Skip to main content

Advertisement

Log in

Role of G3BP1 in glucocorticoid receptor-mediated microRNA-15b and microRNA-23a biogenesis in endothelial cells

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are a family of non-coding RNAs that play crucial roles in regulating various normal cellular responses. Recent studies revealed that the canonical miRNA biogenesis pathway is subject to sophisticated regulation. Hormonal control of miRNA biogenesis by androgen and estrogen has been demonstrated, but the direct effects of the glucocorticoid receptor (GR) on miRNA biogenesis are unknown. This study revealed the role of GR in miRNA maturation. We showed that two GR agonists, dexamethasone and ginsenoside-Rg1 rapidly suppressed the expression of mature miR-15b, miR-23a, and miR-214 in human endothelial cells. RNA pulldown coupled with proteomic analysis identified GTPase-activating protein (SH3 domain) binding protein 1 (G3BP1) as one of the RNA-binding proteins mediating GR-regulated miRNA maturation. Activated GR induced phosphorylation of v-AKT Murine Thymoma Viral Oncogene Homologue (AKT) kinase, which in turn phosphorylated and promoted nuclear translocation of G3BP1. The nuclear G3BP1 bound to the G3BP1 consensus sequence located on primary miR-15b~16-2 and miR-23a~27a~24-2 to inhibit their maturation. The findings from this study have advanced our understanding of the non-genomic effects of GR in the vascular system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105. doi:10.1101/gr.082701.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Iwakawa HO, Tomari Y (2015) The functions of microRNAs: mRNA decay and translational repression. Trends Cell Biol 25(11):651–665. doi:10.1016/j.tcb.2015.07.011

    Article  CAS  PubMed  Google Scholar 

  3. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15(8):509–524. doi:10.1038/nrm3838

    Article  CAS  PubMed  Google Scholar 

  4. Finnegan EF, Pasquinelli AE (2013) MicroRNA biogenesis: regulating the regulators. Crit Rev Biochem Mol Biol 48(1):51–68. doi:10.3109/10409238.2012.738643

    Article  CAS  PubMed  Google Scholar 

  5. Irvine K, Stirling R, Hume D, Kennedy D (2004) Rasputin, more promiscuous than ever: a review of G3BP. Int J Dev Biol 48(10):1065–1077

    Article  CAS  PubMed  Google Scholar 

  6. Gallouzi IE, Parker F, Chebli K, Maurier F, Labourier E, Barlat I, Capony JP, Tocque B, Tazi J (1998) A novel phosphorylation-dependent RNase activity of GAP-SH3 binding protein: a potential link between signal transduction and RNA stability. Mol Cell Biol 18(7):3956–3965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vognsen T, Moller IR, Kristensen O (2013) Crystal structures of the human G3BP1 NTF2-like domain visualize FxFG Nup repeat specificity. PLoS One 8(12):e80947. doi:10.1371/journal.pone.0080947

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tourriere H, Ie Gallouzi, Chebli K, Capony JP, Mouaikel J, van der Geer P, Tazi J (2001) RasGAP-associated endoribonuclease G3BP: selective RNA degradation and phosphorylation-dependent localization. Mol Cell Biol 21(22):7747–7760. doi:10.1128/mcb.21.22.7747-7760.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Barr JE, Munyikwa MR, Frazier EA, Hinton SD (2013) The pseudophosphatase MK-STYX inhibits stress granule assembly independently of Ser149 phosphorylation of G3BP-1. FEBS J 280(1):273–284. doi:10.1111/febs.12068

    Article  CAS  PubMed  Google Scholar 

  10. He M, Yang Z, Abdellatif M, Sayed D (2015) GTPase activating protein (Sh3 domain) binding protein 1 regulates the processing of microRNA-1 during cardiac hypertrophy. PLoS One 10(12):e0145112. doi:10.1371/journal.pone.0145112

