Skip to main content

Advertisement

Log in

Nanos genes and their role in development and beyond

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The hallmark of Nanos proteins is their typical (CCHC)2 zinc finger motif (zf-nanos). Animals have one to four nanos genes. For example, the fruit fly and demosponge have only one nanos gene, zebrafish and humans have three, and Fugu rubripes has four. Nanos genes are mainly known for their evolutionarily preserved role in germ cell survival and pluripotency. Nanos proteins have been reported to bind the C-terminal RNA-binding domain of Pumilio to form a post-transcriptional repressor complex. Several observations point to a link between the miRNA-mediated repression complex and the Nanos/Pumilio complex. Repression of the E2F3 oncogene product is, indeed, mediated by cooperation between the Nanos/Pumilio complex and miRNAs. Another important interaction partner of Nanos is the CCR4–NOT deadenylase complex. Besides the tissue-specific contribution of Nanos proteins to normal development, their ectopic expression has been observed in several cancer cell lines and various human cancers. An inverse correlation between the expression levels of human Nanos1 and Nanos3 and E-cadherin was observed in several cancer cell lines. Loss of E-cadherin, an important cell–cell adhesion protein, contributes to tumor invasion and metastasis. Overexpression of Nanos3 induces epithelial–mesenchymal transition in lung cancer cell lines partly by repressing E-cadherin. Other than some most interesting data from Nanos knockout mice, little is known about mammalian Nanos proteins, and further research is needed. In this review, we summarize the main roles of Nanos proteins and discuss the emerging concept of Nanos proteins as oncofetal antigens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Irish V, Lehmann R, Akam M (1989) The Drosophila posterior-group gene nanos functions by repressing hunchback activity. Nature 338(6217):646–648. https://doi.org/10.1038/338646a0

    Article  CAS  PubMed  Google Scholar 

  2. Wang C, Lehmann R (1991) Nanos is the localized posterior determinant in Drosophila. Cell 66(4):637–647

    Article  CAS  PubMed  Google Scholar 

  3. Kobayashi S, Yamada M, Asaoka M, Kitamura T (1996) Essential role of the posterior morphogen nanos for germline development in Drosophila. Nature 380(6576):708–711. https://doi.org/10.1038/380708a0

    Article  CAS  PubMed  Google Scholar 

  4. Tsuda M, Sasaoka Y, Kiso M, Abe K, Haraguchi S, Kobayashi S, Saga Y (2003) Conserved role of nanos proteins in germ cell development. Science 301(5637):1239–1241. https://doi.org/10.1126/science.1085222

    Article  CAS  PubMed  Google Scholar 

  5. Julaton VT, Reijo Pera RA (2011) NANOS3 function in human germ cell development. Hum Mol Genet 20(11):2238–2250. https://doi.org/10.1093/hmg/ddr114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Strumane K, Bonnomet A, Stove C, Vandenbroucke R, Nawrocki-Raby B, Bruyneel E, Mareel M, Birembaut P, Berx G, van Roy F (2006) E-cadherin regulates human Nanos1, which interacts with p120ctn and induces tumor cell migration and invasion. Cancer Res 66(20):10007–10015. https://doi.org/10.1158/0008-5472.CAN-05-3096

    Article  CAS  PubMed  Google Scholar 

  7. Grelet S, Andries V, Polette M, Gilles C, Staes K, Martin AP, Kileztky C, Terryn C, Dalstein V, Cheng CW, Shen CY, Birembaut P, Van Roy F, Nawrocki-Raby B (2015) The human NANOS3 gene contributes to lung tumour invasion by inducing epithelial–mesenchymal transition. J Pathol 237(1):25–37. https://doi.org/10.1002/path.4549

    Article  CAS  PubMed  Google Scholar 

  8. Bonnomet A, Polette M, Strumane K, Gilles C, Dalstein V, Kileztky C, Berx G, van Roy F, Birembaut P, Nawrocki-Raby B (2008) The E-cadherin-repressed hNanos1 gene induces tumor cell invasion by upregulating MT1-MMP expression. Oncogene 27(26):3692–3699. https://doi.org/10.1038/sj.onc.1211035

    Article  CAS  PubMed  Google Scholar 

  9. Bhandari D, Raisch T, Weichenrieder O, Jonas S, Izaurralde E (2014) Structural basis for the Nanos-mediated recruitment of the CCR4–NOT complex and translational repression. Genes Dev 28(8):888–901. https://doi.org/10.1101/gad.237289.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sonoda J, Wharton RP (1999) Recruitment of Nanos to hunchback mRNA by Pumilio. Genes Dev 13(20):2704–2712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jaruzelska J, Kotecki M, Kusz K, Spik A, Firpo M, Reijo Pera RA (2003) Conservation of a Pumilio-Nanos complex from Drosophila germ plasm to human germ cells. Dev Genes Evol 213(3):120–126. https://doi.org/10.1007/s00427-003-0303-2

    Article  CAS  PubMed  Google Scholar 

  12. Lai F, Zhou Y, Luo X, Fox J, King ML (2011) Nanos1 functions as a translational repressor in the Xenopus germline. Mech Dev 128(1–2):153–163. https://doi.org/10.1016/j.mod.2010.12.001

    Article  CAS  PubMed  Google Scholar 

  13. Wickens M, Bernstein D, Crittenden S, Luitjens C, Kimble J (2001) PUF proteins and 3′UTR regulation in the Caenorhabditis elegans germ line. Cold Spring Harb Symp Quant Biol 66:337–343

    Article  CAS  PubMed  Google Scholar 

  14. Zamore PD, Williamson JR, Lehmann R (1997) The Pumilio protein binds RNA through a conserved domain that defines a new class of RNA-binding proteins. RNA 3(12):1421–1433

