Skip to main content
Log in

Persistent coxsackievirus B4 infection induces microRNA dysregulation in human pancreatic cells

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Enterovirus infections are implicated in the development of type 1 diabetes (T1D). MicroRNAs as regulators of gene expression are involved in many physiological and pathological processes. Given that viral infections dysregulate cellular microRNAs, we investigated the impact of persistent coxsackievirus B4 infection on microRNA expression of human pancreatic cells. Next-generation sequencing was used to determine microRNA expression in PANC-1 cells persistently infected (for several weeks) with coxsackievirus B4 and uninfected control cells. Target prediction restricted to T1D risk genes was performed with miRWalk2.0. Functional annotation analysis was performed with DAVID6.7. Expression of selected microRNAs and T1D risk genes was measured by quantitative reverse-transcription polymerase chain reaction. Eighty-one microRNAs were dysregulated in persistently infected PANC-1 cells. Forty-nine of the known fifty-five T1D risk genes were predicted as putative targets of at least one of the dysregulated microRNAs. Most functional annotation terms that were enriched in these 49 putative target genes were related to the immune response or autoimmunity. mRNA levels of AFF3, BACH2, and IL7R differed significantly between persistently infected cells and uninfected cells. This is the first characterization of the microRNA expression profile changes induced by persistent coxsackievirus B4 infection in pancreatic cells. The predicted targeting of genes involved in the immune response and autoimmunity by the dysregulated microRNAs as well as the dysregulated expression of diabetes risk genes shows that persistent coxsackievirus B4 infection profoundly impacts the host cell. These data support the hypothesis of a possible link between persistent coxsackievirus B4 infection and the development of T1D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CVB:

Type B coxsackieviruses

CVB4:

Coxsackievirus B4

Ct:

Cycle threshold

FCS:

Fetal calf serum

miRNA:

MicroRNA

T1D:

Type 1 diabetes

References

  1. Hober D, Sauter P (2010) Pathogenesis of type 1 diabetes mellitus: interplay between enterovirus and host. Nat Rev Endocrinol 6(5):279–289. doi:10.1038/nrendo.2010.27

    Article  PubMed  Google Scholar 

  2. Yeung WC, Rawlinson WD, Craig ME (2011) Enterovirus infection and type 1 diabetes mellitus: systematic review and meta-analysis of observational molecular studies. BMJ 342:d35. doi:10.1136/bmj.d35

    Article  PubMed  PubMed Central  Google Scholar 

  3. Alidjinou EK, Sane F, Engelmann I, Geenen V, Hober D (2014) Enterovirus persistence as a mechanism in the pathogenesis of type 1 diabetes. Discov Med 18(100):273–282

    PubMed  Google Scholar 

  4. Dotta F, Censini S, van Halteren AG, Marselli L, Masini M, Dionisi S, Mosca F, Boggi U, Muda AO, Prato SD, Elliott JF, Covacci A, Rappuoli R, Roep BO, Marchetti P (2007) Coxsackie B4 virus infection of beta cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proc Natl Acad Sci USA 104(12):5115–5120. doi:10.1073/pnas.0700442104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hober D, Sane F (2010) Enteroviral pathogenesis of type 1 diabetes. Discov Med 10(51):151–160

    PubMed  Google Scholar 

  6. Jaidane H, Sauter P, Sane F, Goffard A, Gharbi J, Hober D (2010) Enteroviruses and type 1 diabetes: towards a better understanding of the relationship. Rev Med Virol 20(5):265–280. doi:10.1002/rmv.647

    Article  CAS  PubMed  Google Scholar 

  7. Pinkert S, Klingel K, Lindig V, Dorner A, Zeichhardt H, Spiller OB, Fechner H (2011) Virus-host coevolution in a persistently coxsackievirus B3-infected cardiomyocyte cell line. J Virol 85(24):13409–13419. doi:10.1128/JVI.00621-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sane F, Caloone D, Gmyr V, Engelmann I, Belaich S, Kerr-Conte J, Pattou F, Desailloud R, Hober D (2013) Coxsackievirus B4 can infect human pancreas ductal cells and persist in ductal-like cell cultures which results in inhibition of Pdx1 expression and disturbed formation of islet-like cell aggregates. Cell Mol Life Sci 70(21):4169–4180. doi:10.1007/s00018-013-1383-4

    Article  CAS  PubMed  Google Scholar 

  9. Fernandez-Valverde SL, Taft RJ, Mattick JS (2011) MicroRNAs in beta-cell biology, insulin resistance, diabetes and its complications. Diabetes 60(7):1825–1831. doi:10.2337/db11-0171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233. doi:10.1016/j.cell.2009.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Filios SR, Shalev A (2015) Beta-cell microRNAs: small but powerful. Diabetes 64(11):3631–3644. doi:10.2337/db15-0831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sayed D, Abdellatif M (2011) MicroRNAs in development and disease. Physiol Rev 91(3):827–887. doi:10.1152/physrev.00006.2010