    Article  PubMed  PubMed Central  Google Scholar 

  11. Paris O, Ferraro L, Grober OM, Ravo M, De Filippo MR, Giurato G, Nassa G, Tarallo R, Cantarella C, Rizzo F, Di Benedetto A, Mottolese M, Benes V, Ambrosino C, Nola E, Weisz A (2012) Direct regulation of microRNA biogenesis and expression by estrogen receptor beta in hormone-responsive breast cancer. Oncogene 31(38):4196–4206

    Article  CAS  PubMed  Google Scholar 

  12. Clark EL, Coulson A, Dalgliesh C, Rajan P, Nicol SM, Fleming S, Heer R, Gaughan L, Leung HY, Elliott DJ, Fuller-Pace FV, Robson CN (2008) The RNA helicase p68 is a novel androgen receptor coactivator involved in splicing and is overexpressed in prostate cancer. Cancer Res 68(19):7938–7946. doi:10.1158/0008-5472.can-08-0932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Quax RA, Manenschijn L, Koper JW, Hazes JM, Lamberts SW, van Rossum EF, Feelders RA (2013) Glucocorticoid sensitivity in health and disease. Nat Rev Endocrinol 9(11):670–686. doi:10.1038/nrendo.2013.183

    Article  CAS  PubMed  Google Scholar 

  14. Smith LK, Shah RR, Cidlowski JA (2010) Glucocorticoids modulate microRNA expression and processing during lymphocyte apoptosis. J Biol Chem 285(47):36698–36708. doi:10.1074/jbc.M110.162123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Allen DL, Loh AS (2011) Posttranscriptional mechanisms involving microRNA-27a and b contribute to fast-specific and glucocorticoid-mediated myostatin expression in skeletal muscle. Am J Physiol Cell Physiol 300(1):C124–C137. doi:10.1152/ajpcell.00142.2010

    Article  CAS  PubMed  Google Scholar 

  16. Rainer J, Ploner C, Jesacher S, Ploner A, Eduardoff M, Mansha M, Wasim M, Panzer-Grumayer R, Trajanoski Z, Niederegger H, Kofler R (2009) Glucocorticoid-regulated microRNAs and mirtrons in acute lymphoblastic leukemia. Leukemia 23(4):746–752. doi:10.1038/leu.2008.370

    Article  CAS  PubMed  Google Scholar 

  17. Leung KW, Cheng Y-K, Mak NK, Chan KKC, David Fan TP, Wong RNS (2006) Signaling pathway of ginsenoside-Rg1 leading to nitric oxide production in endothelial cells. FEBS Lett 580(13):3211–3216. doi:10.1016/j.febslet.2006.04.080

    Article  CAS  PubMed  Google Scholar 

  18. Sengupta S (2004) Modulating angiogenesis: the Yin and the Yang in Ginseng. Circulation 110(10):1219–1225. doi:10.1161/01.cir.0000140676.88412.cf

    Article  CAS  PubMed  Google Scholar 

  19. Chan L-S, Yue PY-K, Mak N-K, Wong RN-S (2009) Role of microRNA-214 in ginsenoside-Rg1-induced angiogenesis. Eur J Pharm Sci 38(4):370–377. doi:10.1016/j.ejps.2009.08.008

    Article  CAS  PubMed  Google Scholar 

  20. Chan LS, Yue PYK, Wong YY, Wong RNS (2013) MicroRNA-15b contributes to ginsenoside-Rg1-induced angiogenesis through increased expression of VEGFR-2. Biochem Pharmacol 86(3):392–400. doi:10.1016/j.bcp.2013.05.006

    Article  CAS  PubMed  Google Scholar 

  21. Kwok HH, Chan LS, Poon PY, Yue PY, Wong RN (2015) Ginsenoside-Rg induces angiogenesis by the inverse regulation of MET tyrosine kinase receptor expression through miR-23a. Toxicol Appl Pharmacol. doi:10.1016/j.taap.2015.06.014