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang X, McLachlan J, Zamore PD, Hall TM (2002) Modular recognition of RNA by a human pumilio-homology domain. Cell 110(4):501–512

    Article  CAS  PubMed  Google Scholar 

  16. Arvola RM, Weidmann CA, Tanaka Hall TM, Goldstrohm AC (2017) Combinatorial control of messenger RNAs by Pumilio, Nanos and brain tumor proteins. RNA Biol 14:1445–1456. https://doi.org/10.1080/15476286.2017.1306168

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gerber AP, Luschnig S, Krasnow MA, Brown PO, Herschlag D (2006) Genome-wide identification of mRNAs associated with the translational regulator PUMILIO in Drosophila melanogaster. Proc Natl Acad Sci USA 103(12):4487–4492. https://doi.org/10.1073/pnas.0509260103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Menon KP, Andrews S, Murthy M, Gavis ER, Zinn K (2009) The translational repressors Nanos and Pumilio have divergent effects on presynaptic terminal growth and postsynaptic glutamate receptor subunit composition. J Neurosci 29(17):5558–5572. https://doi.org/10.1523/JNEUROSCI.0520-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Goldstrohm AC, Hook BA, Seay DJ, Wickens M (2006) PUF proteins bind Pop2p to regulate messenger RNAs. Nat Struct Mol Biol 13(6):533–539. https://doi.org/10.1038/nsmb1100

    Article  CAS  PubMed  Google Scholar 

  20. Moore FL, Jaruzelska J, Fox MS, Urano J, Firpo MT, Turek PJ, Dorfman DM, Pera RA (2003) Human Pumilio-2 is expressed in embryonic stem cells and germ cells and interacts with DAZ (Deleted in AZoospermia) and DAZ-like proteins. Proc Natl Acad Sci USA 100(2):538–543. https://doi.org/10.1073/pnas.0234478100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Weidmann CA, Qiu C, Arvola RM, Lou TF, Killingsworth J, Campbell ZT, Tanaka Hall TM, Goldstrohm AC (2016) Drosophila Nanos acts as a molecular clamp that modulates the RNA-binding and repression activities of Pumilio. Elife 5:e17096. https://doi.org/10.7554/eLife.17096

    Article  PubMed  PubMed Central  Google Scholar 

  22. Murata Y, Wharton RP (1995) Binding of pumilio to maternal hunchback mRNA is required for posterior patterning in Drosophila embryos. Cell 80(5):747–756

    Article  CAS  PubMed  Google Scholar 

  23. Miles WO, Tschop K, Herr A, Ji JY, Dyson NJ (2012) Pumilio facilitates miRNA regulation of the E2F3 oncogene. Genes Dev 26(4):356–368. https://doi.org/10.1101/gad.182568.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Weidmann CA, Raynard NA, Blewett NH, Van Etten J, Goldstrohm AC (2014) The RNA binding domain of Pumilio antagonizes poly-adenosine binding protein and accelerates deadenylation. RNA 20(8):1298–1319. https://doi.org/10.1261/rna.046029.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lolicato F, Marino R, Paronetto MP, Pellegrini M, Dolci S, Geremia R, Grimaldi P (2008) Potential role of Nanos3 in maintaining the undifferentiated spermatogonia population. Dev Biol 313(2):725–738. https://doi.org/10.1016/j.ydbio.2007.11.011

    Article  CAS  PubMed  Google Scholar 

  26. Nakahata S, Katsu Y, Mita K, Inoue K, Nagahama Y, Yamashita M (2001) Biochemical identification of Xenopus Pumilio as a sequence-specific cyclin B1 mRNA-binding protein that physically interacts with a Nanos homolog, Xcat-2, and a cytoplasmic polyadenylation element-binding protein. J Biol Chem 276(24):20945–20953. https://doi.org/10.1074/jbc.M010528200

    Article  CAS  PubMed  Google Scholar 

  27. Weidmann CA, Goldstrohm AC (2012) Drosophila Pumilio protein contains multiple autonomous repression domains that regulate mRNAs independently of Nanos and brain tumor. Mol Cell Biol 32(2):527–540. https://doi.org/10.1128/MCB.06052-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ginter-Matuszewska B, Spik A, Rembiszewska A, Koyias C, Kupryjanczyk J, Jaruzelska J (2009) The SNARE-associated component SNAPIN binds PUMILIO2 and NANOS1 proteins in human male germ cells. Mol Hum Reprod 15(3):173–179. https://doi.org/10.1093/molehr/gap004

    Article  CAS  PubMed  Google Scholar 

  29. Ilardi JM, Mochida S, Sheng ZH (1999) Snapin: a SNARE-associated protein implicated in synaptic transmission. Nat Neurosci 2(2):119–124. https://doi.org/10.1038/5673

    Article  CAS  PubMed  Google Scholar 

  30. Falcon-Perez JM, Starcevic M, Gautam R, Dell’Angelica EC (2002) BLOC-1, a novel complex containing the pallidin and muted proteins involved in the biogenesis of melanosomes and platelet-dense granules. J Biol Chem 277(31):28191–28199. https://doi.org/10.1074/jbc.M204011200

    Article  CAS  PubMed  Google Scholar 

  31. Pu J, Schindler C, Jia R, Jarnik M, Backlund P, Bonifacino JS (2015) BORC, a multisubunit complex that regulates lysosome positioning. Dev Cell 33(2):176–188. https://doi.org/10.1016/j.devcel.2015.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pan PY, Tian JH, Sheng ZH (2009) Snapin facilitates the synchronization of synaptic vesicle fusion. Neuron 61(3):412–424. https://doi.org/10.1016/j.neuron.2008.12.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Somanath S, Partridge CJ, Marshall C, Rowe T, Turner MD (2016) Snapin mediates insulin secretory granule docking, but not trans-SNARE complex formation. Biochem Biophys Res Commun 473(2):403–407. https://doi.org/10.1016/j.bbrc.2016.02.123

