Skip to main content
Log in

Regulation of class V myosin

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Class V myosin (myosin-5) is a molecular motor that functions as an organelle transporter. The activation of myosin-5′s motor function has long been known to be associated with a transition from the folded conformation in the off-state to the extended conformation in the on-state, but only recently have we begun to understand the underlying mechanism. The globular tail domain (GTD) of myosin-5 has been identified as the inhibitory domain and has recently been shown to function as a dimer in regulating the motor function. The folded off-state of myosin-5 is stabilized by multiple intramolecular interactions, including head–GTD interactions, GTD–GTD interactions, and interactions between the GTD and the C-terminus of the first coiled-coil segment. Any cellular factor that affects these intramolecular interactions and thus the stability of the folded conformation of myosin-5 would be expected to regulate myosin-5 motor function. Both the adaptor proteins of myosin-5 and Ca2+ are potential regulators of myosin-5 motor function, because they can destabilize its folded conformation. A combination of these regulators provides a versatile scheme in regulating myosin-5 motor function in the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CaM:

Calmodulin

EFBD:

The exon-F binding domain

ELC:

Essential light chain

GTBD:

GTD-binding domain

GTD:

Globular tail domain

GTBM:

GTD-binding motif

Mlph:

Melanophilin

myosin-5:

Class V myosin

Myo5a:

Vertebrate myosin-5a

Myo5b:

Vertebrate myosin-5b

Myo5c:

Vertebrate myosin-5c

DmMyo5:

Drosophila myosin-5

Myo2p:

The budding yeast class V myosin Myo2p

Myo4p:

The budding yeast class V myosin Myo4p

Myo51:

The fission yeast class V myosin Myo51

Myo52:

The fission yeast class V myosin Myo52

RH1/2:

RILP-homology region-1/-2

Rilp:

Rab interacting lysosomal protein

Rilpl1/2:

Rab interacting lysosomal protein like protein 1/2

References

  1. Odronitz F, Kollmar M (2007) Drawing the tree of eukaryotic life based on the analysis of 2269 manually annotated myosins from 328 species. Genome Biol 8:R196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Foth BJ, Goedecke MC, Soldati D (2006) From the cover: new insights into myosin evolution and classification. Proc Natl Acad Sci USA 103:3681–3686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Heissler SM, Sellers JR (2016) Kinetic adaptations of myosins for their diverse cellular functions. Traffic 17:839–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Woolner S, Bement WM (2009) Unconventional myosins acting unconventionally. Trends Cell Biol 19:245–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Heissler SM, Sellers JR (2016) Various themes of myosin regulation. J Mol Biol 428:1927–1946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li J, Lu Q, Zhang M (2016) Structural basis of cargo recognition by unconventional myosins in cellular trafficking. Traffic 17:822–838

    Article  CAS  PubMed  Google Scholar 

  7. Reck-Peterson SL, Provance DW Jr, Mooseker MS, Mercer JA (2000) Class V myosins. Biochem Biophys Acta 1496:36–51

    Article  CAS  PubMed  Google Scholar 

  8. Cheney RE, O’Shea MK, Heuser JE, Coelho MV, Wolenski JS, Espreafico EM, Forscher P, Larson RE, Mooseker MS (1993) Brain myosin-V is a two-headed unconventional myosin with motor activity. Cell 75:13–23

    Article  CAS  PubMed  Google Scholar 

  9. Rodriguez OC, Cheney RE (2002) Human myosin-Vc is a novel class V myosin expressed in epithelial cells. J Cell Sci 115:991–1004

    CAS  PubMed  Google Scholar 

  10. Zhao LP, Koslovsky JS, Reinhard J, Bahler M, Witt AE, Provance DW Jr, Mercer JA (1996) Cloning and characterization of myr 6, an unconventional myosin of the dilute/myosin-V family. Proc Natl Acad Sci USA 93:10826–10831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Odronitz F, Kollmar M (2008) Comparative genomic analysis of the arthropod muscle myosin heavy chain genes allows ancestral gene reconstruction and reveals a new type of ‘partially’ processed pseudogene. BMC Mol Biol 9:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Hammer JA 3rd, Wagner W (2013) Functions of class V myosins in neurons. J Biol Chem 288:28428–28434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hammer JA III, Sellers JR (2012) Walking to work: roles for class V myosins as cargo transporters. Nat Rev Mol Cell Biol 13:13–26

