Skip to main content

Advertisement

Log in

The product of the γ-secretase processing of ephrinB2 regulates VE-cadherin complexes and angiogenesis

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Presenilin-1 (PS1) gene encodes the catalytic component of γ-secretase, which proteolytically processes several type I transmembrane proteins. We here present evidence that the cytosolic peptide efnB2/CTF2 produced by the PS1/γ-secretase cleavage of efnB2 ligand promotes EphB4 receptor-dependent angiogenesis in vitro. EfnB2/CTF2 increases endothelial cell sprouting and tube formation, stimulates the formation of angiogenic complexes that include VE-cadherin, Raf-1 and Rok-α, and increases MLC2 phosphorylation. These functions are mediated by the PDZ-binding domain of efnB2. Acute downregulation of PS1 or inhibition of γ-secretase inhibits the angiogenic functions of EphB4 while absence of PS1 decreases the VE-cadherin angiogenic complexes of mouse brain. Our data reveal a mechanism by which PS1/γ-secretase regulates efnB2/EphB4 mediated angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

EfnB2:

EphrinB2

CTF2:

Carboxy terminal fragment 2

CTF1:

Carboxy terminal fragment 1

PS1:

Presenilin1

WT:

Wild type

KO:

Knockout

VE-cadherin:

Vascular Endothelial cadherin

N-cad:

Neuronal cadherin

Rap1:

Ras-proximate-1 or Ras-related protein 1

Rok-α:

Rho-associated, coiled-coil-containing protein kinase 2

BAMEC:

Bovine adrenal microvessel endothelial cells

MLC2:

Myosin light chain 2

FAD:

Familial Alzheimer’s disease

AD:

Alzheimer’s disease

References

  1. Barthet G, Georgakopoulos A, Robakis NK (2012) Cellular mechanisms of gamma-secretase substrate selection, processing and toxicity. Prog Neurobiol 98(2):166–175. https://doi.org/10.1016/j.pneurobio.2012.05.006

    Article  PubMed  CAS  Google Scholar 

  2. Shen J, Bronson RT, Chen DF, Xia W, Selkoe DJ, Tonegawa S (1997) Skeletal and CNS defects in Presenilin-1-deficient mice. Cell 89(4):629–639

    Article  PubMed  CAS  Google Scholar 

  3. Nakajima M, Yuasa S, Ueno M, Takakura N, Koseki H, Shirasawa T (2003) Abnormal blood vessel development in mice lacking presenilin-1. Mech Dev 120(6):657–667

    Article  PubMed  CAS  Google Scholar 

  4. Gama Sosa MA, Gasperi RD, Rocher AB, Wang AC, Janssen WG, Flores T, Perez GM, Schmeidler J, Dickstein DL, Hof PR, Elder GA (2010) Age-related vascular pathology in transgenic mice expressing presenilin 1-associated familial Alzheimer’s disease mutations. Am J Pathol 176(1):353–368. https://doi.org/10.2353/ajpath.2010.090482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Gerety SS, Wang HU, Chen ZF, Anderson DJ (1999) Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Mol Cell 4(3):403–414

    Article  PubMed  CAS  Google Scholar 

  6. Adams RH, Diella F, Hennig S, Helmbacher F, Deutsch U, Klein R (2001) The cytoplasmic domain of the ligand ephrinB2 is required for vascular morphogenesis but not cranial neural crest migration. Cell 104(1):57–69

    Article  PubMed  CAS  Google Scholar 

  7. Wimmer R, Cseh B, Maier B, Scherrer K, Baccarini M (2012) Angiogenic sprouting requires the fine tuning of endothelial cell cohesion by the Raf-1/Rok-alpha complex. Dev Cell 22(1):158–171. https://doi.org/10.1016/j.devcel.2011.11.012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Abraham S, Yeo M, Montero-Balaguer M, Paterson H, Dejana E, Marshall CJ, Mavria G (2009) VE-Cadherin-mediated cell-cell interaction suppresses sprouting via signaling to MLC2 phosphorylation. Curr Biol 19(8):668–674. https://doi.org/10.1016/j.cub.2009.02.057

    Article  PubMed  CAS  Google Scholar 

  9. Georgakopoulos A, Litterst C, Ghersi E, Baki L, Xu C, Serban G, Robakis NK (2006) Metalloproteinase/presenilin1 processing of ephrinB regulates EphB-induced Src phosphorylation and signaling. EMBO J 25(6):1242–1252. https://doi.org/10.1038/sj.emboj.7601031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Nehls V, Drenckhahn D (1995) A novel, microcarrier-based in vitro assay for rapid and reliable quantification of three-dimensional cell migration and angiogenesis. Microvasc Res 50(3):311–322. https://doi.org/10.1006/mvre.1995.1061