    Article  CAS  PubMed  Google Scholar 

  34. Khatamzas E, Hipp MM, Gaughan D, Pichulik T, Leslie A, Fernandes RA, Muraro D, Booth S, Zausmer K, Sun MY, Kessler B, Rowland-Jones S, Cerundolo V, Simmons A (2017) Snapin promotes HIV-1 transmission from dendritic cells by dampening TLR8 signaling. EMBO J 36(20):2998–3011. https://doi.org/10.15252/embj.201695364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang B, Gallegos M, Puoti A, Durkin E, Fields S, Kimble J, Wickens MP (1997) A conserved RNA-binding protein that regulates sexual fates in the C. elegans hermaphrodite germ line. Nature 390(6659):477–484. https://doi.org/10.1038/37297

    Article  CAS  PubMed  Google Scholar 

  36. Lin H, Spradling AC (1997) A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. Development 124(12):2463–2476

    CAS  PubMed  Google Scholar 

  37. Forbes A, Lehmann R (1998) Nanos and Pumilio have critical roles in the development and function of Drosophila germline stem cells. Development 125(4):679–690

    CAS  PubMed  Google Scholar 

  38. Kraemer B, Crittenden S, Gallegos M, Moulder G, Barstead R, Kimble J, Wickens M (1999) NANOS-3 and FBF proteins physically interact to control the sperm-oocyte switch in Caenorhabditis elegans. Curr Biol 9(18):1009–1018

    Article  CAS  PubMed  Google Scholar 

  39. Dubnau J, Chiang AS, Grady L, Barditch J, Gossweiler S, McNeil J, Smith P, Buldoc F, Scott R, Certa U, Broger C, Tully T (2003) The staufen/pumilio pathway is involved in Drosophila long-term memory. Curr Biol 13(4):286–296

    Article  CAS  PubMed  Google Scholar 

  40. Quenault T, Lithgow T, Traven A (2011) PUF proteins: repression, activation and mRNA localization. Trends Cell Biol 21(2):104–112. https://doi.org/10.1016/j.tcb.2010.09.013

    Article  CAS  PubMed  Google Scholar 

  41. Nakahata S, Kotani T, Mita K, Kawasaki T, Katsu Y, Nagahama Y, Yamashita M (2003) Involvement of Xenopus Pumilio in the translational regulation that is specific to cyclin B1 mRNA during oocyte maturation. Mech Dev 120(8):865–880

    Article  CAS  PubMed  Google Scholar 

  42. Van Etten J, Schagat TL, Hrit J, Weidmann CA, Brumbaugh J, Coon JJ, Goldstrohm AC (2012) Human Pumilio proteins recruit multiple deadenylases to efficiently repress messenger RNAs. J Biol Chem 287(43):36370–36383. https://doi.org/10.1074/jbc.M112.373522

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Cho PF, Gamberi C, Cho-Park YA, Cho-Park IB, Lasko P, Sonenberg N (2006) Cap-dependent translational inhibition establishes two opposing morphogen gradients in Drosophila embryos. Curr Biol 16(20):2035–2041. https://doi.org/10.1016/j.cub.2006.08.093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pique M, Lopez JM, Foissac S, Guigo R, Mendez R (2008) A combinatorial code for CPE-mediated translational control. Cell 132(3):434–448. https://doi.org/10.1016/j.cell.2007.12.038

    Article  CAS  PubMed  Google Scholar 

  45. Kaye JA, Rose NC, Goldsworthy B, Goga A, L’Etoile ND (2009) A 3′UTR pumilio-binding element directs translational activation in olfactory sensory neurons. Neuron 61(1):57–70. https://doi.org/10.1016/j.neuron.2008.11.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Galgano A, Forrer M, Jaskiewicz L, Kanitz A, Zavolan M, Gerber AP (2008) Comparative analysis of mRNA targets for human PUF-family proteins suggests extensive interaction with the miRNA regulatory system. PLoS One 3(9):e3164. https://doi.org/10.1371/journal.pone.0003164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Nolde MJ, Saka N, Reinert KL, Slack FJ (2007) The Caenorhabditis elegans pumilio homolog, puf-9, is required for the 3′UTR-mediated repression of the let-7 microRNA target gene, hbl-1. Dev Biol 305(2):551–563. https://doi.org/10.1016/j.ydbio.2007.02.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kedde M, van Kouwenhove M, Zwart W, Oude Vrielink JA, Elkon R, Agami R (2010) A Pumilio-induced RNA structure switch in p27-3′ UTR controls miR-221 and miR-222 accessibility. Nat Cell Biol 12(10):1014–1020. https://doi.org/10.1038/ncb2105

    Article  CAS  PubMed  Google Scholar 

  49. Miles WO, Korenjak M, Griffiths LM, Dyer MA, Provero P, Dyson NJ (2014) Post-transcriptional gene expression control by NANOS is up-regulated and functionally important in pRb-deficient cells. EMBO J 33(19):2201–2215. https://doi.org/10.15252/embj.201488057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Miles WO, Lembo A, Volorio A, Brachtel E, Tian B, Sgroi D, Provero P, Dyson N (2016) Alternative polyadenylation in triple-negative breast tumors allows NRAS and c-JUN to bypass PUMILIO posttranscriptional regulation. Cancer Res 76(24):7231–7241. https://doi.org/10.1158/0008-5472.CAN-16-0844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fernandez S, Risolino M, Mandia N, Talotta F, Soini Y, Incoronato M, Condorelli G, Banfi S, Verde P (2015) miR-340 inhibits tumor cell proliferation and induces apoptosis by targeting multiple negative regulators of p27 in non-small cell lung cancer. Oncogene 34(25):3240–3250. https://doi.org/10.1038/onc.2014.267

