Skip to main content

Advertisement

Log in

The emerging link between O-GlcNAcylation and neurological disorders

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) is involved in the regulation of many cellular cascades and neurological diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and stroke. In the brain, the expression of O-GlcNAcylation is notably heightened, as is that of O-linked N-acetylglucosaminyltransferase (OGT) and β-N-acetylglucosaminidase (OGA), the presence of which is prominent in many regions of neurological importance. Most importantly, O-GlcNAcylation is believed to contribute to the normal functioning of neurons; conversely, its dysregulation participates in the pathogenesis of neurological disorders. In neurodegenerative diseases, O-GlcNAcylation of the brain’s key proteins, such as tau and amyloid-β, interacts with their phosphorylation, thereby triggering the formation of neurofibrillary tangles and amyloid plaques. An increase of O-GlcNAcylation by pharmacological intervention prevents neuronal loss. Additionally, O-GlcNAcylation is stress sensitive, and its elevation is cytoprotective. Increased O-GlcNAcylation ameliorated brain damage in victims of both trauma-hemorrhage and stroke. In this review, we summarize the current understanding of O-GlcNAcylation’s physiological and pathological roles in the nervous system and provide a foundation for development of a therapeutic strategy for neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Aβ:

β-Amyloid peptide

AD:

Alzheimer’s disease

ALS:

Amyotrophic lateral sclerosis

AICD:

Amyloid precursor protein intracellular domain

APP:

Amyloid precursor protein

Bad:

BCL2-associated agonist of cell death

BAX:

BCL2 associated X

BEMAD:

Michael addition with dithiothreitol

CDK5:

Cyclin-dependent kinase 5

CSF:

Cerebral spinal fluid

eNOS:

Endothelial nitric oxide synthase

ETD:

Electron-transfer dissociation

GalT:

β1-4-Galactosyltransferase

GFAT:

l-Glutamine:fructose-6-phosphate amidotransferase

GlcN:

Glucosamine

HAT:

Histone acetyltransferase

HBP:

Hexosamine biosynthetic pathway

HD:

Huntington’s disease

ICH:

Intracerebral hemorrhage

LC:

Liquid chromatography

IKK:

Inhibitor of nuclear factor κB kinase

IκB:

Inhibitor of nuclear factor κB

I/R:

Ischemia/reperfusion

MAP:

Microtubule-associated protein

MGEA5:

Meningioma expressed antigen 5

mOGT:

Mitochondrial OGT

MS:

Mass spectrometry

NButGT:

1,2-Dideoxy-2′-propyl-alpha-d-glucopyranoso-[2,1-d]-Delta 2′-thiazoline

ncOGA:

Nuclear and cytoplasmic OGA

ncOGT:

Nucleocytoplasmic OGT

NFTs:

Neurofibrillary tangles

NLS:

Nuclear localization signal

NO:

Nitric oxide

OGA:

β-N-Acetylglucosaminidase

nNOS:

Neuronal nitric oxide synthase

O-GlcNAcylation:

O-linked β-N-acetylglucosaminylation

OGT:

O-linked N-acetylglucosaminyltransferase

PD:

Parkinson’s disease

PKAcs:

Protein kinase A catalytic subunit

PFK1:

Phosphofructokinase 1

PHFs:

Paired helical filaments

PUGNAc:

O-(2-Acetamido-2-deoxy-d-glucopyranosylidene) amino-N-phenylcarbamate

RPLC:

Reversed-phase liquid chromatography

sAPPβ:

Soluble amyloid precursor protein β

SOD1:

Superoxide dismutase 1

sOGA:

Short-form OGA

sOGT:

Short OGT

Stat:

Signal transducer and activator of transcription

TPR:

Tetratricopeptide

YY1:

Yin Yang 1

References

  1. Torres CR, Hart GW (1984) Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J Biol Chem 259(5):3308–3317

    CAS  PubMed  Google Scholar 

  2. Holt GD, Hart GW (1986) The subcellular distribution of terminal N-acetylglucosamine moieties. Localization of a novel protein-saccharide linkage, O-linked GlcNAc. J Biol Chem 261(17):8049–8057

    CAS  PubMed  Google Scholar 

  3. Haltiwanger RS, Holt GD, Hart GW (1990) Enzymatic addition of O-GlcNAc to nuclear and cytoplasmic proteins. Identification of a uridine diphospho-N-acetylglucosamine:peptide beta-N-acetylglucosaminyltransferase. J Biol Chem 265(5):2563–2568

    CAS  PubMed  Google Scholar 

  4. Hart GW, Housley MP, Slawson C (2007) Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446(7139):1017–1022. doi:10.1038/nature05815

    Article  CAS  PubMed  Google Scholar 

  5. Comer FI, Hart GW (2001) Reciprocity between O-GlcNAc and O-phosphate on the carboxyl terminal domain of RNA polymerase II. Biochemistry 40(26):7845–7852

    Article  CAS  PubMed  Google Scholar 

  6. Groves JA, Lee A, Yildirir G, Zachara NE (2013) Dynamic O-GlcNAcylation and its roles in the cellular stress response and homeostasis. Cell Stress Chaperones 18(5):535–558. doi:10.1007/s12192-013-0426-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Harwood KR, Hanover JA (2014) Nutrient-driven O-GlcNAc cycling - think globally but act locally. J Cell Sci 127(Pt 9):1857–1867. doi:10.1242/jcs.113233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vaidyanathan K, Durning S, Wells L (2014) Functional O-GlcNAc modifications: implications in molecular regulation and pathophysiology. Crit Rev Biochem Mol Biol 49(2):140–163. doi:10.3109/10409238.2014.884535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hart GW, Greis KD, Dong LY, Blomberg MA, Chou TY, Jiang MS, Roquemore EP, Snow DM, Kreppel LK, Cole RN et al (1995) O-linked N-acetylglucosamine: the “yin-yang” of Ser/Thr phosphorylation? Nuclear and cytoplasmic glycosylation. Adv Exp Med Biol 376:115–123

    Article  CAS  PubMed  Google Scholar 

  10. Hu P, Shimoji S, Hart GW (2010) Site-specific interplay between O-GlcNAcylation and phosphorylation in cellular regulation. FEBS Lett 584(12):2526–2538. doi:10.1016/j.febslet.2010.04.044

    Article  CAS  PubMed  Google Scholar 

  11. Guinez C, Mir AM, Dehennaut V, Cacan R, Harduin-Lepers A, Michalski JC, Lefebvre T (2008) Protein ubiquitination is modulated by O-GlcNAc glycosylation. FASEB J 22(8):2901–2911. doi:10.1096/fj.07-102509

    Article  CAS  PubMed  Google Scholar 

  12. Sakabe K, Wang Z, Hart GW (2010) Beta-N-acetylglucosamine (O-GlcNAc) is part of the histone code. Proc Natl Acad Sci USA 107(46):19915–19920. doi:10.1073/pnas.1009023107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lu L, Fan D, Hu CW, Worth M, Ma ZX, Jiang J (2016) Distributive O-GlcNAcylation on the highly repetitive C-terminal domain of RNA polymerase II. Biochemistry 55(7):1149–1158. doi:10.1021/acs.biochem.5b01280

    Article  CAS  PubMed  Google Scholar 

  14. Marshall S, Bacote V, Traxinger RR (1991) Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J Biol Chem 266(8):4706–4712

    CAS  PubMed  Google Scholar 

  15. Slawson C, Copeland RJ, Hart GW (2010) O-GlcNAc signaling: a metabolic link between diabetes and cancer? Trends Biochem Sci 35(10):547–555. doi:10.1016/j.tibs.2010.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Banerjee PS, Hart GW, Cho JW (2013) Chemical approaches to study O-GlcNAcylation. Chem Soc Rev 42(10):4345–4357. doi:10.1039/c2cs35412h

    Article  CAS  PubMed  Google Scholar 

  17. Martinez MR, Dias TB, Natov PS, Zachara NE (2017) Stress-induced O-GlcNAcylation: an adaptive process of injured cells. Biochem Soc Trans 45(1):237–249. doi:10.1042/bst20160153

    Article  CAS  PubMed  Google Scholar 

  18. Zachara NE, O’Donnell N, Cheung WD, Mercer JJ, Marth JD, Hart GW (2004) Dynamic O-GlcNAc modification of nucleocytoplasmic proteins in response to stress. A survival response of mammalian cells. J Biol Chem 279(29):30133–30142. doi:10.1074/jbc.M403773200

    Article  CAS  PubMed  Google Scholar 

  19. Nagel AK, Ball LE (2015) Intracellular protein O-GlcNAc modification integrates nutrient status with transcriptional and metabolic regulation. Adv Cancer Res 126:137–166. doi:10.1016/bs.acr.2014.12.003