    PubMed  Google Scholar 

  22. Leung KW, Pon YL, Wong RN, Wong AS (2006) Ginsenoside-Rg1 induces vascular endothelial growth factor expression through the glucocorticoid receptor-related phosphatidylinositol 3-kinase/Akt and beta-catenin/T-cell factor-dependent pathway in human endothelial cells. J Biol Chem 281(47):36280–36288

    Article  CAS  PubMed  Google Scholar 

  23. Schmittgen TD, Jiang J, Liu Q, Yang L (2004) A high-throughput method to monitor the expression of microRNA precursors. Nucleic Acids Res 32(4):e43

    Article  PubMed  PubMed Central  Google Scholar 

  24. Schmittgen TD, Lee EJ, Jiang J, Sarkar A, Yang L, Elton TS, Chen C (2008) Real-time PCR quantification of precursor and mature microRNA. Methods 44(1):31–38. doi:10.1016/j.ymeth.2007.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li H, Chen W, Zhou Y, Abidi P, Sharpe O, Robinson WH, Kraemer FB, Liu J (2009) Identification of mRNA binding proteins that regulate the stability of LDL receptor mRNA through AU-rich elements. J Lipid Res 50(5):820–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chan YK, Zhang H, Liu P, Tsao SW, Lung ML, Mak NK, Ngok-Shun Wong R, Ying-Kit Yue P (2015) Proteomic analysis of exosomes from nasopharyngeal carcinoma cell identifies intercellular transfer of angiogenic proteins. Int J Cancer 137(8):1830–1841. doi:10.1002/ijc.29562

    Article  CAS  PubMed  Google Scholar 

  27. Poon PY, Kwok HH, Yue PYK, Yang MSM, Mak NK, Wong CKC, Wong RNS (2011) Cytoprotective effect of 20(S)-Rg3 on benzo[a]pyrene-induced DNA damage. Drug Metab Dispos 40(1):120–129. doi:10.1124/dmd.111.039503

    Article  PubMed  Google Scholar 

  28. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Allegra D, Mertens D (2011) In-vivo quantification of primary microRNA processing by Drosha with a luciferase based system. Biochem Biophys Res Commun 406(4):501–505. doi:10.1016/j.bbrc.2011.02.055

    Article  CAS  PubMed  Google Scholar 

  30. Kwok HH, Guo GL, Lau JK, Cheng YK, Wang JR, Jiang ZH, Keung MH, Mak NK, Yue PY, Wong RN (2012) Stereoisomers ginsenosides-20(S)-Rg(3) and -20(R)-Rg(3) differentially induce angiogenesis through peroxisome proliferator-activated receptor-gamma. Biochem Pharmacol 83(7):893–902

    Article  CAS  PubMed  Google Scholar 

  31. Michlewski G, Cáceres JF (2010) Antagonistic role of hnRNP A1 and KSRP in the regulation of let-7a biogenesis. Nat Struct Mol Biol 17(8):1011–1018. doi:10.1038/nsmb.1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cho H, Park OH, Park J, Ryu I, Kim J, Ko J, Kim YK (2015) Glucocorticoid receptor interacts with PNRC2 in a ligand-dependent manner to recruit UPF1 for rapid mRNA degradation. Proc Natl Acad Sci USA 112(13):E1540–E1549. doi:10.1073/pnas.1409612112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ishmael FT, Fang X, Houser KR, Pearce K, Abdelmohsen K, Zhan M, Gorospe M, Stellato C (2011) The human glucocorticoid receptor as an RNA-binding protein: global analysis of glucocorticoid receptor-associated transcripts and identification of a target RNA motif. J Immunol 186(2):1189–1198. doi:10.4049/jimmunol.1001794

    Article  CAS  PubMed  Google Scholar 

  34. Guil S, Cáceres JF (2007) The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a. Nat Struct Mol Biol 14(7):591–596. doi:10.1038/nsmb1250

