators. Mol Cell 28(5):886–898. https://doi.org/10.1016/j.molcel.2007.10.028

    Article  PubMed  CAS  Google Scholar 

  47. Yu CG, Harris TJC (2012) Interactions between the PDZ domains of Bazooka (Par-3) and phosphatidic acid. In vitro characterization and role in epithelial development. Mol Biol Cell 23(18):3743–3753. https://doi.org/10.1091/mbc.E12-03-0196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Krahn MP, Klopfenstein DR, Fischer N, Wodarz A (2010) Membrane targeting of Bazooka/PAR-3 is mediated by direct binding to phosphoinositide lipids. Curr Biol 20(7):636–642. https://doi.org/10.1016/j.cub.2010.01.065

    Article  PubMed  CAS  Google Scholar 

  49. Horikoshi Y, Hamada S, Ohno S, Suetsugu S (2011) Phosphoinositide binding by par-3 involved in par-3 localization. Cell Struct Funct 36(1):97–102

    Article  PubMed  CAS  Google Scholar 

  50. Simões SdM, Blankenship JT, Weitz O, Farrell DL, Tamada M, Fernandez-Gonzalez R, Zallen JA (2010) Rho-kinase directs Bazooka/Par-3 planar polarity during Drosophila axis elongation. Dev Cell 19(3):377–388. https://doi.org/10.1016/j.devcel.2010.08.011

    Article  CAS  Google Scholar 

  51. McKinley RFA, Yu CG, Harris TJC (2012) Assembly of Bazooka polarity landmarks through a multifaceted membrane-association mechanism. J Cell Sci 125(Pt 5):1177–1190. https://doi.org/10.1242/jcs.091884

    Article  PubMed  CAS  Google Scholar 

  52. Sen A, Nagy-Zsvér-Vadas Z, Krahn MP (2012) Drosophila PATJ supports adherens junction stability by modulating Myosin light chain activity. J Cell Biol 199(4):685–698. https://doi.org/10.1083/jcb.201206064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Chou TB, Perrimon N (1996) The autosomal FLP-DFS technique for generating germline mosaics in Drosophila melanogaster. Genetics 144(4):1673–1679

    PubMed  PubMed Central  CAS  Google Scholar 

  54. Groth AC, Fish M, Nusse R, Calos MP (2004) Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics 166(4):1775–1782

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Wieschaus E, Nusslein-Volhard C (1986) Looking at embryos. In: Roberts DB (ed) Drosophila: a practical approach. IRL Press, Oxford, pp 199–227

    Google Scholar 

  56. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji. An open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019

    Article  PubMed  CAS  Google Scholar 

  57. Várnai P, Balla T (1998) Visualization of phosphoinositides that bind pleckstrin homology domains. Calcium- and agonist-induced dynamic changes and relationship to myo-3Hinositol-labeled phosphoinositide pools. J Cell Biol 143(2):501–510

    Article  PubMed  PubMed Central  Google Scholar 

  58. James SR, Downes CP, Gigg R, Grove SJ, Holmes AB, Alessi DR (1996) Specific binding of the Akt-1 protein kinase to phosphatidylinositol 3,4,5-trisphosphate without subsequent activation. Biochem J 315(Pt 3):709–713

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Kim CA, Phillips ML, Kim W, Gingery M, Tran HH, Robinson MA, Faham S, Bowie JU (2001) Polymerization of the SAM domain of TEL in leukemogenesis and transcriptional repression. EMBO J 20(15):4173–4182. https://doi.org/10.1093/emboj/20.15.4173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Rolls MM, Albertson R, Shih H-P, Lee C-Y, Doe CQ (2003) Drosophila aPKC regulates cell polarity and cell proliferation in neuroblasts and epithelia. J Cell Biol 163(5):1089–1098. https://doi.org/10.1083/jcb.200306079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Atwood SX, Prehoda KE (2009) aPKC phosphorylates Miranda to polarize fate determinants during neuroblast asymmetric cell division. Curr Biol 19(9):723–729. https://doi.org/10.1016/j.cub.2009.03.056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Wasserscheid I, Thomas U, Knust E (2007) Isoform-specific interaction of Flamingo/Starry Night with excess Bazooka affects planar cell polarity in the Drosophila wing. Dev Dyn 236(4):1064–1071. https://doi.org/10.1002/dvdy.21089

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Bloomington Drosophila stock center at the University of Indiana (USA) and the Developmental Studies Hybridoma Bank at the University of Iowa (USA) and Frank Sprenger for providing reagents. This work was supported by Grants of the German Research Foundation (DFG) to M. P. K. (DFG3901/1-2, SFB1348-A05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Krahn.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig.

