Skip to main content

Advertisement

Log in

Epigenetics: a link between addiction and social environment

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The detrimental effects of drug abuse are apparently not limited to individuals but may also impact the vulnerability of their progenies to develop addictive behaviours. Epigenetic signatures, early life experience and environmental factors, converge to influence gene expression patterns in addiction phenotypes and consequently may serve as mediators of behavioural trait transmission between generations. The majority of studies investigating the role of epigenetics in addiction do not consider the influence of social interactions. This shortcoming in current experimental approaches necessitates developing social models that reflect the addictive behaviour in a free-living social environment. Furthermore, this review also reports on the advancement of interventions for drug addiction and takes into account the emerging roles of histone deacetylase (HDAC) inhibitors in the etiology of drug addiction and that HDAC may be a potential therapeutic target at nucleosomal level to improve treatment outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8(11):1481–1489

    Article  CAS  PubMed  Google Scholar 

  2. Lieb R (2015) Epidemiological perspectives on comorbidity between substance use disorders and other mental disorders. In: Dom G, Moggi F (eds) Co-occurring Addictive and Psychiatric Disorders. Springer, Heidelberg, pp 3–12

  3. Nelson PK et al (2011) Global epidemiology of hepatitis B and hepatitis C in people who inject drugs: results of systematic reviews. Lancet 378(9791):571–583

    Article  PubMed  PubMed Central  Google Scholar 

  4. Compton WM et al (2005) Developments in the epidemiology of drug use and drug use disorders. Am J Psychiatry 162(8):1494–1502

    Article  PubMed  Google Scholar 

  5. Renthal W, Nestler EJ (2008) Epigenetic mechanisms in drug addiction. Trends Mol Med 14(8):341–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Graham DL et al (2007) Dynamic BDNF activity in nucleus accumbens with cocaine use increases self-administration and relapse. Nat Neurosci 10(8):1029–1037

    Article  CAS  PubMed  Google Scholar 

  7. Lu L et al (2004) A single infusion of brain-derived neurotrophic factor into the ventral tegmental area induces long-lasting potentiation of cocaine seeking after withdrawal. J Neurosci 24(7):1604–1611

    Article  CAS  PubMed  Google Scholar 

  8. Ting-A-Kee R et al (2013) Infusion of brain-derived neurotrophic factor into the ventral tegmental area switches the substrates mediating ethanol motivation. Eur J Neurosci 37(6):996–1003

    Article  PubMed  Google Scholar 

  9. Bowers MS et al (2004) Activator of G protein signaling 3: a gatekeeper of cocaine sensitization and drug seeking. Neuron 42(2):269–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kelz MB et al (1999) Expression of the transcription factor ∆FosB in the brain controls sensitivity to cocaine. Nature 401(6750):272–276

    Article  CAS  PubMed  Google Scholar 

  11. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33:245–254

    Article  CAS  PubMed  Google Scholar 

  12. Weaver IC et al (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7(8):847–854

    Article  CAS  PubMed  Google Scholar 

  13. Abifadel M et al (2003) Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 34(2):154–156

    Article  CAS  PubMed  Google Scholar 

  14. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293(5532):1074–1080

    Article  CAS  PubMed  Google Scholar 

  15. Renthal W, Nestler EJ (2009) Chromatin regulation in drug addiction and depression. Dialog Clin Neurosci 11(3):257

    Google Scholar 

  16. Houri-Zeevi L, Rechavi O (2017) A matter of time: small RNAs regulate the duration of epigenetic inheritance. Trends Genet 33(1):46–57

    Article  CAS  PubMed  Google Scholar 

  17. Starkman BG, Sakharkar AJ, Pandey SC (2011) Epigenetics—beyond the genome in alcoholism. Alcohol Res-Curr Rev 34(3):293