    Article  CAS  PubMed  Google Scholar 

  13. Ho BC, Yu SL, Chen JJ, Chang SY, Yan BS, Hong QS, Singh S, Kao CL, Chen HY, Su KY, Li KC, Cheng CL, Cheng HW, Lee JY, Lee CN, Yang PC (2011) Enterovirus-induced miR-141 contributes to shutoff of host protein translation by targeting the translation initiation factor eIF4E. Cell Host Microbe 9(1):58–69. doi:10.1016/j.chom.2010.12.001

    Article  CAS  PubMed  Google Scholar 

  14. Tong L, Lin L, Wu S, Guo Z, Wang T, Qin Y, Wang R, Zhong X, Wu X, Wang Y, Luan T, Wang Q, Li Y, Chen X, Zhang F, Zhao W, Zhong Z (2013) MiR-10a* up-regulates coxsackievirus B3 biosynthesis by targeting the 3D-coding sequence. Nucleic Acids Res 41(6):3760–3771. doi:10.1093/nar/gkt058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wen BP, Dai HJ, Yang YH, Zhuang Y, Sheng R (2013) MicroRNA-23b inhibits enterovirus 71 replication through downregulation of EV71 VPl protein. Intervirology 56(3):195–200. doi:10.1159/000348504

    Article  CAS  PubMed  Google Scholar 

  16. Kim KW, Ho A, Alshabee-Akil A, Hardikar AA, Kay TW, Rawlinson WD, Craig ME (2016) Coxsackievirus B5 infection induces dysregulation of microRNAs predicted to target known type 1 diabetes risk genes in human pancreatic islets. Diabetes 65(4):996–1003. doi:10.2337/db15-0956

    Article  CAS  PubMed  Google Scholar 

  17. Alidjinou EK, Engelmann I, Bossu J, Villenet C, Figeac M, Romond MB, Sane F, Hober D (2017) Persistence of coxsackievirus B4 in pancreatic ductal-like cells results in cellular and viral changes. Virulence. doi:10.1080/21505594.2017.1284735

    PubMed  Google Scholar 

  18. Yoon JW, Austin M, Onodera T, Notkins AL (1979) Isolation of a virus from the pancreas of a child with diabetic ketoacidosis. N Engl J Med 300(21):1173–1179. doi:10.1056/NEJM197905243002102

    Article  CAS  PubMed  Google Scholar 

  19. Chen CJ, Servant N, Toedling J, Sarazin A, Marchais A, Duvernois-Berthet E, Cognat V, Colot V, Voinnet O, Heard E, Ciaudo C, Barillot E (2012) ncPRO-seq: a tool for annotation and profiling of ncRNAs in sRNA-seq data. Bioinformatics 28(23):3147–3149. doi:10.1093/bioinformatics/bts587

    Article  CAS  PubMed  Google Scholar 

  20. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550. doi:10.1186/s13059-014-0550-8

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dweep H, Gretz N, Sticht C (2014) miRWalk database for miRNA-target interactions. Methods Mol Biol 1182:289–305. doi:10.1007/978-1-4939-1062-5_25

    Article  PubMed  Google Scholar 

  23. Burren OS, Adlem EC, Achuthan P, Christensen M, Coulson RM, Todd JA (2011) T1DBase: update 2011, organization and presentation of large-scale data sets for type 1 diabetes research. Nucleic Acids Res 39(Database issue)):D997–D1001. doi:10.1093/nar/gkq912

    Article  CAS  PubMed  Google Scholar 

  24. Huang DW, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J, Stephens R, Baseler MW, Lane HC, Lempicki RA (2007) The DAVID gene functional classification tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol 8(9):R183. doi:10.1186/gb-2007-8-9-r183

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang Q, Xiao Z, He F, Zou J, Wu S, Liu Z (2013) MicroRNAs regulate the pathogenesis of CVB3-induced viral myocarditis. Intervirology 56(2):104–113. doi:10.1159/000343750

    Article  CAS  PubMed  Google Scholar 

  26. da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57. doi:10.1038/nprot.2008.211

    Article  CAS  Google Scholar 

  27. Kalis M, Bolmeson C, Esguerra JL, Gupta S, Edlund A, Tormo-Badia N, Speidel D, Holmberg D, Mayans S, Khoo NK, Wendt A, Eliasson L, Cilio CM (2011) Beta-cell specific deletion of Dicer1 leads to defective insulin secretion and diabetes mellitus. PLoS One 6(12):e29166. doi:10.1371/journal.pone.0029166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lynn FC, Skewes-Cox P, Kosaka Y, McManus MT, Harfe BD, German MS (2007) MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes 56(12):2938–2945. doi:10.2337/db07-0175