 1: Localization of Baz variants in the embryonic epidermis. (A-D) Immunostainings of different GFP-Baz variants in the embryonic epidermis. All transgenes were expressed with the ubiquitin promotor in a wild-type background. GFP (green), DE-Cad (red), and Dlg (blue) were stained. (A) GFP-Baz1-968 localizes mainly at the apical junctions with some baso-lateral mislocalization. (B) Mutation of the OD domain in this truncated protein causes a cytoplasmic accumulation of GFP-Baz1-968∆OD. (C, D) Chimeric proteins that carry the pleckstrin homology (PH) domains of either human PLCδ or Akt1 fused to the C-terminus GFP-Baz∆OD1-1105 promote a cortical localization in the embryonic epidermis. (E) Western blot of embryonic lysates of the Baz variants (A-D). The Baz variants were detected with a GFP antibody and Actin was used as a loading control. Scale bars are 10 µm (TIFF 857 kb)

Supplemental Fig.

 2: Cuticle phenotypes of Baz variants. (A) Cuticle phenotypes were classified into the four categories wt, shrunken with holes, holes, and cuticle rests. (B) The cuticle phenotypes of baz8188 germ line clones that express different Baz variants with the ubiquitin promoter were quantified (n = 300 per genotype). Embryos that normally developed and hatched are also included as “hatched”. baz8188 germ line clones display holes or cuticle rests. Embryos that express Baz-OneS hatch to a large extend (89,5%) or display either wt or shrunken with hole phenotypes. No embryos hatch upon the expression of Baz∆OD∆LB-OneS. Most embryos have either cuticle rests or holes phenotypes (58,1 and 16,3%, respectively). Nevertheless, some embryos develop further and have a wt or shrunken with holes phenotype (2,3 and 23,3%, respectively). The chimeric TEL-Baz∆OD∆LB-OneS protein rescues the Baz∆OD∆LB phenotypes to a large extent as half of the embryos hatch (50,2%) or have either wt or shrunken with holes phenotypes (21,9 and 17,9%, respectively). Scale bars are 200 µm (TIFF 417 kb)

Supplemental Fig.

 3: Quantification of Baz-OneS constructs in the embryonic epithelium. (A) Scheme of the area (33 × 4 µm) of the apical region of all immunostainings in Fig. 4, which has been quantified with FIJI Plot Profile. The gray values of either Baz/aPKC (B-F) or Baz/DE-Cad (G-K) in the apical region were plotted against the distance. (L) The Pearson correlation coefficient of the co-localization of either Baz/aPKC or Baz/DE-Cad has been determined with the Coloc2 Plugin in FIJI for all genotypes in Fig. 4. For the quantification, three different embryos of each genotype have been analyzed. Bars represent the mean ± S.D. Statistics were one-way ANOVA followed by Turkey’s post hoc test, n.s. p > 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 (TIFF 1777 kb)

Supplemental Fig.

 4: Expression of Baz variants with the UAS/Gal4-system. (A) Western blot of embryonic lysates from embryos that express Baz-GFP and Baz∆OD∆LB-GFP with the UASp promotor, driven by mat-Tub::Gal4. The Baz variants were detected with a GFP antibody and actin was used as a loading control. Full-length Baz is indicated with an arrow. Note that the pattern of specific bands is different in Baz∆OD∆LB (e.g., the band around 130 kDa is much weaker), which might be due to differences in the posttranslational processing of full-length Baz (presumably by cleavage). (B, C) Immunostaining of Baz variants (green), DE-Cad (red), and aPKC (blue) in the embryonic epidermis. (B) Baz-GFP localizes at the apical junction, (C) whereas Baz∆OD∆LB-GFP displays a diffuse cytoplasmic localization. Scale bars are 10 µm (TIFF 902 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kullmann, L., Krahn, M.P. Redundant regulation of localization and protein stability of DmPar3. Cell. Mol. Life Sci. 75, 3269–3282 (2018). https://doi.org/10.1007/s00018-018-2792-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2792-1

Keywords

Navigation