    Google Scholar 

  18. Nestler EJ (2014) Epigenetic mechanisms of drug addiction. Neuropharmacology 76:259–268

    Article  CAS  PubMed  Google Scholar 

  19. Im H-I et al (2010) MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212. Nat Neurosci 13(9):1120–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. He D-Y, Neasta J, Ron D (2010) Epigenetic regulation of BDNF expression via the scaffolding protein RACK1. J Biol Chem 285(25):19043–19050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moonat S et al (2011) The role of amygdaloid brain-derived neurotrophic factor, activity-regulated cytoskeleton-associated protein and dendritic spines in anxiety and alcoholism. Addict Biol 16(2):238–250

    Article  CAS  PubMed  Google Scholar 

  22. Antequera F (2003) Structure, function and evolution of CpG island promoters. Cell Mol Life Sci CMLS 60(8)1647–1658

    Article  CAS  PubMed  Google Scholar 

  23. Maunakea AK et al (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466(7303):253–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Feng J, Fan G (2009) The role of DNA methylation in the central nervous system and neuropsychiatric disorders. Int Rev Neurobiol 89:67–84

    Article  CAS  PubMed  Google Scholar 

  25. Dong E et al (2007) Reviewing the role of DNA (cytosine-5) methyltransferase overexpression in the cortical GABAergic dysfunction associated with psychosis vulnerability. Epigenetics 2(1):29–36

    Article  PubMed  Google Scholar 

  26. Costa E, Grayson DR, Guidotti A (2003) Epigenetic downregulation of GABAergic function in schizophrenia: potential for pharmacological intervention? Mol Interv 3(4):220

    Article  CAS  PubMed  Google Scholar 

  27. Moore LD, Le T, Fan G (2013) DNA methylation and its basic function. Neuropsychopharmacology 38(1):23–38

    Article  CAS  PubMed  Google Scholar 

  28. LaPlant Q et al (2010) Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nat Neurosci 13(9):1137–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lagali P, Corcoran C, Picketts D (2010) Hippocampus development and function: role of epigenetic factors and implications for cognitive disease. Clin Genet 78(4):321–333

    Article  CAS  PubMed  Google Scholar 

  30. Jiang Y et al (2008) Epigenetics in the nervous system. J Neurosci 28(46):11753–11759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Grayson DR, Kundakovic M, Sharma RP (2010) Is there a future for histone deacetylase inhibitors in the pharmacotherapy of psychiatric disorders? Mol Pharmacol 77(2):126–135

    Article  CAS  PubMed  Google Scholar 

  32. Robinson TE, Berridge KC (2001) Incentive-sensitization and addiction. Addiction 96(1):103–114

    Article  CAS  PubMed  Google Scholar 

  33. Fattore L, Melis M (2016) Sex differences in impulsive and compulsive behaviors: a focus on drug addiction. Addict Biol 21(5):1043–1051

    Article  PubMed  Google Scholar 

  34. Chavkin C, Koob GF (2016) Dynorphin, Dysphoria, and Dependence: the Stress of Addiction. Neuropsychopharmacology 41(1):373–374

    Article  CAS  PubMed  Google Scholar 

  35. Ahmed S (2012) The science of making drug-addicted animals. Neuroscience 211:107–125

    Article  CAS  PubMed  Google Scholar 

  36. Sinha R (2008) Chronic stress, drug use, and vulnerability to addiction. Ann N Y Acad Sci 1141(1):105–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Deminière JM et al (1992) Increased locomotor response to novelty and propensity to intravenous amphetamine self-administration in adult offspring of stressed mothers. Brain Res 586(1):135–139

    Article  PubMed  Google Scholar 

  38. Isengulova A, Kalmykova Z, Miroshnichenko I (2009) The significance of maternal care for the formation of ethanol preference in rats periodically separated from mothers during the first half of the nest period. Bull Exp Biol Med 147(4):390–393

    Article  CAS  PubMed  Google Scholar 

  39. Francis D, Kuhar M (2008) Frequency of maternal licking and grooming correlates negatively with vulnerability to cocaine and alcohol use in rats. Pharmacology Biochemistry Behavior 90(3):497–500

    Article  CAS  Google Scholar 

  40. Yap JJ, Miczek KA (2007) Social defeat stress, sensitization, and intravenous cocaine self-administration in mice. Psychopharmacology (Berl) 192(2):261–273