    Article  CAS  PubMed  Google Scholar 

  35. Shanmugam N, Reddy MA, Natarajan R (2008) Distinct roles of heterogeneous nuclear ribonuclear protein K and microRNA-16 in cyclooxygenase-2 RNA stability induced by S100b, a ligand of the receptor for advanced glycation end products. J Biol Chem 283(52):36221–36233. doi:10.1074/jbc.M806322200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hu CE, Liu YC, Zhang HD, Huang GJ (2014) The RNA-binding protein PCBP2 facilitates gastric carcinoma growth by targeting miR-34a. Biochem Biophys Res Commun 448(4):437–442

    Article  CAS  PubMed  Google Scholar 

  37. Tourriere H (2003) The RasGAP-associated endoribonuclease G3BP assembles stress granules. J Cell Biol 160(6):823–831. doi:10.1083/jcb.200212128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Luciano DJ, Mirsky H, Vendetti NJ, Maas S (2004) RNA editing of a miRNA precursor. RNA 10(8):1174–1177. doi:10.1261/rna.7350304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Limbourg FP, Huang Z, Plumier JC, Simoncini T, Fujioka M, Tuckermann J, Schutz G, Moskowitz MA, Liao JK (2002) Rapid nontranscriptional activation of endothelial nitric oxide synthase mediates increased cerebral blood flow and stroke protection by corticosteroids. J Clin Invest 110(11):1729–1738. doi:10.1172/jci15481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hafezi-Moghadam A, Simoncini T, Yang Z, Limbourg FP, Plumier JC, Rebsamen MC, Hsieh CM, Chui DS, Thomas KL, Prorock AJ, Laubach VE, Moskowitz MA, French BA, Ley K, Liao JK (2002) Acute cardiovascular protective effects of corticosteroids are mediated by non-transcriptional activation of endothelial nitric oxide synthase. Nat Med 8(5):473–479. doi:10.1038/nm0502-473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee SR, Kim HK, Youm JB, Dizon LA, Song IS, Jeong SH, Seo DY, Ko KS, Rhee BD, Kim N, Han J (2012) Non-genomic effect of glucocorticoids on cardiovascular system. Pflugers Arch 464(6):549–559. doi:10.1007/s00424-012-1155-2

    Article  CAS  PubMed  Google Scholar 

  42. Rafacho A, Ortsater H, Nadal A, Quesada I (2014) Glucocorticoid treatment and endocrine pancreas function: implications for glucose homeostasis, insulin resistance and diabetes. J Endocrinol 223(3):R49–R62. doi:10.1530/joe-14-0373

    Article  CAS  PubMed  Google Scholar 

  43. Pitzalis C, Pipitone N, Perretti M (2002) Regulation of leukocyte-endothelial interactions by glucocorticoids. Ann N Y Acad Sci 966:108–118

    Article  CAS  PubMed  Google Scholar 

  44. Tokudome S, Sano M, Shinmura K, Matsuhashi T, Morizane S, Moriyama H, Tamaki K, Hayashida K, Nakanishi H, Yoshikawa N, Shimizu N, Endo J, Katayama T, Murata M, Yuasa S, Kaneda R, Tomita K, Eguchi N, Urade Y, Asano K, Utsunomiya Y, Suzuki T, Taguchi R, Tanaka H, Fukuda K (2009) Glucocorticoid protects rodent hearts from ischemia/reperfusion injury by activating lipocalin-type prostaglandin D synthase-derived PGD2 biosynthesis. J Clin Invest 119(6):1477–1488. doi:10.1172/jci37413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Ms. Hoi Ki LEE for her preliminary work on this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricky Ngok-Shun Wong.

Ethics declarations

Funding

This work was supported by the Dr. Gilbert Hung Ginseng Laboratory Fund.

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwok, HH., Poon, PY., Mak, K.HM. et al. Role of G3BP1 in glucocorticoid receptor-mediated microRNA-15b and microRNA-23a biogenesis in endothelial cells. Cell. Mol. Life Sci. 74, 3613–3630 (2017). https://doi.org/10.1007/s00018-017-2540-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2540-y

Keywords

Navigation