    Article  CAS  PubMed  Google Scholar 

  29. Isaacs SR, Wang J, Kim KW, Yin C, Zhou L, Mi QS, Craig ME (2016) MicroRNAs in type 1 diabetes: complex interregulation of the immune system, beta cell function and viral infections. Curr Diabetes Rep 16(12):133. doi:10.1007/s11892-016-0819-2

    Article  Google Scholar 

  30. Lam WY, Cheung AC, Tung CK, Yeung AC, Ngai KL, Lui VW, Chan PK, Tsui SK (2015) miR-466 is putative negative regulator of coxsackie virus and adenovirus receptor. FEBS Lett 589(2):246–254. doi:10.1016/j.febslet.2014.12.006

    Article  CAS  PubMed  Google Scholar 

  31. Mestdagh P, Hartmann N, Baeriswyl L, Andreasen D, Bernard N, Chen C, Cheo D, D’Andrade P, DeMayo M, Dennis L, Derveaux S, Feng Y, Fulmer-Smentek S, Gerstmayer B, Gouffon J, Grimley C, Lader E, Lee KY, Luo S, Mouritzen P, Narayanan A, Patel S, Peiffer S, Ruberg S, Schroth G, Schuster D, Shaffer JM, Shelton EJ, Silveria S, Ulmanella U, Veeramachaneni V, Staedtler F, Peters T, Guettouche T, Wong L, Vandesompele J (2014) Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study. Nat Methods 11(8):809–815. doi:10.1038/nmeth.3014

    Article  CAS  PubMed  Google Scholar 

  32. Kuehl U, Lassner D, Gast M, Stroux A, Rohde M, Siegismund C, Wang X, Escher F, Gross M, Skurk C, Tschoepe C, Loebel M, Scheibenbogen C, Schultheiss HP, Poller W (2015) Differential cardiac microRNA expression predicts the clinical course in human enterovirus cardiomyopathy. Circ Heart Fail 8(3):605–618. doi:10.1161/CIRCHEARTFAILURE.114.001475

    Article  CAS  PubMed  Google Scholar 

  33. Xu G, Chen J, Jing G, Shalev A (2013) Thioredoxin-interacting protein regulates insulin transcription through microRNA-204. Nat Med 19(9):1141–1146. doi:10.1038/nm.3287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Frost RJ, Olson EN (2011) Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs. Proc Natl Acad Sci USA 108(52):21075–21080. doi:10.1073/pnas.1118922109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jeker LT, Zhou X, Gershberg K, de Kouchkovsky D, Morar MM, Stadthagen G, Lund AH, Bluestone JA (2012) MicroRNA 10a marks regulatory T cells. PLoS One 7(5):e36684. doi:10.1371/journal.pone.0036684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sebastiani G, Valentini M, Grieco GE, Ventriglia G, Nigi L, Mancarella F, Pellegrini S, Martino G, Sordi V, Piemonti L, Dotta F (2016) MicroRNA expression profiles of human iPSCs differentiation into insulin-producing cells. Acta Diabetol. doi:10.1007/s00592-016-0955-9

    PubMed  Google Scholar 

  37. Ho BC, Yu IS, Lu LF, Rudensky A, Chen HY, Tsai CW, Chang YL, Wu CT, Chang LY, Shih SR, Lin SW, Lee CN, Yang PC, Yu SL (2014) Inhibition of miR-146a prevents enterovirus-induced death by restoring the production of type I interferon. Nat Commun 5:3344. doi:10.1038/ncomms4344

    PubMed  Google Scholar 

  38. Roggli E, Britan A, Gattesco S, Lin-Marq N, Abderrahmani A, Meda P, Regazzi R (2010) Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes 59(4):978–986. doi:10.2337/db09-0881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Taganov KD, Boldin MP, Chang KJ, Baltimore D (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 103(33):12481–12486. doi:10.1073/pnas.0605298103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lovis P, Roggli E, Laybutt DR, Gattesco S, Yang JY, Widmann C, Abderrahmani A, Regazzi R (2008) Alterations in microRNA expression contribute to fatty acid-induced pancreatic beta-cell dysfunction. Diabetes 57(10):2728–2736. doi:10.2337/db07-1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Seyhan AA, Nunez Lopez YO, Xie H, Yi F, Mathews C, Pasarica M, Pratley RE (2016) Pancreas-enriched miRNAs are altered in the circulation of subjects with diabetes: a pilot cross-sectional study. Sci Rep 6:31479. doi:10.1038/srep31479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355. doi:10.1038/nature02871