    Article  CAS  Google Scholar 

  41. Burke AR, Miczek KA (2015) Escalation of cocaine self-administration in adulthood after social defeat of adolescent rats: role of social experience and adaptive coping behavior. Psychopharmacology (Berl) 232(16):3067–3079

    Article  CAS  Google Scholar 

  42. Rodríguez-Arias M et al (2017) Effects of repeated social defeat on adolescent mice on cocaine-induced CPP and self-administration in adulthood: integrity of the blood–brain barrier. Addict Biol  22:129–141

    Article  CAS  Google Scholar 

  43. Montagud-Romero S et al (2016) Up-regulation of histone acetylation induced by social defeat mediates the conditioned rewarding effects of cocaine. Prog Neuropsychopharmacol Biol Psychiatry 70:39–48

    Article  CAS  PubMed  Google Scholar 

  44. Lewis CR et al (2016) Interactions between Early Life Stress, Nucleus Accumbens MeCP2 Expression, and Methamphetamine Self-Administration in Male Rats. Neuropsychopharmacology 41(12):2851–2861

    Article  CAS  PubMed  Google Scholar 

  45. Lewis CR et al (2013) The Effects of Maternal Separation on Adult Methamphetamine Self-Administration, Extinction, Reinstatement, and MeCP2 Immunoreactivity in the Nucleus Accumbens. Front Psychiatry 4:55

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Tesone-Coelho C et al (2015) Vulnerability to opiate intake in maternally deprived rats: implication of MeCP2 and of histone acetylation. Addict Biol 20(1):120–131

    Article  CAS  PubMed  Google Scholar 

  47. Champagne FA, Curley JP (2009) Epigenetic mechanisms mediating the long-term effects of maternal care on development. Neuroscience Biobehavioral Reviews 33(4):593–600

    Article  PubMed  Google Scholar 

  48. McGowan PO et al (2009) Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci 12(3):342–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Feinberg AP, Fallin MD (2015) Epigenetics at the crossroads of genes and the environment. Jama 314(11):1129–1130

    Article  CAS  PubMed  Google Scholar 

  50. Lewis CR, Olive MF (2014) Early life stress interactions with the epigenome: potential mechanisms driving vulnerability towards psychiatric illness. Behav Pharmacol 25(5 0 6):341

    PubMed  PubMed Central  Google Scholar 

  51. Schwarz JM, Hutchinson MR, Bilbo SD (2011) Early-life experience decreases drug-induced reinstatement of morphine CPP in adulthood via microglial-specific epigenetic programming of anti-inflammatory IL-10 expression. The Journal of Neuroscience 31(49):17835–17847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li X et al (2015) Environmental enrichment blocks reinstatement of ethanol-induced conditioned place preference in mice. Neurosci Lett 599:92–96

    Article  CAS  PubMed  Google Scholar 

  53. Chauvet C et al (2009) Environmental enrichment reduces cocaine seeking and reinstatement induced by cues and stress but not by cocaine. Neuropsychopharmacology 34(13):2767–2778

    Article  PubMed  PubMed Central  Google Scholar 

  54. Thiel KJ et al (2009) Anti-craving effects of environmental enrichment. Int J Neuropsychopharmacolog 12(9):1151–1156

    Article  Google Scholar 

  55. Zhang Y et al (2014) Overexpression of DeltaFosB in nucleus accumbens mimics the protective addiction phenotype, but not the protective depression phenotype of environmental enrichment. Front Behav Neurosci 8:297

    PubMed  PubMed Central  Google Scholar 

  56. Richards EJ (2006) Inherited epigenetic variation—revisiting soft inheritance. Nat Rev Genet 7(5):395–401

    Article  CAS  PubMed  Google Scholar 

  57. Renthal W et al (2007) Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli. Neuron 56(3):517–529

    Article  CAS  PubMed  Google Scholar 

  58. Maruska KP, Fernald RD (2011) Social regulation of gene expression in the hypothalamic-pituitary-gonadal axis. Physiology 26(6):412–423