    Article  PubMed  Google Scholar 

  20. Comer FI, Vosseller K, Wells L, Accavitti MA, Hart GW (2001) Characterization of a mouse monoclonal antibody specific for O-linked N-acetylglucosamine. Anal Biochem 293(2):169–177. doi:10.1006/abio.2001.5132

    Article  CAS  PubMed  Google Scholar 

  21. Kamemura K, Hayes BK, Comer FI, Hart GW (2002) Dynamic interplay between O-glycosylation and O-phosphorylation of nucleocytoplasmic proteins: alternative glycosylation/phosphorylation of THR-58, a known mutational hot spot of c-Myc in lymphomas, is regulated by mitogens. J Biol Chem 277(21):19229–19235. doi:10.1074/jbc.M201729200

    Article  CAS  PubMed  Google Scholar 

  22. Ludemann N, Clement A, Hans V, Leschik J, Behl C, Brandt R (2005) O-glycosylation of the tail domain of neurofilament protein M in human neurons and in spinal cord tissue of a rat model of amyotrophic lateral sclerosis (ALS). J Biol Chem 280(36):31648–31658. doi:10.1074/jbc.M504395200

    Article  PubMed  CAS  Google Scholar 

  23. Fujiki R, Hashiba W, Sekine H, Yokoyama A, Chikanishi T, Ito S, Imai Y, Kim J, He HH, Igarashi K, Kanno J, Ohtake F, Kitagawa H, Roeder RG, Brown M, Kato S (2011) GlcNAcylation of histone H2B facilitates its monoubiquitination. Nature 480(7378):557–560. doi:10.1038/nature10656

    CAS  PubMed  Google Scholar 

  24. Cameron A, Giacomozzi B, Joyce J, Gray A, Graham D, Ousson S, Neny M, Beher D, Carlson G, O’Moore J, Shearman M, Hering H (2013) Generation and characterization of a rabbit monoclonal antibody site-specific for tau O-GlcNAcylated at serine 400. FEBS Lett 587(22):3722–3728. doi:10.1016/j.febslet.2013.09.042

    Article  CAS  PubMed  Google Scholar 

  25. Holt GD, Snow CM, Senior A, Haltiwanger RS, Gerace L, Hart GW (1987) Nuclear pore complex glycoproteins contain cytoplasmically disposed O-linked N-acetylglucosamine. J Cell Biol 104(5):1157–1164

    Article  CAS  PubMed  Google Scholar 

  26. Snow CM, Senior A, Gerace L (1987) Monoclonal antibodies identify a group of nuclear pore complex glycoproteins. J Cell Biol 104(5):1143–1156

    Article  CAS  PubMed  Google Scholar 

  27. Swamy M, Pathak S, Grzes KM, Damerow S, Sinclair LV, van Aalten DM, Cantrell DA (2016) Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy. Nat Immunol 17(6):712–720. doi:10.1038/ni.3439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Khidekel N, Ficarro SB, Peters EC, Hsieh-Wilson LC (2004) Exploring the O-GlcNAc proteome: direct identification of O-GlcNAc-modified proteins from the brain. Proc Natl Acad Sci USA 101(36):13132–13137. doi:10.1073/pnas.0403471101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhao P, Viner R, Teo CF, Boons GJ, Horn D, Wells L (2011) Combining high-energy C-trap dissociation and electron transfer dissociation for protein O-GlcNAc modification site assignment. J Proteome Res 10(9):4088–4104. doi:10.1021/pr2002726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Myers SA, Panning B, Burlingame AL (2011) Polycomb repressive complex 2 is necessary for the normal site-specific O-GlcNAc distribution in mouse embryonic stem cells. Proc Natl Acad Sci USA 108(23):9490–9495. doi:10.1073/pnas.1019289108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zaro BW, Yang YY, Hang HC, Pratt MR (2011) Chemical reporters for fluorescent detection and identification of O-GlcNAc-modified proteins reveal glycosylation of the ubiquitin ligase NEDD4-1. Proc Natl Acad Sci USA 108(20):8146–8151. doi:10.1073/pnas.1102458108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wells L, Vosseller K, Cole RN, Cronshaw JM, Matunis MJ, Hart GW (2002) Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Mol Cell Proteom 1(10):791–804

    Article  CAS  Google Scholar 

  33. Khidekel N, Ficarro SB, Clark PM, Bryan MC, Swaney DL, Rexach JE, Sun YE, Coon JJ, Peters EC, Hsieh-Wilson LC (2007) Probing the dynamics of O-GlcNAc glycosylation in the brain using quantitative proteomics. Nat Chem Biol 3(6):339–348. doi:10.1038/nchembio881

    Article  CAS  PubMed  Google Scholar 

  34. Alfaro JF, Gong CX, Monroe ME, Aldrich JT, Clauss TR, Purvine SO, Wang Z, Camp DG 2nd, Shabanowitz J, Stanley P, Hart GW, Hunt DF, Yang F, Smith RD (2012) Tandem mass spectrometry identifies many mouse brain O-GlcNAcylated proteins including EGF domain-specific O-GlcNAc transferase targets. Proc Natl Acad Sci USA 109(19):7280–7285. doi:10.1073/pnas.1200425109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Trinidad JC, Barkan DT, Gulledge BF, Thalhammer A, Sali A, Schoepfer R, Burlingame AL (2012) Global identification and characterization of both O-GlcNAcylation and phosphorylation at the murine synapse. Mol Cell Proteom 11(8):215–229. doi:10.1074/mcp.O112.018366

    Article  CAS  Google Scholar 

  36. Maury JJ, Ng D, Bi X, Bardor M, Choo AB (2014) Multiple reaction monitoring mass spectrometry for the discovery and quantification of O-GlcNAc-modified proteins. Anal Chem 86(1):395–402. doi:10.1021/ac401821d

    Article  CAS  PubMed  Google Scholar 

  37. Wang X, Yuan ZF, Fan J, Karch KR, Ball LE, Denu JM, Garcia BA (2016) A novel quantitative mass spectrometry platform for determining protein O-GlcNAcylation dynamics. Mol Cell Proteom 15(7):2462–2475. doi:10.1074/mcp.O115.049627

    Article  CAS  Google Scholar 

  38. Kazemi Z, Chang H, Haserodt S, McKen C, Zachara NE (2010) O-linked beta-N-acetylglucosamine (O-GlcNAc) regulates stress-induced heat shock protein expression in a GSK-3beta-dependent manner. J Biol Chem 285(50):39096–39107. doi:10.1074/jbc.M110.131102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lim KH, Chang HI (2006) O-linked N-acetylglucosamine suppresses thermal aggregation of Sp1. FEBS Lett 580(19):4645–4652. doi:10.1016/j.febslet.2006.07.040

    Article  CAS  PubMed  Google Scholar 

  40. Olivier-Van Stichelen S, Dehennaut V, Buzy A, Zachayus JL, Guinez C, Mir AM, El Yazidi-Belkoura I, Copin MC, Boureme D, Loyaux D, Ferrara P, Lefebvre T (2014) O-GlcNAcylation stabilizes beta-catenin through direct competition with phosphorylation at threonine 41. FASEB J 28(8):3325–3338. doi:10.1096/fj.13-243535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Du XL, Edelstein D, Dimmeler S, Ju Q, Sui C, Brownlee M (2001) Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Investig 108(9):1341–1348. doi:10.1172/jci11235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Federici M, Menghini R, Mauriello A, Hribal ML, Ferrelli F, Lauro D, Sbraccia P, Spagnoli LG, Sesti G, Lauro R (2002) Insulin-dependent activation of endothelial nitric oxide synthase is impaired by O-linked glycosylation modification of signaling proteins in human coronary endothelial cells. Circulation 106(4):466–472

    Article  CAS  PubMed  Google Scholar 

  43. Yi W, Clark PM, Mason DE, Keenan MC, Hill C, Goddard WA 3rd, Peters EC, Driggers EM, Hsieh-Wilson LC (2012) Phosphofructokinase 1 glycosylation regulates cell growth and metabolism. Science (New York, NY) 337(6097):975–980. doi:10.1126/science.1222278

    Article  CAS  Google Scholar 

  44. Charoensuksai P, Kuhn P, Wang L, Sherer N, Xu W (2015) O-GlcNAcylation of co-activator-associated arginine methyltransferase 1 regulates its protein substrate specificity. Biochem J 466(3):587–599. doi:10.1042/bj20141072

    Article  CAS  PubMed  Google Scholar 

  45. Schindler C, Levy DE, Decker T (2007) JAK-STAT signaling: from interferons to cytokines. J Biol Chem 282(28):20059–20063. doi:10.1074/jbc.R700016200

    Article  CAS  PubMed  Google Scholar 

  46. Gewinner C, Hart G, Zachara N, Cole R, Beisenherz-Huss C, Groner B (2004) The coactivator of transcription CREB-binding protein interacts preferentially with the glycosylated form of Stat5. J Biol Chem 279(5):3563–3572. doi:10.1074/jbc.M306449200