    CAS  Google Scholar 

  14. Czaplinski K (2014) Understanding mRNA trafficking: are we there yet? Semin Cell Dev Biol 32:63–70

    Article  CAS  PubMed  Google Scholar 

  15. Sladewski TE, Trybus KM (2014) A single molecule approach to mRNA transport by a class V myosin. RNA Biol 11:986–991

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang F, Thirumurugan K, Stafford WF, Hammer JA 3rd, Knight PJ, Sellers JR (2004) Regulated conformation of myosin V. J Biol Chem 279:2333–2336

    Article  CAS  PubMed  Google Scholar 

  17. Li XD, Mabuchi K, Ikebe R, Ikebe M (2004) Ca2+-induced activation of ATPase activity of myosin Va is accompanied with a large conformational change. Biochem Biophys Res Commun 315:538–545

    Article  CAS  PubMed  Google Scholar 

  18. Krementsov DN, Krementsova EB, Trybus KM (2004) Myosin V: regulation by calcium, calmodulin, and the tail domain. J Cell Biol 164:877–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Thirumurugan K, Sakamoto T, Hammer JA, Sellers JR, Knight PJ (2006) The cargo-binding domain regulates structure and activity of myosin 5. Nature 442:212–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu J, Taylor DW, Krementsova EB, Trybus KM, Taylor KA (2006) Three-dimensional structure of the myosin V inhibited state by cryoelectron tomography. Nature 442:208–211

    CAS  PubMed  Google Scholar 

  21. Li XD, Jung HS, Mabuchi K, Craig R, Ikebe M (2006) The globular tail domain of myosin Va functions as an inhibitor of the myosin Va motor. J Biol Chem 281:21789–21798

    Article  CAS  PubMed  Google Scholar 

  22. Li XD, Jung HS, Wang Q, Ikebe R, Craig R, Ikebe M (2008) The globular tail domain puts on the brake to stop the ATPase cycle of myosin Va. Proc Natl Acad Sci USA 105:1140–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li XD, Ikebe R, Ikebe M (2005) Activation of myosin Va function by melanophilin, a specific docking partner of myosin Va. J Biol Chem 280:17815–17822

    Article  CAS  PubMed  Google Scholar 

  24. Sellers JR, Thirumurugan K, Sakamoto T, Hammer JA 3rd, Knight PJ (2008) Calcium and cargoes as regulators of myosin 5a activity. Biochem Biophys Res Commun 369:176–181

    Article  CAS  PubMed  Google Scholar 

  25. Ikebe M (2008) Regulation of the function of mammalian myosin and its conformational change. Biochem Biophys Res Commun 369:157–164

    Article  CAS  PubMed  Google Scholar 

  26. Trybus KM (2008) Myosin V from head to tail. Cell Mol Life Sci 65:1378–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Taylor KA (2007) Regulation and recycling of myosin V. Curr Opin Cell Biol 19:67–74

    Article  CAS  PubMed  Google Scholar 

  28. Desnos C, Huet S, Darchen F (2007) ‘Should I stay or should I go?’: myosin V function in organelle trafficking. Biol Cell 99:411–423

    Article  CAS  PubMed  Google Scholar 

  29. Cheney RE, Riley MA, Mooseker MS (1993) Phylogenetic analysis of the myosin superfamily. Cell Motil Cytoskelet 24:215–223

    Article  CAS  Google Scholar 

  30. Wang Z, Edwards JG, Riley N, Provance DW Jr, Karcher R, Li XD, Davison IG, Ikebe M, Mercer JA, Kauer JA, Ehlers MD (2008) Myosin Vb mobilizes recycling endosomes and AMPA receptors for postsynaptic plasticity. Cell 135:535–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yao LL, Shen M, Lu Z, Ikebe M, Li XD (2016) Identification of the isoform-specific interactions between the tail and the head of class V myosin. J Biol Chem 291:8241–8250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ji HH, Zhang HM, Shen M, Yao LL, Li XD (2015) The motor function of Drosophila melanogaster myosin-5 is activated by calcium and cargo-binding protein dRab11. Biochem J 469:135–144

    Article  CAS  PubMed  Google Scholar 

  33. Donovan KW, Bretscher A (2015) Head-to-tail regulation is critical for the in vivo function of myosin V. J Cell Biol 209:359–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pfeffer SR (2013) Rab GTPase regulation of membrane identity. Curr Opin Cell Biol 25:414–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lindsay AJ, Jollivet F, Horgan CP, Khan AR, Raposo G, McCaffrey MW, Goud B (2013) Identification and characterization of multiple novel Rab-myosin Va interactions. Mol Biol Cell 24:3420–3434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Geething NC, Spudich JA (2007) Identification of a minimal myosin Va binding site within an intrinsically unstructured domain of melanophilin. J Biol Chem 282:21518–21528