    Article  CAS  PubMed  Google Scholar 

  52. Suzuki A, Igarashi K, Aisaki K, Kanno J, Saga Y (2010) NANOS2 interacts with the CCR4–NOT deadenylation complex and leads to suppression of specific RNAs. Proc Natl Acad Sci USA 107(8):3594–3599. https://doi.org/10.1073/pnas.0908664107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Joly W, Chartier A, Rojas-Rios P, Busseau I, Simonelig M (2013) The CCR4 deadenylase acts with Nanos and Pumilio in the fine-tuning of Mei-P26 expression to promote germline stem cell self-renewal. Stem Cell Rep 1(5):411–424. https://doi.org/10.1016/j.stemcr.2013.09.007

    Article  CAS  Google Scholar 

  54. Boland A, Chen Y, Raisch T, Jonas S, Kuzuoglu-Ozturk D, Wohlbold L, Weichenrieder O, Izaurralde E (2013) Structure and assembly of the NOT module of the human CCR4–NOT complex. Nat Struct Mol Biol 20(11):1289–1297. https://doi.org/10.1038/nsmb.2681

    Article  CAS  PubMed  Google Scholar 

  55. Bhaskar V, Roudko V, Basquin J, Sharma K, Urlaub H, Seraphin B, Conti E (2013) Structure and RNA-binding properties of the Not1-Not2-Not5 module of the yeast Ccr4–Not complex. Nat Struct Mol Biol 20(11):1281–1288. https://doi.org/10.1038/nsmb.2686

    Article  CAS  PubMed  Google Scholar 

  56. Bogdan JA, Adams-Burton C, Pedicord DL, Sukovich DA, Benfield PA, Corjay MH, Stoltenborg JK, Dicker IB (1998) Human carbon catabolite repressor protein (CCR4)-associative factor 1: cloning, expression and characterization of its interaction with the B-cell translocation protein BTG1. Biochem J 336(Pt 2):471–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Morel AP, Sentis S, Bianchin C, Le Romancer M, Jonard L, Rostan MC, Rimokh R, Corbo L (2003) BTG2 antiproliferative protein interacts with the human CCR4 complex existing in vivo in three cell-cycle-regulated forms. J Cell Sci 116(Pt 14):2929–2936. https://doi.org/10.1242/jcs.00480

    Article  CAS  PubMed  Google Scholar 

  58. Ezzeddine N, Chang TC, Zhu W, Yamashita A, Chen CY, Zhong Z, Yamashita Y, Zheng D, Shyu AB (2007) Human TOB, an antiproliferative transcription factor, is a poly(A)-binding protein-dependent positive regulator of cytoplasmic mRNA deadenylation. Mol Cell Biol 27(22):7791–7801. https://doi.org/10.1128/MCB.01254-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Meijer HA, Kong YW, Lu WT, Wilczynska A, Spriggs RV, Robinson SW, Godfrey JD, Willis AE, Bushell M (2013) Translational repression and eIF4A2 activity are critical for microRNA-mediated gene regulation. Science 340(6128):82–85. https://doi.org/10.1126/science.1231197

    Article  CAS  PubMed  Google Scholar 

  60. Chen Y, Boland A, Kuzuoglu-Ozturk D, Bawankar P, Loh B, Chang CT, Weichenrieder O, Izaurralde E (2014) A DDX6-CNOT1 complex and W-binding pockets in CNOT9 reveal direct links between miRNA target recognition and silencing. Mol Cell 54(5):737–750. https://doi.org/10.1016/j.molcel.2014.03.034

    Article  CAS  PubMed  Google Scholar 

  61. Braun JE, Huntzinger E, Fauser M, Izaurralde E (2011) GW182 proteins directly recruit cytoplasmic deadenylase complexes to miRNA targets. Mol Cell 44(1):120–133. https://doi.org/10.1016/j.molcel.2011.09.007

    Article  CAS  PubMed  Google Scholar 

  62. Chekulaeva M, Mathys H, Zipprich JT, Attig J, Colic M, Parker R, Filipowicz W (2011) miRNA repression involves GW182-mediated recruitment of CCR4–NOT through conserved W-containing motifs. Nat Struct Mol Biol 18(11):1218–1226. https://doi.org/10.1038/nsmb.2166

    Article  CAS  PubMed  Google Scholar 

  63. Collart MA, Panasenko OO (2012) The Ccr4–not complex. Gene 492(1):42–53. https://doi.org/10.1016/j.gene.2011.09.033

    Article  CAS  PubMed  Google Scholar 

  64. Shirai YT, Suzuki T, Morita M, Takahashi A, Yamamoto T (2014) Multifunctional roles of the mammalian CCR4–NOT complex in physiological phenomena. Front Genet 5:286. https://doi.org/10.3389/fgene.2014.00286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Suzuki A, Niimi Y, Saga Y (2014) Interaction of NANOS2 and NANOS3 with different components of the CNOT complex may contribute to the functional differences in mouse male germ cells. Biol Open 3(12):1207–1216. https://doi.org/10.1242/bio.20149308