    Article  PubMed  CAS  Google Scholar 

  11. Eilken HM, Adams RH (2010) Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr Opin Cell Biol 22(5):617–625. https://doi.org/10.1016/j.ceb.2010.08.010

    Article  PubMed  CAS  Google Scholar 

  12. Madri JA, Pratt BM, Tucker AM (1988) Phenotypic modulation of endothelial cells by transforming growth factor-beta depends upon the composition and organization of the extracellular matrix. J Cell Biol 106(4):1375–1384

    Article  PubMed  CAS  Google Scholar 

  13. Grant DS, Kibbey MC, Kinsella JL, Cid MC, Kleinman HK (1994) The role of basement membrane in angiogenesis and tumor growth. Pathol Res Pract 190(9–10):854–863

    Article  PubMed  CAS  Google Scholar 

  14. Makinen T, Adams RH, Bailey J, Lu Q, Ziemiecki A, Alitalo K, Klein R, Wilkinson GA (2005) PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature. Genes Dev 19(3):397–410. https://doi.org/10.1101/gad.330105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Kida Y, Ieronimakis N, Schrimpf C, Reyes M, Duffield JS (2013) EphrinB2 reverse signaling protects against capillary rarefaction and fibrosis after kidney injury. J Am Soc Nephrol 24(4):559–572. https://doi.org/10.1681/ASN.2012080871

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Palmer A, Zimmer M, Erdmann KS, Eulenburg V, Porthin A, Heumann R, Deutsch U, Klein R (2002) EphrinB phosphorylation and reverse signaling: regulation by Src kinases and PTP-BL phosphatase. Mol Cell 9(4):725–737

    Article  PubMed  CAS  Google Scholar 

  17. Grigorian AL, Bustamante JJ, Hernandez P, Martinez AO, Haro LS (2005) Extraordinarily stable disulfide-linked homodimer of human growth hormone. Protein Sci 14(4):902–913. https://doi.org/10.1110/ps.041048805

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Isbert S, Wagner K, Eggert S, Schweitzer A, Multhaup G, Weggen S, Kins S, Pietrzik CU (2012) APP dimer formation is initiated in the endoplasmic reticulum and differs between APP isoforms. Cell Mol Life Sci 69(8):1353–1375. https://doi.org/10.1007/s00018-011-0882-4

    Article  PubMed  CAS  Google Scholar 

  19. Chrzanowska-Wodnicka M (2010) Regulation of angiogenesis by a small GTPase Rap1. Vascul Pharmacol 53(1–2):1–10. https://doi.org/10.1016/j.vph.2010.03.003

    Article  PubMed  CAS  Google Scholar 

  20. Qian Y, Vogt A, Vasudevan A, Sebti SM, Hamilton AD (1998) Selective inhibition of type-I geranylgeranyltransferase in vitro and in whole cells by CAAL peptidomimetics. Bioorg Med Chem 6(3):293–299

    Article  PubMed  CAS  Google Scholar 

  21. Marambaud P, Wen PH, Dutt A, Shioi J, Takashima A, Siman R, Robakis NK (2003) A CBP binding transcriptional repressor produced by the PS1/epsilon-cleavage of N-cadherin is inhibited by PS1 FAD mutations. Cell 114(5):635–645

    Article  PubMed  CAS  Google Scholar 

  22. Liu Z, Tan JL, Cohen DM, Yang MT, Sniadecki NJ, Ruiz SA, Nelson CM, Chen CS (2010) Mechanical tugging force regulates the size of cell-cell junctions. Proc Natl Acad Sci USA 107(22):9944–9949. https://doi.org/10.1073/pnas.0914547107

    Article  PubMed  PubMed Central  Google Scholar 

  23. Weis WI, Nelson WJ (2006) Re-solving the cadherin-catenin-actin conundrum. J Biol Chem 281(47):35593–35597. https://doi.org/10.1074/jbc.R600027200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Prevost N, Woulfe DS, Tognolini M, Tanaka T, Jian W, Fortna RR, Jiang H, Brass LF (2004) Signaling by ephrinB1 and Eph kinases in platelets promotes Rap1 activation, platelet adhesion, and aggregation via effector pathways that do not require phosphorylation of ephrinB1. Blood 103(4):1348–1355. https://doi.org/10.1182/blood-2003-06-1781