    Article  CAS  PubMed  Google Scholar 

  59. Champagne FA (2010) Epigenetic influence of social experiences across the lifespan. Dev Psychobiol 52(4):299–311

    Article  CAS  PubMed  Google Scholar 

  60. Champagne FA, Meaney MJ (2007) Transgenerational effects of social environment on variations in maternal care and behavioral response to novelty. Behav Neurosci 121(6):1353

    Article  PubMed  Google Scholar 

  61. Borghol N et al (2012) Associations with early-life socio-economic position in adult DNA methylation. Int J Epidemiol 41(1):62–74

    Article  PubMed  Google Scholar 

  62. McGuinness D et al (2012) Socio-economic status is associated with epigenetic differences in the pSoBid cohort. Int J Epidemiol 41:151–160

    Article  PubMed  Google Scholar 

  63. Ponomarev I et al (2012) Gene coexpression networks in human brain identify epigenetic modifications in alcohol dependence. J Neurosci 32(5):1884–1897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kaminen-Ahola N et al (2010) Maternal ethanol consumption alters the epigenotype and the phenotype of offspring in a mouse model. PLoS Genet 6(1):e1000811

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Ouko LA et al (2009) Effect of alcohol consumption on CpG methylation in the differentially methylated regions of H19 and IG-DMR in male gametes—implications for fetal alcohol spectrum disorders. Alcohol Clin Exp Res 33(9):1615–1627

    Article  CAS  PubMed  Google Scholar 

  66. Bohacek J, Mansuy IM (2013) Epigenetic inheritance of disease and disease risk. Neuropsychopharmacology 38(1):220–236

    Article  CAS  PubMed  Google Scholar 

  67. Haycock PC (2009) Fetal alcohol spectrum disorders: the epigenetic perspective. Biol Reprod 81(4):607–617

    Article  CAS  PubMed  Google Scholar 

  68. Pascual M et al (2012) Changes in histone acetylation in the prefrontal cortex of ethanol-exposed adolescent rats correlate with ethanol-induced place conditioning. Alcohol Clin Exp Res 36:84

    Google Scholar 

  69. Pascual M et al (2012) Changes in histone acetylation in the prefrontal cortex of ethanol-exposed adolescent rats are associated with ethanol-induced place conditioning. Neuropharmacology 62(7):2309–2319

    Article  CAS  PubMed  Google Scholar 

  70. Liu Y et al (2009) Alcohol exposure alters DNA methylation profiles in mouse embryos at early neurulation. Epigenetics 4(7):500–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Anier K et al (2010) DNA methylation regulates cocaine-induced behavioral sensitization in mice. Neuropsychopharmacology 35(12):2450–2461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sadri-Vakili G et al (2010) Cocaine-induced chromatin remodeling increases brain-derived neurotrophic factor transcription in the rat medial prefrontal cortex, which alters the reinforcing efficacy of cocaine. J Neurosci 30(35):11735–11744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Skinner MK, Manikkam M, Guerrero-Bosagna C (2010) Epigenetic transgenerational actions of environmental factors in disease etiology. Trends Endocrinol Metabol 21(4):214–222

    Article  CAS  Google Scholar 

  74. Wang L et al (2010) Chronic cocaine-induced H3 acetylation and transcriptional activation of CaMKIIα in the nucleus accumbens is critical for motivation for drug reinforcement. Neuropsychopharmacology 35(4):913–928

    Article  CAS  PubMed  Google Scholar 

  75. Maze I et al (2010) Essential role of the histone methyltransferase G9a in cocaine-induced plasticity. Science 327(5962):213–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Vassoler FM et al (2013) Epigenetic inheritance of a cocaine-resistance phenotype. Nat Neurosci 16(1):42–47

    Article  CAS  PubMed  Google Scholar 

  77. Novikova SI et al (2008) Maternal cocaine administration in mice alters DNA methylation and gene expression in hippocampal neurons of neonatal and prepubertal offspring. PLoS One 3(4):e1919–e1919