    Article  CAS  PubMed  Google Scholar 

  43. Richer MJ, Lang ML, Butler NS (2016) T cell fates zipped up: how the Bach2 basic leucine zipper transcriptional repressor directs T cell differentiation and function. J Immunol 197(4):1009–1015. doi:10.4049/jimmunol.1600847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Marroqui L, Santin I, Dos Santos RS, Marselli L, Marchetti P, Eizirik DL (2014) BACH2, a candidate risk gene for type 1 diabetes, regulates apoptosis in pancreatic beta-cells via JNK1 modulation and crosstalk with the candidate gene PTPN2. Diabetes 63(7):2516–2527. doi:10.2337/db13-1443

    Article  PubMed  Google Scholar 

  45. Ma C, Staudt LM (1996) LAF-4 encodes a lymphoid nuclear protein with transactivation potential that is homologous to AF-4, the gene fused to MLL in t(4;11) leukemias. Blood 87(2):734–745

    CAS  PubMed  Google Scholar 

  46. Wallace C, Rotival M, Cooper JD, Rice CM, Yang JH, McNeill M, Smyth DJ, Niblett D, Cambien F, Tiret L, Todd JA, Clayton DG, Blankenberg S (2012) Statistical colocalization of monocyte gene expression and genetic risk variants for type 1 diabetes. Hum Mol Genet 21(12):2815–2824. doi:10.1093/hmg/dds098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Weber F, Fontaine B, Cournu-Rebeix I, Kroner A, Knop M, Lutz S, Muller-Sarnowski F, Uhr M, Bettecken T, Kohli M, Ripke S, Ising M, Rieckmann P, Brassat D, Semana G, Babron MC, Mrejen S, Gout C, Lyon-Caen O, Yaouanq J, Edan G, Clanet M, Holsboer F, Clerget-Darpoux F, Muller-Myhsok B (2008) IL2RA and IL7RA genes confer susceptibility for multiple sclerosis in two independent European populations. Genes Immun 9(3):259–263. doi:10.1038/gene.2008.14

    Article  CAS  PubMed  Google Scholar 

  48. Mazzucchelli RI, Riva A, Durum SK (2012) The human IL-7 receptor gene: deletions, polymorphisms and mutations. Semin Immunol 24(3):225–230. doi:10.1016/j.smim.2012.02.007

    Article  CAS  PubMed  Google Scholar 

  49. Palmer MJ, Mahajan VS, Trajman LC, Irvine DJ, Lauffenburger DA, Chen J (2008) Interleukin-7 receptor signaling network: an integrated systems perspective. Cell Mol Immunol 5(2):79–89. doi:10.1038/cmi.2008.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Penaranda C, Kuswanto W, Hofmann J, Kenefeck R, Narendran P, Walker LS, Bluestone JA, Abbas AK, Dooms H (2012) IL-7 receptor blockade reverses autoimmune diabetes by promoting inhibition of effector/memory T cells. Proc Natl Acad Sci USA 109(31):12668–12673. doi:10.1073/pnas.1203692109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Monti P, Brigatti C, Krasmann M, Ziegler AG, Bonifacio E (2013) Concentration and activity of the soluble form of the interleukin-7 receptor alpha in type 1 diabetes identifies an interplay between hyperglycemia and immune function. Diabetes 62(7):2500–2508. doi:10.2337/db12-1726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen X, Liang H, Zhang J, Zen K, Zhang CY (2012) Horizontal transfer of microRNAs: molecular mechanisms and clinical applications. Protein Cell 3(1):28–37. doi:10.1007/s13238-012-2003-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yu X, Odenthal M, Fries JW (2016) Exosomes as miRNA carriers: formation-function-future. Int J Mol Sci. doi:10.3390/ijms17122028

    Google Scholar 

Download references

Acknowledgements

This work was supported by Ministère de l’Education Nationale, de l’Enseignement Supérieur et de la Recherche, Université Lille 2 (Equipe d’accueil 3610) and Centre Hospitalier Régional et Universitaire de Lille, and by EU FP7 (GA-261441-PEVNET): Persistent virus infection as a cause of pathogenic inflammation in type 1 diabetes—an innovative research program of biobanks and expertise).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Hober.

Ethics declarations

Conflict of interest

The authors declare that no conflict of interest exists.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Engelmann, I., Alidjinou, E.K., Bertin, A. et al. Persistent coxsackievirus B4 infection induces microRNA dysregulation in human pancreatic cells. Cell. Mol. Life Sci. 74, 3851–3861 (2017). https://doi.org/10.1007/s00018-017-2567-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2567-0

Keywords

Navigation