    Article  PubMed  PubMed Central  Google Scholar 

  66. Raisch T, Bhandari D, Sabath K, Helms S, Valkov E, Weichenrieder O, Izaurralde E (2016) Distinct modes of recruitment of the CCR4–NOT complex by Drosophila and vertebrate Nanos. EMBO J 35(9):974–990. https://doi.org/10.15252/embj.201593634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ginter-Matuszewska B, Kusz K, Spik A, Grzeszkowiak D, Rembiszewska A, Kupryjanczyk J, Jaruzelska J (2011) NANOS1 and PUMILIO2 bind microRNA biogenesis factor GEMIN3, within chromatoid body in human germ cells. Histochem Cell Biol 136(3):279–287. https://doi.org/10.1007/s00418-011-0842-y

    Article  CAS  PubMed  Google Scholar 

  68. Meister G, Buhler D, Laggerbauer B, Zobawa M, Lottspeich F, Fischer U (2000) Characterization of a nuclear 20S complex containing the survival of motor neurons (SMN) protein and a specific subset of spliceosomal Sm proteins. Hum Mol Genet 9(13):1977–1986

    Article  CAS  PubMed  Google Scholar 

  69. Mourelatos Z, Dostie J, Paushkin S, Sharma A, Charroux B, Abel L, Rappsilber J, Mann M, Dreyfuss G (2002) miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev 16(6):720–728. https://doi.org/10.1101/gad.974702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nelson PT, Hatzigeorgiou AG, Mourelatos Z (2004) miRNP:mRNA association in polyribosomes in a human neuronal cell line. RNA 10(3):387–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lai F, King ML (2013) Repressive translational control in germ cells. Mol Reprod Dev 80(8):665–676. https://doi.org/10.1002/mrd.22161

    Article  CAS  PubMed  Google Scholar 

  72. Gavis ER, Lehmann R (1994) Translational regulation of nanos by RNA localization. Nature 369(6478):315–318. https://doi.org/10.1038/369315a0

    Article  CAS  PubMed  Google Scholar 

  73. Bergsten SE, Gavis ER (1999) Role for mRNA localization in translational activation but not spatial restriction of nanos RNA. Development 126(4):659–669

    CAS  PubMed  Google Scholar 

  74. Gavis ER, Curtis D, Lehmann R (1996) Identification of cis-acting sequences that control nanos RNA localization. Dev Biol 176(1):36–50. https://doi.org/10.1006/dbio.1996.9996

    Article  CAS  PubMed  Google Scholar 

  75. Ephrussi A, Lehmann R (1992) Induction of germ cell formation by oskar. Nature 358(6385):387–392. https://doi.org/10.1038/358387a0

    Article  CAS  PubMed  Google Scholar 

  76. Becalska AN, Kim YR, Belletier NG, Lerit DA, Sinsimer KS, Gavis ER (2011) Aubergine is a component of a nanos mRNA localization complex. Dev Biol 349(1):46–52. https://doi.org/10.1016/j.ydbio.2010.10.002

    Article  CAS  PubMed  Google Scholar 

  77. Hulskamp M, Schroder C, Pfeifle C, Jackle H, Tautz D (1989) Posterior segmentation of the Drosophila embryo in the absence of a maternal posterior organizer gene. Nature 338(6217):629–632. https://doi.org/10.1038/338629a0

    Article  CAS  PubMed  Google Scholar 

  78. Wharton RP, Struhl G (1991) RNA regulatory elements mediate control of Drosophila body pattern by the posterior morphogen nanos. Cell 67(5):955–967

    Article  CAS  PubMed  Google Scholar 

  79. Loedige I, Stotz M, Qamar S, Kramer K, Hennig J, Schubert T, Loffler P, Langst G, Merkl R, Urlaub H, Meister G (2014) The NHL domain of BRAT is an RNA-binding domain that directly contacts the hunchback mRNA for regulation. Genes Dev 28(7):749–764. https://doi.org/10.1101/gad.236513.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Loedige I, Jakob L, Treiber T, Ray D, Stotz M, Treiber N, Hennig J, Cook KB, Morris Q, Hughes TR, Engelmann JC, Krahn MP, Meister G (2015) The crystal structure of the NHL domain in complex with RNA reveals the molecular basis of Drosophila Brain-Tumor-mediated gene regulation. Cell Rep 13(6):1206–1220. https://doi.org/10.1016/j.celrep.2015.09.068

    Article  CAS  PubMed  Google Scholar 

  81. Laver JD, Li X, Ray D, Cook KB, Hahn NA, Nabeel-Shah S, Kekis M, Luo H, Marsolais AJ, Fung KYY, Hughes TR, Westwood JT, Sidhu SS, Morris Q, Lipshitz HD, Smibert CA (2015) Brain tumor is a sequence-specific RNA-binding protein that directs maternal mRNA clearance during the Drosophila maternal-to-zygotic transition. Genome Biol 16:94. https://doi.org/10.1186/s13059-015-0659-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Wreden C, Verrotti AC, Schisa JA, Lieberfarb ME, Strickland S (1997) Nanos and pumilio establish embryonic polarity in Drosophila by promoting posterior deadenylation of hunchback mRNA. Development 124(15):3015–3023

    CAS  PubMed  Google Scholar 

  83. Illmensee K, Mahowald AP (1974) Transplantation of posterior polar plasm in Drosophila. Induction of germ cells at the anterior pole of the egg. Proc Natl Acad Sci USA 71(4):1016–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dalby B, Glover DM (1993) Discrete sequence elements control posterior pole accumulation and translational repression of maternal cyclin B RNA in Drosophila. EMBO J 12(3):1219–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Asaoka-Taguchi M, Yamada M, Nakamura A, Hanyu K, Kobayashi S (1999) Maternal pumilio acts together with nanos in germline development in Drosophila embryos. Nat Cell Biol 1(7):431–437. https://doi.org/10.1038/15666