    Article  CAS  PubMed  Google Scholar 

  37. Wu XS, Rao K, Zhang H, Wang F, Sellers JR, Matesic LE, Copeland NG, Jenkins NA, Hammer JA 3rd (2002) Identification of an organelle receptor for myosin-Va. Nat Cell Biol 4:271–278

    Article  CAS  PubMed  Google Scholar 

  38. Fukuda M, Itoh T (2004) Slac2-a/melanophilin contains multiple PEST-like sequences that are highly sensitive to proteolysis. J Biol Chem 279:22314–22321

    Article  CAS  PubMed  Google Scholar 

  39. Wu X, Bowers B, Rao K, Wei Q, Hammer JAR (1998) Visualization of melanosome dynamics within wild-type and dilute melanocytes suggests a paradigm for myosin V function in vivo. J Cell Biol 143:1899–1918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hume AN, Collinson LM, Hopkins CR, Strom M, Barral DC, Bossi G, Griffiths GM, Seabra MC (2002) The leaden gene product is required with Rab27a to recruit myosin Va to melanosomes in melanocytes. Traffic 3:193–202

    Article  CAS  PubMed  Google Scholar 

  41. Strom M, Hume AN, Tarafder AK, Barkagianni E, Seabra MC (2002) A family of Rab27-binding proteins. Melanophilin links Rab27a and myosin Va function in melanosome transport. J Biol Chem 277:25423–25430

    Article  CAS  PubMed  Google Scholar 

  42. Fukuda M, Kuroda TS (2004) Missense mutations in the globular tail of myosin-Va in dilute mice partially impair binding of Slac2-a/melanophilin. J Cell Sci 117:583–591

    Article  CAS  PubMed  Google Scholar 

  43. Nagashima K, Torii S, Yi Z, Igarashi M, Okamoto K, Takeuchi T, Izumi T (2002) Melanophilin directly links Rab27a and myosin Va through its distinct coiled-coil regions. FEBS Lett 517:233–238

    Article  CAS  PubMed  Google Scholar 

  44. Wu X, Wang F, Rao K, Sellers JR, Hammer JA 3rd (2002) Rab27a is an essential component of melanosome receptor for myosin Va. Mol Biol Cell 13:1735–1749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hume AN, Tarafder AK, Ramalho JS, Sviderskaya EV, Seabra MC (2006) A coiled-coil domain of melanophilin is essential for Myosin Va recruitment and melanosome transport in melanocytes. Mol Biol Cell 17:4720–4735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yao LL, Cao QJ, Zhang HM, Zhang J, Cao Y, Li XD (2015) Melanophilin stimulates myosin-5a motor function by allosterically inhibiting the interaction between the head and tail of myosin-5a. Sci Rep 5:10874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pylypenko O, Welz T, Tittel J, Kollmar M, Chardon F, Malherbe G, Weiss S, Michel CI, Samol-Wolf A, Grasskamp AT, Hume A, Goud B, Baron B, England P, Titus MA, Schwille P, Weidemann T, Houdusse A, Kerkhoff E (2016) Coordinated recruitment of Spir actin nucleators and myosin V motors to Rab11 vesicle membranes. Elife 5:e17523

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lise MF, Srivastava DP, Arstikaitis P, Lett RL, Sheta R, Viswanathan V, Penzes P, O’Connor TP, El-Husseini A (2009) Myosin-Va-interacting protein, RILPL2, controls cell shape and neuronal morphogenesis via Rac signaling. J Cell Sci 122:3810–3821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Matsui T, Ohbayashi N, Fukuda M (2012) The Rab interacting lysosomal protein (RILP) homology domain functions as a novel effector domain for small GTPase Rab36: Rab36 regulates retrograde melanosome transport in melanocytes. J Biol Chem 287:28619–28631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wei Z, Liu X, Yu C, Zhang M (2013) Structural basis of cargo recognitions for class V myosins. Proc Natl Acad Sci USA 110:11314–11319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Brozzi F, Diraison F, Lajus S, Rajatileka S, Philips T, Regazzi R, Fukuda M, Verkade P, Molnar E, Varadi A (2012) Molecular mechanism of myosin Va recruitment to dense core secretory granules. Traffic 13:54–69