    Article  CAS  PubMed  Google Scholar 

  47. Gordon S, Akopyan G, Garban H, Bonavida B (2006) Transcription factor YY1: structure, function, and therapeutic implications in cancer biology. Oncogene 25(8):1125–1142. doi:10.1038/sj.onc.1209080

    Article  CAS  PubMed  Google Scholar 

  48. Hiromura M, Choi CH, Sabourin NA, Jones H, Bachvarov D, Usheva A (2003) YY1 is regulated by O-linked N-acetylglucosaminylation (O-glcNAcylation). J Biol Chem 278(16):14046–14052. doi:10.1074/jbc.M300789200

    Article  CAS  PubMed  Google Scholar 

  49. Forsythe ME, Love DC, Lazarus BD, Kim EJ, Prinz WA, Ashwell G, Krause MW, Hanover JA (2006) Caenorhabditis elegans ortholog of a diabetes susceptibility locus: oga-1 (O-GlcNAcase) knockout impacts O-GlcNAc cycling, metabolism, and dauer. Proc Natl Acad Sci USA 103(32):11952–11957. doi:10.1073/pnas.0601931103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang Z, Gucek M, Hart GW (2008) Cross-talk between GlcNAcylation and phosphorylation: site-specific phosphorylation dynamics in response to globally elevated O-GlcNAc. Proc Natl Acad Sci USA 105(37):13793–13798. doi:10.1073/pnas.0806216105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Slawson C, Hart GW (2011) O-GlcNAc signalling: implications for cancer cell biology. Nat Rev Cancer 11(9):678–684. doi:10.1038/nrc3114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Love DC (2005) Hanover JA (2005) The hexosamine signaling pathway: deciphering the “O-GlcNAc code”. Science’s STKE 312:re13. doi:10.1126/stke.3122005re13

    Google Scholar 

  53. Kreppel LK, Blomberg MA, Hart GW (1997) Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J Biol Chem 272(14):9308–9315

    Article  CAS  PubMed  Google Scholar 

  54. Gao Y, Wells L, Comer FI, Parker GJ, Hart GW (2001) Dynamic O-glycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic beta-N-acetylglucosaminidase from human brain. J Biol Chem 276(13):9838–9845. doi:10.1074/jbc.M010420200

    Article  CAS  PubMed  Google Scholar 

  55. Nolte D, Muller U (2002) Human O-GlcNAc transferase (OGT): genomic structure, analysis of splice variants, fine mapping in Xq13.1. Mamm Genome 13(1):62–64

    Article  CAS  PubMed  Google Scholar 

  56. Lubas WA, Hanover JA (2000) Functional expression of O-linked GlcNAc transferase. Domain structure and substrate specificity. J Biol Chem 275(15):10983–10988

    Article  CAS  PubMed  Google Scholar 

  57. Blatch GL, Lassle M (1999) The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. BioEssays 21(11):932–939. doi:10.1002/(sici)1521-1878(199911)21:11<932:aid-bies5>3.0.co;2-n

    Article  CAS  PubMed  Google Scholar 

  58. Jinek M, Rehwinkel J, Lazarus BD, Izaurralde E, Hanover JA, Conti E (2004) The superhelical TPR-repeat domain of O-linked GlcNAc transferase exhibits structural similarities to importin alpha. Nat Struct Mol Biol 11(10):1001–1007. doi:10.1038/nsmb833

    Article  CAS  PubMed  Google Scholar 

  59. Whisenhunt TR, Yang X, Bowe DB, Paterson AJ, Van Tine BA, Kudlow JE (2006) Disrupting the enzyme complex regulating O-GlcNAcylation blocks signaling and development. Glycobiology 16(6):551–563. doi:10.1093/glycob/cwj096

    Article  CAS  PubMed  Google Scholar 

  60. Cheung WD, Hart GW (2008) AMP-activated protein kinase and p38 MAPK activate O-GlcNAcylation of neuronal proteins during glucose deprivation. J Biol Chem 283(19):13009–13020. doi:10.1074/jbc.M801222200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yang X, Ongusaha PP, Miles PD, Havstad JC, Zhang F, So WV, Kudlow JE, Michell RH, Olefsky JM, Field SJ, Evans RM (2008) Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature 451(7181):964–969. doi:10.1038/nature06668

    Article  CAS  PubMed  Google Scholar 

  62. Lazarus MB, Nam Y, Jiang J, Sliz P, Walker S (2011) Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Nature 469(7331):564–567. doi:10.1038/nature09638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nemeth AH, Nolte D, Dunne E, Niemann S, Kostrzewa M, Peters U, Fraser E, Bochukova E, Butler R, Brown J, Cox RD, Levy ER, Ropers HH, Monaco AP, Muller U (1999) Refined linkage disequilibrium and physical mapping of the gene locus for X-linked dystonia-parkinsonism (DYT3). Genomics 60(3):320–329. doi:10.1006/geno.1999.5929

    Article  CAS  PubMed  Google Scholar 

  64. Kemppinen AK, Kaprio J, Palotie A, Saarela J (2011) Systematic review of genome-wide expression studies in multiple sclerosis. BMJ Open 1(1):e000053. doi:10.1136/bmjopen-2011-000053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hewagama A, Gorelik G, Patel D, Liyanarachchi P, McCune WJ, Somers E, Gonzalez-Rivera T, Strickland F, Richardson B (2013) Overexpression of X-linked genes in T cells from women with lupus. J Autoimmun 41:60–71. doi:10.1016/j.jaut.2012.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Comtesse N, Maldener E, Meese E (2001) Identification of a nuclear variant of MGEA5, a cytoplasmic hyaluronidase and a beta-N-acetylglucosaminidase. Biochem Biophys Res Commun 283(3):634–640. doi:10.1006/bbrc.2001.4815

    Article  CAS  PubMed  Google Scholar 

  67. Butkinaree C, Cheung WD, Park S, Park K, Barber M, Hart GW (2008) Characterization of beta-N-acetylglucosaminidase cleavage by caspase-3 during apoptosis. J Biol Chem 283(35):23557–23566. doi:10.1074/jbc.M804116200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hart GW, West CM (2009) Nucleocytoplasmic Glycosylation. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  69. Hart GW, Akimoto Y (2009) The O-GlcNAc modification. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  70. Bertram L, Blacker D, Mullin K, Keeney D, Jones J, Basu S, Yhu S, McInnis MG, Go RC, Vekrellis K, Selkoe DJ, Saunders AJ, Tanzi RE (2000) Evidence for genetic linkage of Alzheimer’s disease to chromosome 10q. Science (New York, NY) 290(5500):2302–2303. doi:10.1126/science.290.5500.2302

    Article  CAS  Google Scholar 

  71. Van Tine BA, Patterson A, Kudlow JE (2003) Assignment of N-acetyl-d-glucosaminidase (Mgea5) to rat chromosome 1q5 by tyramide fluorescence in situ hybridization (T-FISH): synteny between rat, mouse and human with Insulin Degradation Enzyme (IDE). Cytogenet Genome Res 103(1–2):202b

    PubMed  Google Scholar 

  72. Horsch M, Hoesch L, Vasella A, Rast DM (1991) N-acetylglucosaminono-1,5-lactone oxime and the corresponding (phenylcarbamoyl)oxime. Novel and potent inhibitors of beta-N-acetylglucosaminidase. Eur J Biochem 197(3):815–818

    Article  CAS  PubMed  Google Scholar 

  73. Dong DL, Hart GW (1994) Purification and characterization of an O-GlcNAc selective N-acetyl-beta-d-glucosaminidase from rat spleen cytosol. J Biol Chem 269(30):19321–19330

    CAS  PubMed  Google Scholar 

  74. Macauley MS, Whitworth GE, Debowski AW, Chin D, Vocadlo DJ (2005) O-GlcNAcase uses substrate-assisted catalysis: kinetic analysis and development of highly selective mechanism-inspired inhibitors. J Biol Chem 280(27):25313–25322. doi:10.1074/jbc.M413819200

    Article  CAS  PubMed  Google Scholar 

  75. Ji S, Park SY, Roth J, Kim HS, Cho JW (2012) O-GlcNAc modification of PPARgamma reduces its transcriptional activity. Biochem Biophys Res Commun 417(4):1158–1163. doi:10.1016/j.bbrc.2011.12.086

    Article  CAS  PubMed  Google Scholar 

  76. Mehdy A, Morelle W, Rosnoblet C, Legrand D, Lefebvre T, Duvet S, Foulquier F (2012) PUGNAc treatment leads to an unusual accumulation of free oligosaccharides in CHO cells. J Biochem 151(4):439–446. doi:10.1093/jb/mvs012