    Article  CAS  PubMed  Google Scholar 

  86. Kadyrova LY, Habara Y, Lee TH, Wharton RP (2007) Translational control of maternal Cyclin B mRNA by Nanos in the Drosophila germline. Development 134(8):1519–1527. https://doi.org/10.1242/dev.002212

    Article  CAS  PubMed  Google Scholar 

  87. Hayashi Y, Hayashi M, Kobayashi S (2004) Nanos suppresses somatic cell fate in Drosophila germ line. Proc Natl Acad Sci USA 101(28):10338–10342. https://doi.org/10.1073/pnas.0401647101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sato K, Hayashi Y, Ninomiya Y, Shigenobu S, Arita K, Mukai M, Kobayashi S (2007) Maternal Nanos represses hid/skl-dependent apoptosis to maintain the germ line in Drosophila embryos. Proc Natl Acad Sci USA 104(18):7455–7460. https://doi.org/10.1073/pnas.0610052104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ye B, Petritsch C, Clark IE, Gavis ER, Jan LY, Jan YN (2004) Nanos and Pumilio are essential for dendrite morphogenesis in Drosophila peripheral neurons. Curr Biol 14(4):314–321. https://doi.org/10.1016/j.cub.2004.01.052

    Article  CAS  PubMed  Google Scholar 

  90. Muraro NI, Weston AJ, Gerber AP, Luschnig S, Moffat KG, Baines RA (2008) Pumilio binds para mRNA and requires Nanos and Brat to regulate sodium current in Drosophila motoneurons. J Neurosci 28(9):2099–2109. https://doi.org/10.1523/JNEUROSCI.5092-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mee CJ, Pym EC, Moffat KG, Baines RA (2004) Regulation of neuronal excitability through pumilio-dependent control of a sodium channel gene. J Neurosci 24(40):8695–8703. https://doi.org/10.1523/JNEUROSCI.2282-04.2004

    Article  CAS  PubMed  Google Scholar 

  92. Schweers BA, Walters KJ, Stern M (2002) The Drosophila melanogaster translational repressor pumilio regulates neuronal excitability. Genetics 161(3):1177–1185

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Neumuller RA, Betschinger J, Fischer A, Bushati N, Poernbacher I, Mechtler K, Cohen SM, Knoblich JA (2008) Mei-P26 regulates microRNAs and cell growth in the Drosophila ovarian stem cell lineage. Nature 454(7201):241–245. https://doi.org/10.1038/nature07014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Feber A, Clark J, Goodwin G, Dodson AR, Smith PH, Fletcher A, Edwards S, Flohr P, Falconer A, Roe T, Kovacs G, Dennis N, Fisher C, Wooster R, Huddart R, Foster CS, Cooper CS (2004) Amplification and overexpression of E2F3 in human bladder cancer. Oncogene 23(8):1627–1630. https://doi.org/10.1038/sj.onc.1207274

    Article  CAS  PubMed  Google Scholar 

  95. Foster CS, Falconer A, Dodson AR, Norman AR, Dennis N, Fletcher A, Southgate C, Dowe A, Dearnaley D, Jhavar S, Eeles R, Feber A, Cooper CS (2004) Transcription factor E2F3 overexpressed in prostate cancer independently predicts clinical outcome. Oncogene 23(35):5871–5879. https://doi.org/10.1038/sj.onc.1207800

    Article  CAS  PubMed  Google Scholar 

  96. Cooper CS, Nicholson AG, Foster C, Dodson A, Edwards S, Fletcher A, Roe T, Clark J, Joshi A, Norman A, Feber A, Lin D, Gao Y, Shipley J, Cheng SJ (2006) Nuclear overexpression of the E2F3 transcription factor in human lung cancer. Lung Cancer 54(2):155–162. https://doi.org/10.1016/j.lungcan.2006.07.005

    Article  PubMed  Google Scholar 

  97. Bracken AP, Ciro M, Cocito A, Helin K (2004) E2F target genes: unraveling the biology. Trends Biochem Sci 29(8):409–417. https://doi.org/10.1016/j.tibs.2004.06.006

    Article  CAS  PubMed  Google Scholar 

  98. Iaquinta PJ, Lees JA (2007) Life and death decisions by the E2F transcription factors. Curr Opin Cell Biol 19(6):649–657. https://doi.org/10.1016/j.ceb.2007.10.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wang C, Dickinson LK, Lehmann R (1994) Genetics of nanos localization in Drosophila. Dev Dyn 199(2):103–115. https://doi.org/10.1002/aja.1001990204

    Article  CAS  PubMed  Google Scholar 

  100. Lehmann R, Nusslein-Volhard C (1991) The maternal gene nanos has a central role in posterior pattern formation of the Drosophila embryo. Development 112(3):679–691

    CAS  PubMed  Google Scholar 

  101. Subramaniam K, Seydoux G (1999) nos-1 and nos-2, two genes related to Drosophila nanos, regulate primordial germ cell development and survival in Caenorhabditis elegans. Development 126(21):4861–4871

    CAS  PubMed  Google Scholar 

  102. Koprunner M, Thisse C, Thisse B, Raz E (2001) A zebrafish nanos-related gene is essential for the development of primordial germ cells. Genes Dev 15(21):2877–2885. https://doi.org/10.1101/gad.212401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Verrotti AC, Wharton RP (2000) Nanos interacts with cup in the female germline of Drosophila. Development 127(23):5225–5232

    CAS  PubMed  Google Scholar 

  104. Keyes LN, Spradling AC (1997) The Drosophila gene fs(2)cup interacts with otu to define a cytoplasmic pathway required for the structure and function of germ-line chromosomes. Development 124(7):1419–1431