    Article  CAS  PubMed  Google Scholar 

  52. Pfender S, Kuznetsov V, Pleiser S, Kerkhoff E, Schuh M (2011) Spire-type actin nucleators cooperate with Formin-2 to drive asymmetric oocyte division. Curr Biol 21:955–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schuh M (2011) An actin-dependent mechanism for long-range vesicle transport. Nat Cell Biol 13:1431–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Satoh AK, Li BX, Xia H, Ready DF (2008) Calcium-activated myosin V closes the Drosophila pupil. Curr Biol 18:951–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li BX, Satoh AK, Ready DF (2007) Myosin V, Rab11, and dRip11 direct apical secretion and cellular morphogenesis in developing Drosophila photoreceptors. J Cell Biol 177:659–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pocha SM, Shevchenko A, Knust E (2011) Crumbs regulates rhodopsin transport by interacting with and stabilizing myosin V. J Cell Biol 195:827–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ishikawa K, Catlett NL, Novak JL, Tang F, Nau JJ, Weisman LS (2003) Identification of an organelle-specific myosin V receptor. J Cell Biol 160:887–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Itoh T, Toh EA, Matsui Y (2004) Mmr1p is a mitochondrial factor for Myo2p-dependent inheritance of mitochondria in the budding yeast. EMBO J 23:2520–2530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Itoh T, Watabe A, Toh EA, Matsui Y (2002) Complex formation with Ypt11p, a rab-type small GTPase, is essential to facilitate the function of Myo2p, a class V myosin, in mitochondrial distribution in Saccharomyces cerevisiae. Mol Cell Biol 22:7744–7757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Eves PT, Jin Y, Brunner M, Weisman LS (2012) Overlap of cargo binding sites on myosin V coordinates the inheritance of diverse cargoes. J Cell Biol 198:69–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lipatova Z, Tokarev AA, Jin Y, Mulholland J, Weisman LS, Segev N (2008) Direct interaction between a myosin V motor and the Rab GTPases Ypt31/32 is required for polarized secretion. Mol Biol Cell 19:4177–4187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jin Y, Sultana A, Gandhi P, Franklin E, Hamamoto S, Khan AR, Munson M, Schekman R, Weisman LS (2011) Myosin V transports secretory vesicles via a Rab GTPase cascade and interaction with the exocyst complex. Dev Cell 21:1156–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fagarasanu A, Fagarasanu M, Eitzen GA, Aitchison JD, Rachubinski RA (2006) The peroxisomal membrane protein Inp2p is the peroxisome-specific receptor for the myosin V motor Myo2p of Saccharomyces cerevisiae. Dev Cell 10:587–600

    Article  CAS  PubMed  Google Scholar 

  64. Yin H, Pruyne D, Huffaker TC, Bretscher A (2000) Myosin V orientates the mitotic spindle in yeast. Nature 406:1013–1015

    Article  CAS  PubMed  Google Scholar 

  65. Beach DL, Thibodeaux J, Maddox P, Yeh E, Bloom K (2000) The role of the proteins Kar9 and Myo2 in orienting the mitotic spindle of budding yeast. Curr Biol 10:1497–1506

    Article  CAS  PubMed  Google Scholar 

  66. Knoblach B, Rachubinski RA (2015) Motors, anchors, and connectors: orchestrators of organelle inheritance. Annu Rev Cell Dev Biol 31:55–81

    Article  CAS  PubMed  Google Scholar 

  67. Takizawa PA, Vale RD (2000) The myosin motor, Myo4p, binds Ash1 mRNA via the adapter protein, She3p. Proc Natl Acad Sci USA 97:5273–5278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bohl F, Kruse C, Frank A, Ferring D, Jansen RP (2000) She2p, a novel RNA-binding protein tethers ASH1 mRNA to the Myo4p myosin motor via She3p. EMBO J 19:5514–5524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jambhekar A, Derisi JL (2007) Cis-acting determinants of asymmetric, cytoplasmic RNA transport. RNA 13:625–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jambhekar A, McDermott K, Sorber K, Shepard KA, Vale RD, Takizawa PA, DeRisi JL (2005) Unbiased selection of localization elements reveals cis-acting determinants of mRNA bud localization in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 102:18005–18010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hodges AR, Krementsova EB, Trybus KM (2008) She3p binds to the rod of yeast myosin V and prevents it from dimerizing, forming a single-headed motor complex. J Biol Chem 283:6906–6914