    Article  CAS  PubMed  Google Scholar 

  77. Shan X, Vocadlo DJ, Krieger C (2012) Reduced protein O-glycosylation in the nervous system of the mutant SOD1 transgenic mouse model of amyotrophic lateral sclerosis. Neurosci Lett 516(2):296–301. doi:10.1016/j.neulet.2012.04.018

    Article  CAS  PubMed  Google Scholar 

  78. Yuzwa SA, Macauley MS, Heinonen JE, Shan X, Dennis RJ, He Y, Whitworth GE, Stubbs KA, McEachern EJ, Davies GJ, Vocadlo DJ (2008) A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo. Nat Chem Biol 4(8):483–490. doi:10.1038/nchembio.96

    Article  CAS  PubMed  Google Scholar 

  79. Andres-Bergos J, Tardio L, Larranaga-Vera A, Gomez R, Herrero-Beaumont G, Largo R (2012) The increase in O-linked N-acetylglucosamine protein modification stimulates chondrogenic differentiation both in vitro and in vivo. J Biol Chem 287(40):33615–33628. doi:10.1074/jbc.M112.354241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yu Y, Zhang L, Li X, Run X, Liang Z, Li Y, Liu Y, Lee MH, Grundke-Iqbal I, Iqbal K, Vocadlo DJ, Liu F, Gong CX (2012) Differential effects of an O-GlcNAcase inhibitor on tau phosphorylation. PLoS One 7(4):e35277. doi:10.1371/journal.pone.0035277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yuzwa SA, Shan X, Macauley MS, Clark T, Skorobogatko Y, Vosseller K, Vocadlo DJ (2012) Increasing O-GlcNAc slows neurodegeneration and stabilizes tau against aggregation. Nat Chem Biol 8(4):393–399. doi:10.1038/nchembio.797

    Article  CAS  PubMed  Google Scholar 

  82. Graham DL, Gray AJ, Joyce JA, Yu D, O’Moore J, Carlson GA, Shearman MS, Dellovade TL, Hering H (2014) Increased O-GlcNAcylation reduces pathological tau without affecting its normal phosphorylation in a mouse model of tauopathy. Neuropharmacology 79:307–313. doi:10.1016/j.neuropharm.2013.11.025

    Article  CAS  PubMed  Google Scholar 

  83. Taylor EW, Wang K, Nelson AR, Bredemann TM, Fraser KB, Clinton SM, Puckett R, Marchase RB, Chatham JC, McMahon LL (2014) O-GlcNAcylation of AMPA receptor GluA2 is associated with a novel form of long-term depression at hippocampal synapses. J Neurosci 34(1):10–21. doi:10.1523/jneurosci.4761-12.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lubas WA, Frank DW, Krause M, Hanover JA (1997) O-Linked GlcNAc transferase is a conserved nucleocytoplasmic protein containing tetratricopeptide repeats. J Biol Chem 272(14):9316–9324

    Article  CAS  PubMed  Google Scholar 

  85. Okuyama R, Marshall S (2003) UDP-N-acetylglucosaminyl transferase (OGT) in brain tissue: temperature sensitivity and subcellular distribution of cytosolic and nuclear enzyme. J Neurochem 86(5):1271–1280

    Article  CAS  PubMed  Google Scholar 

  86. Gong CX, Liu F, Iqbal K (2016) O-GlcNAcylation: a regulator of tau pathology and neurodegeneration. Alzheimer’s Dementia. doi:10.1016/j.jalz.2016.02.011

    PubMed  Google Scholar 

  87. Liu Y, Li X, Yu Y, Shi J, Liang Z, Run X, Li Y, Dai CL, Grundke-Iqbal I, Iqbal K, Liu F, Gong CX (2012) Developmental regulation of protein O-GlcNAcylation, O-GlcNAc transferase, and O-GlcNAcase in mammalian brain. PLoS One 7(8):e43724. doi:10.1371/journal.pone.0043724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rex-Mathes M, Werner S, Strutas D, Griffith LS, Viebahn C, Thelen K, Schmitz B (2001) O-GlcNAc expression in developing and ageing mouse brain. Biochimie 83(7):583–590

    Article  CAS  PubMed  Google Scholar 

  89. Liu K, Paterson AJ, Zhang F, McAndrew J, Fukuchi K, Wyss JM, Peng L, Hu Y, Kudlow JE (2004) Accumulation of protein O-GlcNAc modification inhibits proteasomes in the brain and coincides with neuronal apoptosis in brain areas with high O-GlcNAc metabolism. J Neurochem 89(4):1044–1055. doi:10.1111/j.1471-4159.2004.02389.x

    Article  CAS  PubMed  Google Scholar 

  90. Yang YR, Song S, Hwang H, Jung JH, Kim SJ, Yoon S, Hur JH, Park JI, Lee C, Nam D, Seo YK, Kim JH, Rhim H, Suh PG (2017) Memory and synaptic plasticity are impaired by dysregulated hippocampal O-GlcNAcylation. Sci Rep 7:44921. doi:10.1038/srep44921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. O’Donnell N, Zachara NE, Hart GW, Marth JD (2004) Ogt-dependent X-chromosome-linked protein glycosylation is a requisite modification in somatic cell function and embryo viability. Mol Cell Biol 24(4):1680–1690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Ning X, Tao T, Shen J, Ji Y, Xie L, Wang H, Liu N, Xu X, Sun C, Zhang D, Shen A, Ke K (2017) The O-GlcNAc modification of CDK5 involved in neuronal apoptosis following in vitro intracerebral hemorrhage. Cell Mol Neurobiol 37(3):527–536. doi:10.1007/s10571-016-0391-y

    Article  CAS  PubMed  Google Scholar 

  93. Kim SJ, Yoo WS, Choi M, Chung I, Yoo JM, Choi WS (2016) Increased O-GlcNAcylation of NF-kappaB enhances retinal ganglion cell death in streptozotocin-induced diabetic retinopathy. Curr Eye Res 41(2):249–257. doi:10.3109/02713683.2015.1006372

    Article  CAS  PubMed  Google Scholar 

  94. Wang P, Lazarus B, Forsythe M, Love D, Krause M, Hanover J (2012) O-GlcNAc cycling mutants modulate proteotoxicity in Caenorhabditis elegans models of human neurodegenerative diseases. Proc Natl Acad Sci USA 109(43):17669–17674. doi:10.1073/pnas.1205748109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lagerlof O, Slocomb JE, Hong I, Aponte Y, Blackshaw S, Hart GW, Huganir RL (2016) The nutrient sensor OGT in PVN neurons regulates feeding. Science (New York, NY) 351(6279):1293–1296. doi:10.1126/science.aad5494

    Article  CAS  Google Scholar 

  96. Lagerlof O, Hart GW, Huganir RL (2017) O-GlcNAc transferase regulates excitatory synapse maturity. Proc Natl Acad Sci USA 114(7):1684–1689. doi:10.1073/pnas.1621367114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lagerlof O, Hart GW (2014) O-GlcNAcylation of neuronal proteins: roles in neuronal functions and in neurodegeneration. Adv Neurobiol 9:343–366. doi:10.1007/978-1-4939-1154-7_16

    Article  PubMed  Google Scholar 

  98. Wang AC, Jensen EH, Rexach JE, Vinters HV, Hsieh-Wilson LC (2016) Loss of O-GlcNAc glycosylation in forebrain excitatory neurons induces neurodegeneration. Proc Natl Acad Sci USA 113(52):15120–15125. doi:10.1073/pnas.1606899113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. As Association (2016) 2016 Alzheimer’s disease facts and figures. Alzheimer’s Dementia 12(4):459–509

    Article  Google Scholar 

  100. Fukuyama H, Ogawa M, Yamauchi H, Yamaguchi S, Kimura J, Yonekura Y, Konishi J (1994) Altered cerebral energy metabolism in Alzheimer’s disease: a PET study. J Nucl Med 35(1):1–6

    CAS  PubMed  Google Scholar 

  101. Drzezga A, Lautenschlager N, Siebner H, Riemenschneider M, Willoch F, Minoshima S, Schwaiger M, Kurz A (2003) Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer’s disease: a PET follow-up study. Eur J Nucl Med Mol Imaging 30(8):1104–1113. doi:10.1007/s00259-003-1194-1

    Article  PubMed  Google Scholar 

  102. Hoyer S (2004) Glucose metabolism and insulin receptor signal transduction in Alzheimer disease. Eur J Pharmacol 490(1–3):115–125. doi:10.1016/j.ejphar.2004.02.049

    Article  CAS  PubMed  Google Scholar 

  103. Cai H, Cong WN, Ji S, Rothman S, Maudsley S, Martin B (2012) Metabolic dysfunction in Alzheimer’s disease and related neurodegenerative disorders. Curr Alzheimer Res 9(1):5–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Protas HD, Chen K, Langbaum JB, Fleisher AS, Alexander GE, Lee W, Bandy D, de Leon MJ, Mosconi L, Buckley S, Truran-Sacrey D, Schuff N, Weiner MW, Caselli RJ, Reiman EM (2013) Posterior cingulate glucose metabolism, hippocampal glucose metabolism, and hippocampal volume in cognitively normal, late-middle-aged persons at 3 levels of genetic risk for Alzheimer disease. JAMA Neurol 70(3):320–325. doi:10.1001/2013.jamaneurol.286