    CAS  PubMed  Google Scholar 

  105. Wilhelm JE, Hilton M, Amos Q, Henzel WJ (2003) Cup is an eIF4E binding protein required for both the translational repression of oskar and the recruitment of Barentsz. J Cell Biol 163(6):1197–1204. https://doi.org/10.1083/jcb.200309088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nakamura A, Sato K, Hanyu-Nakamura K (2004) Drosophila cup is an eIF4E binding protein that associates with Bruno and regulates oskar mRNA translation in oogenesis. Dev Cell 6(1):69–78

    Article  CAS  PubMed  Google Scholar 

  107. Haraguchi S, Tsuda M, Kitajima S, Sasaoka Y, Nomura-Kitabayashid A, Kurokawa K, Saga Y (2003) nanos1: a mouse nanos gene expressed in the central nervous system is dispensable for normal development. Mech Dev 120(6):721–731

    Article  CAS  PubMed  Google Scholar 

  108. Suzuki A, Tsuda M, Saga Y (2007) Functional redundancy among Nanos proteins and a distinct role of Nanos2 during male germ cell development. Development 134(1):77–83. https://doi.org/10.1242/dev.02697

    Article  CAS  PubMed  Google Scholar 

  109. Zhou Z, Shirakawa T, Ohbo K, Sada A, Wu Q, Hasegawa K, Saba R, Saga Y (2015) RNA binding protein Nanos2 organizes post-transcriptional buffering system to retain primitive state of mouse spermatogonial stem cells. Dev Cell 34(1):96–107. https://doi.org/10.1016/j.devcel.2015.05.014

    Article  CAS  PubMed  Google Scholar 

  110. Liu J, Rivas FV, Wohlschlegel J, Yates JR 3rd, Parker R, Hannon GJ (2005) A role for the P-body component GW182 in microRNA function. Nat Cell Biol 7(12):1261–1266. https://doi.org/10.1038/ncb1333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Macfarlane LA, Murphy PR (2010) MicroRNA: biogenesis, function and role in cancer. Curr Genom 11(7):537–561. https://doi.org/10.2174/138920210793175895

    Article  CAS  Google Scholar 

  112. Kusz KM, Tomczyk L, Sajek M, Spik A, Latos-Bielenska A, Jedrzejczak P, Pawelczyk L, Jaruzelska J (2009) The highly conserved NANOS2 protein: testis-specific expression and significance for the human male reproduction. Mol Hum Reprod 15(3):165–171. https://doi.org/10.1093/molehr/gap003

    Article  CAS  PubMed  Google Scholar 

  113. Kusz K, Tomczyk L, Spik A, Latos-Bielenska A, Jedrzejczak P, Pawelczyk L, Jaruzelska J (2009) NANOS3 gene mutations in men with isolated sterility phenotype. Mol Reprod Dev 76(9):804. https://doi.org/10.1002/mrd.21070

    Article  CAS  PubMed  Google Scholar 

  114. Wu X, Wang B, Dong Z, Zhou S, Liu Z, Shi G, Cao Y, Xu Y (2013) A NANOS3 mutation linked to protein degradation causes premature ovarian insufficiency. Cell Death Dis 4:e825. https://doi.org/10.1038/cddis.2013.368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Santos MG, Machado AZ, Martins CN, Domenice S, Costa EM, Nishi MY, Ferraz-de-Souza B, Jorge SA, Pereira CA, Soardi FC, de Mello MP, Maciel-Guerra AT, Guerra-Junior G, Mendonca BB (2014) Homozygous inactivating mutation in NANOS3 in two sisters with primary ovarian insufficiency. Biomed Res Int 2014:787465. https://doi.org/10.1155/2014/787465

    Article  PubMed  PubMed Central  Google Scholar 

  116. Kusz-Zamelczyk K, Sajek M, Spik A, Glazar R, Jedrzejczak P, Latos-Bielenska A, Kotecki M, Pawelczyk L, Jaruzelska J (2013) Mutations of NANOS1, a human homologue of the Drosophila morphogen, are associated with a lack of germ cells in testes or severe oligo-astheno-teratozoospermia. J Med Genet 50(3):187–193. https://doi.org/10.1136/jmedgenet-2012-101230

    Article  CAS  PubMed  Google Scholar 

  117. Janic A, Mendizabal L, Llamazares S, Rossell D, Gonzalez C (2010) Ectopic expression of germline genes drives malignant brain tumor growth in Drosophila. Science 330(6012):1824–1827. https://doi.org/10.1126/science.1195481

    Article  CAS  PubMed  Google Scholar 

  118. Krentz AD, Murphy MW, Zhang T, Sarver AL, Jain S, Griswold MD, Bardwell VJ, Zarkower D (2013) Interaction between DMRT1 function and genetic background modulates signaling and pluripotency to control tumor susceptibility in the fetal germ line. Dev Biol 377(1):67–78. https://doi.org/10.1016/j.ydbio.2013.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Krentz AD, Murphy MW, Kim S, Cook MS, Capel B, Zhu R, Matin A, Sarver AL, Parker KL, Griswold MD, Looijenga LH, Bardwell VJ, Zarkower D (2009) The DM domain protein DMRT1 is a dose-sensitive regulator of fetal germ cell proliferation and pluripotency. Proc Natl Acad Sci USA 106(52):22323–22328. https://doi.org/10.1073/pnas.0905431106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Grelet S (2014) Implication de Nanos-3 dans l’invasion tumorale broncho-pulmonaire, Ph.D. thesis (Dissertation). University of Reims Champagne-Ardenne