    Article  CAS  PubMed  Google Scholar 

  72. Heym RG, Zimmermann D, Edelmann FT, Israel L, Okten Z, Kovar DR, Niessing D (2013) In vitro reconstitution of an mRNA-transport complex reveals mechanisms of assembly and motor activation. J Cell Biol 203:971–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sladewski TE, Bookwalter CS, Hong MS, Trybus KM (2013) Single-molecule reconstitution of mRNA transport by a class V myosin. Nat Struct Mol Biol 20:952–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Edelmann FT, Schlundt A, Heym RG, Jenner A, Niedner-Boblenz A, Syed MI, Paillart JC, Stehle R, Janowski R, Sattler M, Jansen RP, Niessing D (2017) Molecular architecture and dynamics of ASH1 mRNA recognition by its mRNA-transport complex. Nat Struct Mol Biol 24:152–161

    Article  CAS  PubMed  Google Scholar 

  75. Win TZ, Gachet Y, Mulvihill DP, May KM, Hyams JS (2001) Two type V myosins with non-overlapping functions in the fission yeast Schizosaccharomyces pombe: Myo52 is concerned with growth polarity and cytokinesis, Myo51 is a component of the cytokinetic actin ring. J Cell Sci 114:69–79

    CAS  PubMed  Google Scholar 

  76. Doyle A, Martin-Garcia R, Coulton AT, Bagley S, Mulvihill DP (2009) Fission yeast Myo51 is a meiotic spindle pole body component with discrete roles during cell fusion and spore formation. J Cell Sci 122:4330–4340

    Article  CAS  PubMed  Google Scholar 

  77. Wang N, Lo Presti L, Zhu YH, Kang M, Wu Z, Martin SG, Wu JQ (2014) The novel proteins Rng8 and Rng9 regulate the myosin-V Myo51 during fission yeast cytokinesis. J Cell Biol 205:357–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tang Q, Billington N, Krementsova EB, Bookwalter CS, Lord M, Trybus KM (2016) A single-headed fission yeast myosin V transports actin in a tropomyosin-dependent manner. J Cell Biol 214:167–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Clayton JE, Sammons MR, Stark BC, Hodges AR, Lord M (2010) Differential regulation of unconventional fission yeast myosins via the actin track. Curr Biol 20:1423–1431

    Article  CAS  PubMed  Google Scholar 

  80. Coureux PD, Wells AL, Menetrey J, Yengo CM, Morris CA, Sweeney HL, Houdusse A (2003) A structural state of the myosin V motor without bound nucleotide. Nature 425:419–423