    Article  PubMed  PubMed Central  Google Scholar 

  105. Edison P, Archer HA, Hinz R, Hammers A, Pavese N, Tai YF, Hotton G, Cutler D, Fox N, Kennedy A, Rossor M, Brooks DJ (2007) Amyloid, hypometabolism, and cognition in Alzheimer disease: an [11C]PIB and [18F]FDG PET study. Neurology 68(7):501–508. doi:10.1212/01.wnl.0000244749.20056.d4

    Article  CAS  PubMed  Google Scholar 

  106. Burns CM, Chen K, Kaszniak AW, Lee W, Alexander GE, Bandy D, Fleisher AS, Caselli RJ, Reiman EM (2013) Higher serum glucose levels are associated with cerebral hypometabolism in Alzheimer regions. Neurology 80(17):1557–1564. doi:10.1212/WNL.0b013e31828f17de

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yaffe K, Blackwell T, Kanaya AM, Davidowitz N, Barrett-Connor E, Krueger K (2004) Diabetes, impaired fasting glucose, and development of cognitive impairment in older women. Neurology 63(4):658–663

    Article  CAS  PubMed  Google Scholar 

  108. Liu Y, Liu F, Iqbal K, Grundke-Iqbal I, Gong CX (2008) Decreased glucose transporters correlate to abnormal hyperphosphorylation of tau in Alzheimer disease. FEBS Lett 582(2):359–364. doi:10.1016/j.febslet.2007.12.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. de la Monte SM, Wands JR (2008) Alzheimer’s disease is type 3 diabetes-evidence reviewed. J Diabetes Sci Technol 2(6):1101–1113. doi:10.1177/193229680800200619

    Article  PubMed  PubMed Central  Google Scholar 

  110. Liu Y, Liu F, Grundke-Iqbal I, Iqbal K, Gong CX (2009) Brain glucose transporters, O-GlcNAcylation and phosphorylation of tau in diabetes and Alzheimer’s disease. J Neurochem 111(1):242–249. doi:10.1111/j.1471-4159.2009.06320.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Raffaitin C, Feart C, Le Goff M, Amieva H, Helmer C, Akbaraly TN, Tzourio C, Gin H, Barberger-Gateau P (2011) Metabolic syndrome and cognitive decline in French elders: the Three-City Study. Neurology 76(6):518–525. doi:10.1212/WNL.0b013e31820b7656

    Article  CAS  PubMed  Google Scholar 

  112. Liu Y, Liu F, Grundke-Iqbal I, Iqbal K, Gong CX (2011) Deficient brain insulin signalling pathway in Alzheimer’s disease and diabetes. J Pathol 225(1):54–62. doi:10.1002/path.2912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Frolich L, Blum-Degen D, Bernstein HG, Engelsberger S, Humrich J, Laufer S, Muschner D, Thalheimer A, Turk A, Hoyer S, Zochling R, Boissl KW, Jellinger K, Riederer P (1998) Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. J Neural Transm 105(4–5):423–438. doi:10.1007/s007020050068

    Article  CAS  PubMed  Google Scholar 

  114. Moloney AM, Griffin RJ, Timmons S, O’Connor R, Ravid R, O’Neill C (2010) Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol Aging 31(2):224–243. doi:10.1016/j.neurobiolaging.2008.04.002

    Article  CAS  PubMed  Google Scholar 

  115. Talbot K, Wang HY, Kazi H, Han LY, Bakshi KP, Stucky A, Fuino RL, Kawaguchi KR, Samoyedny AJ, Wilson RS, Arvanitakis Z, Schneider JA, Wolf BA, Bennett DA, Trojanowski JQ, Arnold SE (2012) Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Investig 122(4):1316–1338. doi:10.1172/jci59903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, Xu XJ, Wands JR, de la Monte SM (2005) Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease—is this type 3 diabetes? J Alzheimer’s Dis 7(1):63–80

    Article  CAS  Google Scholar 

  117. Liu F, Shi J, Tanimukai H, Gu J, Gu J, Grundke-Iqbal I, Iqbal K, Gong CX (2009) Reduced O-GlcNAcylation links lower brain glucose metabolism and tau pathology in Alzheimer’s disease. Brain 132(Pt 7):1820–1832. doi:10.1093/brain/awp099

    Article  PubMed  PubMed Central  Google Scholar 

  118. Guo T, Noble W, Hanger DP (2017) Roles of tau protein in health and disease. Acta Neuropathol. doi:10.1007/s00401-017-1707-9

    Google Scholar 

  119. Ksiezak-Reding H, Liu WK, Yen SH (1992) Phosphate analysis and dephosphorylation of modified tau associated with paired helical filaments. Brain Res 597(2):209–219

    Article  CAS  PubMed  Google Scholar 

  120. Lindwall G, Cole RD (1984) Phosphorylation affects the ability of tau protein to promote microtubule assembly. J Biol Chem 259(8):5301–5305

    CAS  PubMed  Google Scholar 

  121. Sengupta A, Kabat J, Novak M, Wu Q, Grundke-Iqbal I, Iqbal K (1998) Phosphorylation of tau at both Thr 231 and Ser 262 is required for maximal inhibition of its binding to microtubules. Arch Biochem Biophys 357(2):299–309. doi:10.1006/abbi.1998.0813

    Article  CAS  PubMed  Google Scholar 

  122. Cho JH, Johnson GV (2004) Primed phosphorylation of tau at Thr231 by glycogen synthase kinase 3beta (GSK3beta) plays a critical role in regulating tau’s ability to bind and stabilize microtubules. J Neurochem 88(2):349–358

    Article  CAS  PubMed  Google Scholar 

  123. Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM (1986) Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem 261(13):6084–6089

    CAS  PubMed  Google Scholar 

  124. Nukina N, Kosik KS, Selkoe DJ (1987) Recognition of Alzheimer paired helical filaments by monoclonal neurofilament antibodies is due to crossreaction with tau protein. Proc Natl Acad Sci USA 84(10):3415–3419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Alonso A, Zaidi T, Novak M, Grundke-Iqbal I, Iqbal K (2001) Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments. Proc Natl Acad Sci USA 98(12):6923–6928. doi:10.1073/pnas.121119298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Le Corre S, Klafki HW, Plesnila N, Hubinger G, Obermeier A, Sahagun H, Monse B, Seneci P, Lewis J, Eriksen J, Zehr C, Yue M, McGowan E, Dickson DW, Hutton M, Roder HM (2006) An inhibitor of tau hyperphosphorylation prevents severe motor impairments in tau transgenic mice. Proc Natl Acad Sci USA 103(25):9673–9678. doi:10.1073/pnas.0602913103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Uno Y, Iwashita H, Tsukamoto T, Uchiyama N, Kawamoto T, Kori M, Nakanishi A (2009) Efficacy of a novel, orally active GSK-3 inhibitor 6-Methyl-N-[3-[[3-(1-methylethoxy)propyl]carbamoyl]-1H-pyrazol-4-yl]pyridine-3-carboxamide in tau transgenic mice. Brain Res 1296:148–163. doi:10.1016/j.brainres.2009.08.034

    Article  CAS  PubMed  Google Scholar 

  128. Santacruz K, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M, Guimaraes A, DeTure M, Ramsden M, McGowan E, Forster C, Yue M, Orne J, Janus C, Mariash A, Kuskowski M, Hyman B, Hutton M, Ashe KH (2005) Tau suppression in a neurodegenerative mouse model improves memory function. Science (New York, NY) 309(5733):476–481. doi:10.1126/science.1113694

    Article  CAS  Google Scholar 

  129. Frost B, Jacks RL, Diamond MI (2009) Propagation of tau misfolding from the outside to the inside of a cell. J Biol Chem 284(19):12845–12852. doi:10.1074/jbc.M808759200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Arnold CS, Johnson GV, Cole RN, Dong DL, Lee M, Hart GW (1996) The microtubule-associated protein tau is extensively modified with O-linked N-acetylglucosamine. J Biol Chem 271(46):28741–28744

    Article  CAS  PubMed  Google Scholar 

  131. Yuzwa SA, Yadav AK, Skorobogatko Y, Clark T, Vosseller K, Vocadlo DJ (2011) Mapping O-GlcNAc modification sites on tau and generation of a site-specific O-GlcNAc tau antibody. Amino Acids 40(3):857–868. doi:10.1007/s00726-010-0705-1