    Article  PubMed  CAS  Google Scholar 

  25. Georgakopoulos A, Xu J, Xu C, Mauger G, Barthet G, Robakis NK (2011) Presenilin1/gamma-secretase promotes the EphB2-induced phosphorylation of ephrinB2 by regulating phosphoprotein associated with glycosphingolipid-enriched microdomains/Csk binding protein. FASEB J 25(10):3594–3604. https://doi.org/10.1096/fj.11-187856

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Kemmerling N, Wunderlich P, Theil S, Linnartz-Gerlach B, Hersch N, Hoffmann B, Heneka MT, de Strooper B, Neumann H, Walter J (2017) Intramembranous processing by gamma-secretase regulates reverse signaling of ephrin-B2 in migration of microglia. Glia 65(7):1103–1118. https://doi.org/10.1002/glia.23147

    Article  PubMed  Google Scholar 

  27. Boulton ME, Cai J, Grant MB (2008) gamma-Secretase: a multifaceted regulator of angiogenesis. J Cell Mol Med 12(3):781–795. https://doi.org/10.1111/j.1582-4934.2008.00274.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Wang Y, Nakayama M, Pitulescu ME, Schmidt TS, Bochenek ML, Sakakibara A, Adams S, Davy A, Deutsch U, Luthi U, Barberis A, Benjamin LE, Makinen T, Nobes CD, Adams RH (2010) Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465(7297):483–486. https://doi.org/10.1038/nature09002

    Article  PubMed  CAS  Google Scholar 

  29. Sawamiphak S, Seidel S, Essmann CL, Wilkinson GA, Pitulescu ME, Acker T, Acker-Palmer A (2010) Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature 465(7297):487–491. https://doi.org/10.1038/nature08995

    Article  PubMed  CAS  Google Scholar 

  30. Leong KG, Hu X, Li L, Noseda M, Larrivee B, Hull C, Hood L, Wong F, Karsan A (2002) Activated Notch4 inhibits angiogenesis: role of beta 1-integrin activation. Mol Cell Biol 22(8):2830–2841

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Zheng W, Tammela T, Yamamoto M, Anisimov A, Holopainen T, Kaijalainen S, Karpanen T, Lehti K, Yla-Herttuala S, Alitalo K (2011) Notch restricts lymphatic vessel sprouting induced by vascular endothelial growth factor. Blood 118(4):1154–1162. https://doi.org/10.1182/blood-2010-11-317800

    Article  PubMed  CAS  Google Scholar 

  32. Sainson RC, Aoto J, Nakatsu MN, Holderfield M, Conn E, Koller E, Hughes CC (2005) Cell-autonomous notch signaling regulates endothelial cell branching and proliferation during vascular tubulogenesis. FASEB J 19(8):1027–1029. https://doi.org/10.1096/fj.04-3172fje

    Article  PubMed  CAS  Google Scholar 

  33. Larrivee B, Prahst C, Gordon E, del Toro R, Mathivet T, Duarte A, Simons M, Eichmann A (2012) ALK1 signaling inhibits angiogenesis by cooperating with the Notch pathway. Dev Cell 22(3):489–500. https://doi.org/10.1016/j.devcel.2012.02.005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Adams RH, Wilkinson GA, Weiss C, Diella F, Gale NW, Deutsch U, Risau W, Klein R (1999) Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev 13(3):295–306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Kitamura T, Koshino Y, Shibata F, Oki T, Nakajima H, Nosaka T, Kumagai H (2003) Retrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomics. Exp Hematol 31(11):1007–1014

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH Grants 2R01-NS047229-11, P50AG05138, AG-17926, AG-008200 and by Alzheimer’s Association Grant IIRG-11-205149.

Author information

Authors and Affiliations

Authors

Contributions

AG conceived the project, designed the research, supervised the project and wrote the manuscript with input from all authors. NW, GV, YY performed experiments and contributed to writing of the manuscript. NR supervised the work and contributed to research design and writing of the manuscript.

Corresponding author

Correspondence to Anastasios Georgakopoulos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1000 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Warren, N., Voloudakis, G., Yoon, Y. et al. The product of the γ-secretase processing of ephrinB2 regulates VE-cadherin complexes and angiogenesis. Cell. Mol. Life Sci. 75, 2813–2826 (2018). https://doi.org/10.1007/s00018-018-2762-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2762-7

Keywords

Navigation