    Article  CAS  PubMed  Google Scholar 

  81. Coureux PD, Sweeney HL, Houdusse A (2004) Three myosin V structures delineate essential features of chemo-mechanical transduction. EMBO J 23:4527–4537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shen M, Zhang N, Zheng S, Zhang WB, Zhang HM, Lu Z, Su QP, Sun Y, Ye K, Li XD (2016) Calmodulin in complex with the first IQ motif of myosin-5a functions as an intact calcium sensor. Proc Natl Acad Sci USA 113:E5812–E5820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wulf SF, Ropars V, Fujita-Becker S, Oster M, Hofhaus G, Trabuco LG, Pylypenko O, Sweeney HL, Houdusse AM, Schroder RR (2016) Force-producing ADP state of myosin bound to actin. Proc Natl Acad Sci USA 113:E1844–E1852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Terrak M, Wu G, Stafford WF, Lu RC, Dominguez R (2003) Two distinct myosin light chain structures are induced by specific variations within the bound IQ motifs-functional implications. EMBO J 22:362–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Terrak M, Rebowski G, Lu RC, Grabarek Z, Dominguez R (2005) Structure of the light chain-binding domain of myosin V. Proc Natl Acad Sci USA 102:12718–12723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Houdusse A, Gaucher JF, Krementsova E, Mui S, Trybus KM, Cohen C (2006) Crystal structure of apo-calmodulin bound to the first two IQ motifs of myosin V reveals essential recognition features. Proc Natl Acad Sci USA 103:19326–19331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pashkova N, Jin Y, Ramaswamy S, Weisman LS (2006) Structural basis for myosin V discrimination between distinct cargoes. EMBO J 25:693–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Heuck A, Du TG, Jellbauer S, Richter K, Kruse C, Jaklin S, Muller M, Buchner J, Jansen RP, Niessing D (2007) Monomeric myosin V uses two binding regions for the assembly of stable translocation complexes. Proc Natl Acad Sci USA 104:19778–19783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nascimento AF, Trindade DM, Tonoli CC, de Giuseppe PO, Assis LH, Honorato RV, de Oliveira PS, Mahajan P, Burgess-Brown NA, von Delft F, Larson RE, Murakami MT (2013) Structural insights into functional overlapping and differentiation among myosin V motors. J Biol Chem 288:34131–34145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Velvarska H, Niessing D (2013) Structural insights into the globular tails of the human type v myosins Myo5a, Myo5b, And Myo5c. PLoS One 8:e82065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Pylypenko O, Attanda W, Gauquelin C, Lahmani M, Coulibaly D, Baron B, Hoos S, Titus MA, England P, Houdusse AM (2013) Structural basis of myosin V Rab GTPase-dependent cargo recognition. Proc Natl Acad Sci USA 110:20443–20448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Heuck A, Fetka I, Brewer DN, Huls D, Munson M, Jansen RP, Niessing D (2010) The structure of the Myo4p globular tail and its function in ASH1 mRNA localization. J Cell Biol 189:497–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lu Z, Shen M, Cao Y, Zhang HM, Yao LL, Li XD (2012) Calmodulin bound to the first IQ motif is responsible for calcium-dependent regulation of myosin 5a. J Biol Chem 287:16530–16540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang WB, Yao LL, Li XD (2016) The globular tail domain of myosin-5a functions as a dimer in regulating the motor activity. J Biol Chem 291:13571–13579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sckolnick M, Krementsova EB, Warshaw DM, Trybus KM (2013) More than just a cargo adapter, melanophilin prolongs and slows processive runs of myosin Va. J Biol Chem 288:29313–29322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wu X, Sakamoto T, Zhang F, Sellers JR, Hammer JA 3rd (2006) In vitro reconstitution of a transport complex containing Rab27a, melanophilin and myosin Va. FEBS Lett 580:5863–5868

    Article  CAS  PubMed  Google Scholar 

  97. Nascimento AA, Cheney RE, Tauhata SB, Larson RE, Mooseker MS (1996) Enzymatic characterization and functional domain mapping of brain myosin-V. J Biol Chem 271:17561–17569

    Article  CAS  PubMed  Google Scholar 

  98. Homma K, Saito J, Ikebe R, Ikebe M (2000) Ca(2+)-dependent regulation of the motor activity of myosin V. J Biol Chem 275:34766–34771

    Article  CAS  PubMed  Google Scholar 

  99. Trybus KM, Krementsova E, Freyzon Y (1999) Kinetic characterization of a monomeric unconventional myosin V construct. J Biol Chem 274:27448–27456

    Article  CAS  PubMed  Google Scholar 

  100. Koide H, Kinoshita T, Tanaka Y, Tanaka S, Nagura N, Meyer zu Horste G, Miyagi A, Ando T (2006) Identification of the single specific IQ motif of myosin V from which calmodulin dissociates in the presence of Ca2+. Biochemistry 45:11598–11604

    Article  CAS  PubMed  Google Scholar 

  101. Trybus KM, Gushchin MI, Lui H, Hazelwood L, Krementsova EB, Volkmann N, Hanein D (2007) Effect of calcium on calmodulin bound to the IQ motifs of myosin V. J Biol Chem 282:23316–23325

    Article  CAS  PubMed  Google Scholar 

  102. Martin SR, Bayley PM (2004) Calmodulin bridging of IQ motifs in myosin-V. FEBS Lett 567:166–170

    Article  CAS  PubMed  Google Scholar 

  103. Nguyen H, Higuchi H (2005) Motility of myosin V regulated by the dissociation of single calmodulin. Nat Struct Mol Biol 12:127–132

    Article  CAS  PubMed  Google Scholar 

  104. Sato O, Li XD, Ikebe M (2007) Myosin va becomes a low duty ratio motor in the inhibited form. J Biol Chem 282:13228–13239

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (2013CB932802) and the National Natural Science Foundation of China (31470791 and 31171367).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-dong Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest with the contents of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Yao, LL. & Li, Xd. Regulation of class V myosin. Cell. Mol. Life Sci. 75, 261–273 (2018). https://doi.org/10.1007/s00018-017-2599-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2599-5

Keywords

Navigation