    Article  CAS  PubMed  Google Scholar 

  132. Wang Z, Udeshi ND, O’Malley M, Shabanowitz J, Hunt DF, Hart GW (2010) Enrichment and site mapping of O-linked N-acetylglucosamine by a combination of chemical/enzymatic tagging, photochemical cleavage, and electron transfer dissociation mass spectrometry. Mol Cell Proteom 9(1):153–160. doi:10.1074/mcp.M900268-MCP200

    Article  CAS  Google Scholar 

  133. Morris M, Knudsen GM, Maeda S, Trinidad JC, Ioanoviciu A, Burlingame AL, Mucke L (2015) Tau post-translational modifications in wild-type and human amyloid precursor protein transgenic mice. Nat Neurosci 18(8):1183–1189. doi:10.1038/nn.4067

    Article  CAS  PubMed  Google Scholar 

  134. Liu F, Iqbal K, Grundke-Iqbal I, Hart GW, Gong CX (2004) O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer’s disease. Proc Natl Acad Sci USA 101(29):10804–10809. doi:10.1073/pnas.0400348101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Li X, Lu F, Wang JZ, Gong CX (2006) Concurrent alterations of O-GlcNAcylation and phosphorylation of tau in mouse brains during fasting. Eur J Neurosci 23(8):2078–2086. doi:10.1111/j.1460-9568.2006.04735.x

    Article  PubMed  Google Scholar 

  136. Gatta E, Lefebvre T, Gaetani S, dos Santos M, Marrocco J, Mir AM, Cassano T, Maccari S, Nicoletti F, Mairesse J (2016) Evidence for an imbalance between tau O-GlcNAcylation and phosphorylation in the hippocampus of a mouse model of Alzheimer’s disease. Pharmacol Res 105:186–197. doi:10.1016/j.phrs.2016.01.006

    Article  CAS  PubMed  Google Scholar 

  137. Lefebvre T, Ferreira S, Dupont-Wallois L, Bussiere T, Dupire MJ, Delacourte A, Michalski JC, Caillet-Boudin ML (2003) Evidence of a balance between phosphorylation and O-GlcNAc glycosylation of Tau proteins—a role in nuclear localization. Biochem Biophys Acta 1619(2):167–176

    Article  CAS  PubMed  Google Scholar 

  138. Ryu IH, Lee KY, Do SI (2016) Abeta-affected pathogenic induction of S-nitrosylation of OGT and identification of Cys-NO linkage triplet. Biochem Biophys Acta 1864(5):609–621. doi:10.1016/j.bbapap.2016.02.003

    CAS  PubMed  Google Scholar 

  139. Lewis J, McGowan E, Rockwood J, Melrose H, Nacharaju P, Van Slegtenhorst M, Gwinn-Hardy K, Paul Murphy M, Baker M, Yu X, Duff K, Hardy J, Corral A, Lin WL, Yen SH, Dickson DW, Davies P, Hutton M (2000) Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat Genet 25(4):402–405. doi:10.1038/78078

    Article  CAS  PubMed  Google Scholar 

  140. Terwel D, Lasrado R, Snauwaert J, Vandeweert E, Van Haesendonck C, Borghgraef P, Van Leuven F (2005) Changed conformation of mutant Tau-P301L underlies the moribund tauopathy, absent in progressive, nonlethal axonopathy of Tau-4R/2N transgenic mice. J Biol Chem 280(5):3963–3973. doi:10.1074/jbc.M409876200

    Article  CAS  PubMed  Google Scholar 

  141. Yuzwa SA, Cheung AH, Okon M, McIntosh LP, Vocadlo DJ (2014) O-GlcNAc modification of tau directly inhibits its aggregation without perturbing the conformational properties of tau monomers. J Mol Biol 426(8):1736–1752. doi:10.1016/j.jmb.2014.01.004

    Article  CAS  PubMed  Google Scholar 

  142. Borghgraef P, Menuet C, Theunis C, Louis JV, Devijver H, Maurin H, Smet-Nocca C, Lippens G, Hilaire G, Gijsen H, Moechars D, Van Leuven F (2013) Increasing brain protein O-GlcNAc-ylation mitigates breathing defects and mortality of Tau. P301L mice. PLoS One 8(12):e84442. doi:10.1371/journal.pone.0084442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82(12):4245–4249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science (New York, NY) 256(5054):184–185

    Article  CAS  Google Scholar 

  145. Hardy J (2017) The discovery of Alzheimer-causing mutations in the APP gene and the formulation of the “amyloid cascade hypothesis”. FEBS J 284(7):1040–1044. doi:10.1111/febs.14004

    Article  CAS  PubMed  Google Scholar 

  146. Griffith LS, Mathes M, Schmitz B (1995) Beta-amyloid precursor protein is modified with O-linked N-acetylglucosamine. J Neurosci Res 41(2):270–278. doi:10.1002/jnr.490410214

    Article  CAS  PubMed  Google Scholar 

  147. Zheng BW, Yang L, Dai XL, Jiang ZF, Huang HC (2016) Roles of O-GlcNAcylation on amyloid-beta precursor protein processing, tau phosphorylation, and hippocampal synapses dysfunction in Alzheimer’s disease. Neurol Res 38(2):177–186. doi:10.1080/01616412.2015.1133485

    Article  PubMed  CAS  Google Scholar 

  148. Jacobsen KT, Iverfeldt K (2011) O-GlcNAcylation increases non-amyloidogenic processing of the amyloid-beta precursor protein (APP). Biochem Biophys Res Commun 404(3):882–886. doi:10.1016/j.bbrc.2010.12.080

    Article  CAS  PubMed  Google Scholar 

  149. Chun YS, Park Y, Oh HG, Kim TW, Yang HO, Park MK, Chung S (2015) O-GlcNAcylation promotes non-amyloidogenic processing of amyloid-beta protein precursor via inhibition of endocytosis from the plasma membrane. J Alzheimer’s Dis 44(1):261–275. doi:10.3233/jad-140096

    CAS  Google Scholar 

  150. Kim C, Nam DW, Park SY, Song H, Hong HS, Boo JH, Jung ES, Kim Y, Baek JY, Kim KS, Cho JW, Mook-Jung I (2013) O-linked beta-N-acetylglucosaminidase inhibitor attenuates beta-amyloid plaque and rescues memory impairment. Neurobiol Aging 34(1):275–285. doi:10.1016/j.neurobiolaging.2012.03.001

    Article  CAS  PubMed  Google Scholar 

  151. Yuzwa SA, Shan X, Jones BA, Zhao G, Woodward ML, Li X, Zhu Y, McEachern EJ, Silverman MA, Watson NV, Gong CX, Vocadlo DJ (2014) Pharmacological inhibition of O-GlcNAcase (OGA) prevents cognitive decline and amyloid plaque formation in bigenic tau/APP mutant mice. Mol Neurodegeneration 9:42. doi:10.1186/1750-1326-9-42

    Article  Google Scholar 

  152. Xie S, Jin N, Gu J, Shi J, Sun J, Chu D, Zhang L, Dai CL, Gu JH, Gong CX, Iqbal K, Liu F (2016) O-GlcNAcylation of protein kinase A catalytic subunits enhances its activity: a mechanism linked to learning and memory deficits in Alzheimer’s disease. Aging Cell 15(3):455–464. doi:10.1111/acel.12449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Samaranch L, Lorenzo-Betancor O, Arbelo JM, Ferrer I, Lorenzo E, Irigoyen J, Pastor MA, Marrero C, Isla C, Herrera-Henriquez J, Pastor P (2010) PINK1-linked parkinsonism is associated with Lewy body pathology. Brain 133(Pt 4):1128–1142. doi:10.1093/brain/awq051

    Article  PubMed  Google Scholar 

  154. Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, Obeso J, Marek K, Litvan I, Lang AE, Halliday G, Goetz CG, Gasser T, Dubois B, Chan P, Bloem BR, Adler CH, Deuschl G (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 30(12):1591–1601. doi:10.1002/mds.26424

    Article  PubMed  Google Scholar 

  155. Lubbe S, Morris HR (2014) Recent advances in Parkinson’s disease genetics. J Neurol 261(2):259–266. doi:10.1007/s00415-013-7003-2

    Article  CAS  PubMed  Google Scholar 

  156. Henchcliffe C, Beal MF (2008) Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neurol 4(11):600–609. doi:10.1038/ncpneuro0924

    Article  CAS  PubMed  Google Scholar 

  157. Chartier-Harlin MC, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S, Levecque C, Larvor L, Andrieux J, Hulihan M, Waucquier N, Defebvre L, Amouyel P, Farrer M, Destee A (2004) Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet (London, England) 364(9440):1167–1169. doi:10.1016/s0140-6736(04)17103-1

    Article  CAS  Google Scholar 

  158. Klein C, Westenberger A (2012) Genetics of Parkinson’s disease. Cold Spring Harbor Perspect Med 2(1):a008888. doi:10.1101/cshperspect.a008888

    Article  Google Scholar 

  159. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science (New York, NY) 276(5321):2045–2047