  121. Di Fiore R, D’Anneo A, Tesoriere G, Vento R (2013) RB1 in cancer: different mechanisms of RB1 inactivation and alterations of pRb pathway in tumorigenesis. J Cell Physiol 228(8):1676–1687. https://doi.org/10.1002/jcp.24329

    Article  PubMed  CAS  Google Scholar 

  122. Sadasivam S, DeCaprio JA (2013) The DREAM complex: master coordinator of cell cycle-dependent gene expression. Nat Rev Cancer 13(8):585–595. https://doi.org/10.1038/nrc3556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. https://doi.org/10.1093/nar/gkh34032/5/1792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8):754–755

    Article  CAS  PubMed  Google Scholar 

  125. Letunic I, Bork P (2007) Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23(1):127–128. https://doi.org/10.1093/bioinformatics/btl529

    Article  CAS  PubMed  Google Scholar 

  126. Bawankar P, Loh B, Wohlbold L, Schmidt S, Izaurralde E (2013) NOT10 and C2orf29/NOT11 form a conserved module of the CCR4–NOT complex that docks onto the NOT1 N-terminal domain. RNA Biol 10(2):228–244. https://doi.org/10.4161/rna.23018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Petit AP, Wohlbold L, Bawankar P, Huntzinger E, Schmidt S, Izaurralde E, Weichenrieder O (2012) The structural basis for the interaction between the CAF1 nuclease and the NOT1 scaffold of the human CCR4–NOT deadenylase complex. Nucleic Acids Res 40(21):11058–11072. https://doi.org/10.1093/nar/gks883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Pilon M, Weisblat DA (1997) A nanos homolog in leech. Development 124(9):1771–1780

    CAS  PubMed  Google Scholar 

  129. Mochizuki K, Sano H, Kobayashi S, Nishimiya-Fujisawa C, Fujisawa T (2000) Expression and evolutionary conservation of nanos-related genes in Hydra. Dev Genes Evol 210(12):591–602

    Article  CAS  PubMed  Google Scholar 

  130. Lall S, Ludwig MZ, Patel NH (2003) Nanos plays a conserved role in axial patterning outside of the Diptera. Curr Biol 13(3):224–229

    Article  CAS  PubMed  Google Scholar 

  131. Torras R, Yanze N, Schmid V, Gonzalez-Crespo S (2004) nanos expression at the embryonic posterior pole and the medusa phase in the hydrozoan Podocoryne carnea. Evol Dev 6(5):362–371. https://doi.org/10.1111/j.1525-142X.2004.04044.x

    Article  CAS  PubMed  Google Scholar 

  132. Torras R, Gonzalez-Crespo S (2005) Posterior expression of nanos orthologs during embryonic and larval development of the anthozoan Nematostella vectensis. Int J Dev Biol 49(7):895–899. https://doi.org/10.1387/ijdb.051980rt

    Article  CAS  PubMed  Google Scholar 

  133. Calvo E, Walter M, Adelman ZN, Jimenez A, Onal S, Marinotti O, James AA (2005) Nanos (nos) genes of the vector mosquitoes, Anopheles gambiae, Anopheles stephensi and Aedes aegypti. Insect Biochem Mol Biol 35(7):789–798. https://doi.org/10.1016/j.ibmb.2005.02.007

    Article  CAS  PubMed  Google Scholar 

  134. Dearden PK (2006) Germ cell development in the Honeybee (Apis mellifera); vasa and nanos expression. BMC Dev Biol 6:6. https://doi.org/10.1186/1471-213X-6-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Nakao H, Matsumoto T, Oba Y, Niimi T, Yaginuma T (2008) Germ cell specification and early embryonic patterning in Bombyx mori as revealed by nanos orthologues. Evol Dev 10(5):546–554. https://doi.org/10.1111/j.1525-142X.2008.00270.x

    Article  CAS  PubMed  Google Scholar 

  136. Leininger S, Adamski M, Bergum B, Guder C, Liu J, Laplante M, Brate J, Hoffmann F, Fortunato S, Jordal S, Rapp HT, Adamska M (2014) Developmental gene expression provides clues to relationships between sponge and eumetazoan body plans. Nat Commun 5:3905. https://doi.org/10.1038/ncomms4905

    Article  CAS  PubMed  Google Scholar 

  137. Mosquera L, Forristall C, Zhou Y, King ML (1993) A mRNA localized to the vegetal cortex of Xenopus oocytes encodes a protein with a nanos-like zinc finger domain. Development 117(1):377–386

    CAS  PubMed  Google Scholar 

  138. Sekizaki H, Takahashi S, Tanegashima K, Onuma Y, Haramoto Y, Asashima M (2004) Tracing of Xenopus tropicalis germ plasm and presumptive primordial germ cells with the Xenopus tropicalis DAZ-like gene. Dev Dyn 229(2):367–372. https://doi.org/10.1002/dvdy.10448

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Amin Bredan for critical reading and careful editing of the manuscript, and our colleagues from Ghent University, VIB-UGent and the University of Reims (INSERM UMR-S 903) for helpful discussions. This work was supported by the Foundation against Cancer—Belgium, the Research Foundation—Flanders (FWO-Vlaanderen), and the Belgian Science Policy (Interuniversity Attraction Poles—Award IAP7/07). EDK has been a Ph.D. fellow of FWO-Vlaanderen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frans van Roy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Keuckelaere, E., Hulpiau, P., Saeys, Y. et al. Nanos genes and their role in development and beyond. Cell. Mol. Life Sci. 75, 1929–1946 (2018). https://doi.org/10.1007/s00018-018-2766-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2766-3

Keywords

Navigation