    Article  CAS  Google Scholar 

  160. Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, Przuntek H, Epplen JT, Schols L, Riess O (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18(2):106–108. doi:10.1038/ng0298-106

    Article  CAS  PubMed  Google Scholar 

  161. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R, Lincoln S, Crawley A, Hanson M, Maraganore D, Adler C, Cookson MR, Muenter M, Baptista M, Miller D, Blancato J, Hardy J, Gwinn-Hardy K (2003) Alpha-synuclein locus triplication causes Parkinson’s disease. Science (New York, NY) 302(5646):841. doi:10.1126/science.1090278

    Article  CAS  Google Scholar 

  162. Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I, Vidal L, Hoenicka J, Rodriguez O, Atares B, Llorens V, Gomez Tortosa E, del Ser T, Munoz DG, de Yebenes JG (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55(2):164–173. doi:10.1002/ana.10795

    Article  CAS  PubMed  Google Scholar 

  163. Luk KC, Song C, O’Brien P, Stieber A, Branch JR, Brunden KR, Trojanowski JQ, Lee VM (2009) Exogenous alpha-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proc Natl Acad Sci USA 106(47):20051–20056. doi:10.1073/pnas.0908005106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Luk KC, Kehm VM, Zhang B, O’Brien P, Trojanowski JQ, Lee VM (2012) Intracerebral inoculation of pathological alpha-synuclein initiates a rapidly progressive neurodegenerative alpha-synucleinopathy in mice. J Exp Med 209(5):975–986. doi:10.1084/jem.20112457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Cremades N, Cohen SI, Deas E, Abramov AY, Chen AY, Orte A, Sandal M, Clarke RW, Dunne P, Aprile FA, Bertoncini CW, Wood NW, Knowles TP, Dobson CM, Klenerman D (2012) Direct observation of the interconversion of normal and toxic forms of alpha-synuclein. Cell 149(5):1048–1059. doi:10.1016/j.cell.2012.03.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, Shen J, Takio K, Iwatsubo T (2002) alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 4(2):160–164. doi:10.1038/ncb748

    CAS  PubMed  Google Scholar 

  167. Paleologou KE, Schmid AW, Rospigliosi CC, Kim HY, Lamberto GR, Fredenburg RA, Lansbury PT Jr, Fernandez CO, Eliezer D, Zweckstetter M, Lashuel HA (2008) Phosphorylation at Ser-129 but not the phosphomimics S129E/D inhibits the fibrillation of alpha-synuclein. J Biol Chem 283(24):16895–16905. doi:10.1074/jbc.M800747200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Chen L, Periquet M, Wang X, Negro A, McLean PJ, Hyman BT, Feany MB (2009) Tyrosine and serine phosphorylation of alpha-synuclein have opposing effects on neurotoxicity and soluble oligomer formation. J Clin Investig 119(11):3257–3265. doi:10.1172/jci39088

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Paleologou KE, Oueslati A, Shakked G, Rospigliosi CC, Kim HY, Lamberto GR, Fernandez CO, Schmid A, Chegini F, Gai WP, Chiappe D, Moniatte M, Schneider BL, Aebischer P, Eliezer D, Zweckstetter M, Masliah E, Lashuel HA (2010) Phosphorylation at S87 is enhanced in synucleinopathies, inhibits alpha-synuclein oligomerization, and influences synuclein-membrane interactions. J Neurosci 30(9):3184–3198. doi:10.1523/jneurosci.5922-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Hejjaoui M, Butterfield S, Fauvet B, Vercruysse F, Cui J, Dikiy I, Prudent M, Olschewski D, Zhang Y, Eliezer D, Lashuel HA (2012) Elucidating the role of C-terminal post-translational modifications using protein semisynthesis strategies: alpha-synuclein phosphorylation at tyrosine 125. J Am Chem Soc 134(11):5196–5210. doi:10.1021/ja210866j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Brahmachari S, Ge P, Lee SH, Kim D, Karuppagounder SS, Kumar M, Mao X, Shin JH, Lee Y, Pletnikova O, Troncoso JC, Dawson VL, Dawson TM, Ko HS (2016) Activation of tyrosine kinase c-Abl contributes to alpha-synuclein-induced neurodegeneration. J Clin Investig 126(8):2970–2988. doi:10.1172/jci85456

    Article  PubMed  PubMed Central  Google Scholar 

  172. Gomez-Tortosa E, Newell K, Irizarry MC, Sanders JL, Hyman BT (2000) alpha-Synuclein immunoreactivity in dementia with Lewy bodies: morphological staging and comparison with ubiquitin immunostaining. Acta Neuropathol 99(4):352–357

    Article  CAS  PubMed  Google Scholar 

  173. Alexopoulou Z, Lang J, Perrett RM, Elschami M, Hurry ME, Kim HT, Mazaraki D, Szabo A, Kessler BM, Goldberg AL, Ansorge O, Fulga TA, Tofaris GK (2016) Deubiquitinase Usp8 regulates alpha-synuclein clearance and modifies its toxicity in Lewy body disease. Proc Natl Acad Sci USA 113(32):E4688–E4697. doi:10.1073/pnas.1523597113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Shimura H, Schlossmacher MG, Hattori N, Frosch MP, Trockenbacher A, Schneider R, Mizuno Y, Kosik KS, Selkoe DJ (2001) Ubiquitination of a new form of alpha-synuclein by parkin from human brain: implications for Parkinson’s disease. Science (New York, NY) 293(5528):263–269. doi:10.1126/science.1060627

    Article  CAS  Google Scholar 

  175. Kim SJ, Sung JY, Um JW, Hattori N, Mizuno Y, Tanaka K, Paik SR, Kim J, Chung KC (2003) Parkin cleaves intracellular alpha-synuclein inclusions via the activation of calpain. J Biol Chem 278(43):41890–41899. doi:10.1074/jbc.M306017200

    Article  CAS  PubMed  Google Scholar 

  176. Marotta NP, Lin Y, Lewis YE, Ambroso MR, Zaro BW, Roth MT, Arnold DB, Langen R, Pratt MR (2015) O-GlcNAc modification blocks the aggregation and toxicity of the protein α-synuclein associated with Parkinson’s disease. Nat Chem 7(11):913–920. doi:10.1038/nchem.2361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Lewis YE, Galesic A, Levine PM, De Leon CA, Lamiri N, Brennan CK, Pratt MR (2017) O-GlcNAcylation of alpha-synuclein at serine 87 reduces aggregation without affecting membrane binding. ACS Chem Biol. doi:10.1021/acschembio.7b00113

    Google Scholar 

  178. Bork K, Kannicht C, Nohring S, Reutter W, Weidemann W, Hart GW, Horstkorte R (2008) N-propanoylmannosamine interferes with O-GlcNAc modification of the tyrosine 3-monooxygenase and stimulates dopamine secretion. J Neurosci Res 86(3):647–652. doi:10.1002/jnr.21526

    Article  CAS  PubMed  Google Scholar 

  179. Nettelbladt CG, Alibergovic A, Ljungqvist O (1996) Pre-stress carbohydrate solution prevents fatal outcome after hemorrhage in 24-hour food-deprived rats. Nutrition (Burbank, Los Angeles County, Calif) 12(10):696–699

    Article  CAS  Google Scholar 

  180. Jarhult J (1973) Osmotic fluid transfer from tissue to blood during hemorrhagic hypotension. Acta Physiol Scand 89(2):213–226. doi:10.1111/j.1748-1716.1973.tb05514.x

    Article  CAS  PubMed  Google Scholar 

  181. Ware J, Ljungqvist O, Norberg KA, Nylander G (1982) Osmolar changes in haemorrhage: the effects of an altered nutritional status. Acta Chir Scand 148(8):641–646

    CAS  PubMed  Google Scholar 

  182. Mizock BA (2001) Alterations in fuel metabolism in critical illness: hyperglycaemia. Best Pract Res Clin Endocrinol Metab 15(4):533–551. doi:10.1053/beem.2001.0168

    Article  CAS  PubMed  Google Scholar 

  183. Dassanayaka S, Jones SP (2014) O-GlcNAc and the cardiovascular system. Pharmacol Ther 142(1):62–71. doi:10.1016/j.pharmthera.2013.11.005

    Article  CAS  PubMed  Google Scholar 

  184. Yang SL, Zou LY, Bounelis P, Chaudry I, Chatham JC, Marchase RB (2006) Glucosamine administration during resuscitation improves organ function after trauma hemorrhage. Shock 25(6):600–607. doi:10.1097/01.shk.0000209563.07693.db

    Article  CAS  PubMed  Google Scholar 

  185. Not LG, Marchase RB, Fulop N, Brocks CA, Chatham JC (2007) Glucosamine administration improves survival rate after severe hemorrhagic shock combined with trauma in rats. Shock 28(3):345–352. doi:10.1097/shk.0b013e3180487ebb

    Article  CAS  PubMed  Google Scholar 

  186. Fulop N, Zhang Z, Marchase R, Chatham J (2007) Glucosamine cardioprotection in perfused rat hearts associated with increased O-linked N-acetylglucosamine protein modification and altered p38 activation. Am J Physiol Heart Circ Physiol 292(5):H2227–H2236. doi:10.1152/ajpheart.01091.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Zou L, Yang S, Hu S, Chaudry I, Marchase R, Chatham J (2007) The protective effects of PUGNAc on cardiac function after trauma-hemorrhage are mediated via increased protein O-GlcNAc levels. Shock 27(4):402–408. doi:10.1097/01.shk.0000245031.31859.29

    Article  CAS  PubMed  Google Scholar 

  188. Laczy B, Marsh S, Brocks C, Wittmann I, Chatham J (2010) Inhibition of O-GlcNAcase in perfused rat hearts by NAG-thiazolines at the time of reperfusion is cardioprotective in an O-GlcNAc-dependent manner. Am J Physiol Heart Circ Physiol 299(5):H1715–H1727. doi:10.1152/ajpheart.00337.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Lunde I, Aronsen J, Kvaloy H, Qvigstad E, Sjaastad I, Tonnessen T, Christensen G, Gronning-Wang L, Carlson C (2011) Cardiac O-GlcNAc signaling is increased in hypertrophy and heart failure. Physiol Genom 44(2):162–172. doi:10.1152/physiolgenomics.00016.2011

    Article  CAS  Google Scholar 

  190. Zou LY, Yang SL, Champattanachai V, Hu SH, Chaudry IH, Marchase RB, Chatham JC (2009) Glucosamine improves cardiac function following trauma-hemorrhage by increased protein O-GlcNAcylation and attenuation of NF-kappa B signaling. Am J Physiol Heart Circ Physiol 296(2):H515–H523. doi:10.1152/ajpheart.01025.2008

    Article  CAS  PubMed  Google Scholar 

  191. Shi J, Gu JH, Dai CL, Gu J, Jin X, Sun J, Iqbal K, Liu F, Gong CX (2015) O-GlcNAcylation regulates ischemia-induced neuronal apoptosis through AKT signaling. Sci Rep 5:14500. doi:10.1038/srep14500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Liu S, Sheng H, Yu Z, Paschen W, Yang W (2016) O-linked β-N-acetylglucosamine modification of proteins is activated in post-ischemic brains of young but not aged mice: implications for impaired functional recovery from ischemic stress. J Cereb Blood Flow Metab 36(2):393–398. doi:10.1177/0271678x15608393

    Article  CAS  PubMed  Google Scholar 

  193. Hwang S, Shin J, Hwang J, Kim S, Shin J, Oh E, Oh S, Kim J, Lee J, Han I (2010) Glucosamine exerts a neuroprotective effect via suppression of inflammation in rat brain ischemia/reperfusion injury. Glia 58(15):1881–1892. doi:10.1002/glia.21058

    Article  PubMed  Google Scholar 

  194. He Y, Ma X, Li D, Hao J (2016) Thiamet G mediates neuroprotection in experimental stroke by modulating microglia/macrophage polarization and inhibiting NF-kappaB p65 signaling. J Cereb Blood Flow Metab. doi:10.1177/0271678x16679671

    PubMed Central  Google Scholar 

  195. Charriaut-Marlangue C, Margaill I, Represa A, Popovici T, Plotkine M, Ben-Ari Y (1996) Apoptosis and necrosis after reversible focal ischemia: an in situ DNA fragmentation analysis. J Cereb Blood Flow Metab 16(2):186–194. doi:10.1097/00004647-199603000-00002

    Article  CAS  PubMed  Google Scholar 

  196. Yamashima T (2012) Hsp70.1 and related lysosomal factors for necrotic neuronal death. J Neurochem 120(4):477–494. doi:10.1111/j.1471-4159.2011.07596.x

    Article  CAS  PubMed  Google Scholar 

  197. Chen R, Gong P, Tao T, Gao Y, Shen J, Yan Y, Duan C, Wang J, Liu X (2017) O-GlcNAc glycosylation of nNOS promotes neuronal apoptosis following glutamate excitotoxicity. Cell Mol Neurobiol. doi:10.1007/s10571-017-0477-1

    Google Scholar 

  198. Grima JC, Daigle JG, Arbez N, Cunningham KC, Zhang K, Ochaba J, Geater C, Morozko E, Stocksdale J, Glatzer JC, Pham JT, Ahmed I, Peng Q, Wadhwa H, Pletnikova O, Troncoso JC, Duan W, Snyder SH, Ranum LP, Thompson LM, Lloyd TE, Ross CA, Rothstein JD (2017) Mutant Huntingtin disrupts the nuclear pore complex. Neuron 94(1):93–107. doi:10.1016/j.neuron.2017.03.023.e106

    Article  CAS  PubMed  Google Scholar 

  199. Katzenberger RJ, Chtarbanova S, Rimkus SA, Fischer JA, Kaur G, Seppala JM, Swanson LC, Zajac JE, Ganetzky B, Wassarman DA (2015) Death following traumatic brain injury in Drosophila is associated with intestinal barrier dysfunction. eLife. doi:10.7554/eLife.04790

    PubMed  PubMed Central  Google Scholar 

  200. Hu JH, Chernoff K, Pelech S, Krieger C (2003) Protein kinase and protein phosphatase expression in the central nervous system of G93A mSOD over-expressing mice. J Neurochem 85(2):422–431

    Article  CAS  PubMed  Google Scholar 

  201. Hu JH, Zhang H, Wagey R, Krieger C, Pelech SL (2003) Protein kinase and protein phosphatase expression in amyotrophic lateral sclerosis spinal cord. J Neurochem 85(2):432–442

    Article  CAS  PubMed  Google Scholar 

  202. Honchar MP, Bunge MB, Agrawal HC (1982) In vivo phosphorylation of neurofilament proteins in the central nervous system of immature rat and rabbit. Neurochem Res 7(4):365–372

    Article  CAS  PubMed  Google Scholar 

  203. Dong DL, Xu ZS, Chevrier MR, Cotter RJ, Cleveland DW, Hart GW (1993) Glycosylation of mammalian neurofilaments. Localization of multiple O-linked N-acetylglucosamine moieties on neurofilament polypeptides L and M. J Biol Chem 268(22):16679–16687

    CAS  PubMed  Google Scholar 

  204. Deng Y, Li B, Liu F, Iqbal K, Grundke-Iqbal I, Brandt R, Gong CX (2008) Regulation between O-GlcNAcylation and phosphorylation of neurofilament-M and their dysregulation in Alzheimer disease. FASEB J 22(1):138–145. doi:10.1096/fj.07-8309com

    Article  CAS  PubMed  Google Scholar 

  205. Hauser SL, Chan JR, Oksenberg JR (2013) Multiple sclerosis: prospects and promise. Ann Neurol 74(3):317–327. doi:10.1002/ana.24009

    Article  CAS  PubMed  Google Scholar 

  206. Baudoin L, Issad T (2014) O-GlcNAcylation and inflammation: a vast territory to explore. Front Endocrinol 5:235. doi:10.3389/fendo.2014.00235

    Google Scholar 

  207. Zhang D, Cai Y, Chen M, Gao L, Shen Y, Huang Z (2015) OGT-mediated O-GlcNAcylation promotes NF-kappaB activation and inflammation in acute pancreatitis. Inflamm Res 64(12):943–952. doi:10.1007/s00011-015-0877-y

    Article  CAS  PubMed  Google Scholar 

  208. Kim HB, Lee SW, Mun CH, Yoon JY, Pai J, Shin I, Park YB, Lee SK, Cho JW (2015) O-linked N-acetylglucosamine glycosylation of p65 aggravated the inflammation in both fibroblast-like synoviocytes stimulated by tumor necrosis factor-alpha and mice with collagen induced arthritis. Arthritis Res Ther 17:248. doi:10.1186/s13075-015-0762-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Liu R, Ma X, Chen L, Yang Y, Zeng Y, Gao J, Jiang W, Zhang F, Li D, Han B, Han R, Qiu R, Huang W, Wang Y, Hao J (2017) MicroRNA-15b suppresses Th17 differentiation and is associated with pathogenesis of multiple sclerosis by targeting O-GlcNAc transferase. J Immunol 198(7):2626–2639. doi:10.4049/jimmunol.1601727

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81571600, 81322018 and 81273287 to J.W.H., and 81401361 to X.F.M.) and the Youth Top-notch Talent Support Program (to J.W.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junwei Hao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Li, H., He, Y. et al. The emerging link between O-GlcNAcylation and neurological disorders. Cell. Mol. Life Sci. 74, 3667–3686 (2017). https://doi.org/10.1007/s00018-017-2542-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2542-9

Keywords

Navigation