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Meyer K, Zhang H, Zhang L (2009) Direct effect of cocaine on epigenetic regulation of PKCɛ gene repression in the fetal rat heart. J Mol Cell Cardiol 47(4):504–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Caprioli D et al (2007) Modeling the role of environment in addiction. Prog Neuropsychopharmacol Biol Psychiatry 31(8):1639–1653

    Article  PubMed  Google Scholar 

  80. Araujo NP et al (2005) The importance of housing conditions on behavioral sensitization and tolerance to ethanol. Pharmacol Biochem Behav 82(1):40–45

    Article  CAS  PubMed  Google Scholar 

  81. Matsuda T et al (2001) Functional alteration of brain dopaminergic system in isolated aggressive mice. Nihon shinkei seishin yakurigaku zasshi = Jpn J Psychopharmacol 21(3):71–76

    CAS  Google Scholar 

  82. D’Arbe M, Einstein R, Lavidis N (2002) Stressful animal housing conditions and their potential effect on sympathetic neurotransmission in mice. Am J Physiol-Regul Integr Comp Physiol 282(5):R1422–R1428

    Article  PubMed  Google Scholar 

  83. McCormick CM et al (2005) Long-lasting, sex-and age-specific effects of social stressors on corticosterone responses to restraint and on locomotor responses to psychostimulants in rats. Horm Behav 48(1):64–74

    Article  CAS  PubMed  Google Scholar 

  84. McCormick CM et al (2010) Hippocampal cell proliferation and spatial memory performance after social instability stress in adolescence in female rats. Behav Brain Res 208(1):23–29

    Article  PubMed  Google Scholar 

  85. Shahbazi M et al (2008) Age-and sex-dependent amphetamine self-administration in rats. Psychopharmacology (Berl) 196(1):71–81

    Article  CAS  Google Scholar 

  86. Lin, E.-J.D. et al (2011) Environmental enrichment exerts sex-specific effects on emotionality in C57BL/6 J mice. Behav Brain Res 216(1):349–357

    Article  PubMed  Google Scholar 

  87. Sterlemann V et al (2008) Long-term behavioral and neuroendocrine alterations following chronic social stress in mice: implications for stress-related disorders. Horm Behav 53(2):386–394

    Article  CAS  PubMed  Google Scholar 

  88. McHugh RK, Hearon BA, Otto MW (2010) Cognitive behavioral therapy for substance use disorders. Psychiatr Clin North Am 33(3):511–525

    Article  PubMed  PubMed Central  Google Scholar 

  89. Krupnick J (2009) Computer-assisted delivery of cognitive-behavioral therapy for addiction. Year Book of Psychiatry and Applied Mental Health, 72–73

  90. Anton RF et al (2006) Combined pharmacotherapies and behavioral interventions for alcohol dependence: the COMBINE study: a randomized controlled trial. Jama 295(17):2003–2017

    Article  CAS  PubMed  Google Scholar 

  91. Carroll KM (2003) Integrating psychotherapy and pharmacotherapy in substance abuse treatment. In: Rotgers F, Morgenstern, J, Walters ST (eds) Treating Substance Abuse: Theory and Technique. Guilford Press, New York, pp 314–342

  92. Volkow ND, Skolnick P (2012) New medications for substance use disorders: challenges and opportunities. Neuropsychopharmacology 37(1):290–292

    Article  CAS  PubMed  Google Scholar 

  93. Shorter D, Kosten TR (2011) Novel pharmacotherapeutic treatments for cocaine addiction. BMC Med 9(1):119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zheng F, Zhan C-G (2009) Recent progress in protein drug design and discovery with a focus on novel approaches to the development of anticocaine medications. Future Med Chem 1(3):515–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zheng F, Zhan C-G (2011) Enzyme-therapy approaches for the treatment of drug overdose and addiction. Future Med Chem 3(1):9–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kinsey BM, Jackson DC, Orson FM (2009) Anti-drug vaccines to treat substance abuse. Immunol Cell Biol 87(4):309–314

    Article  CAS  PubMed  Google Scholar 

  97. Zhan C-G (2009) Novel pharmacological approaches to treatment of drug overdose and addiction. Expert Rev Clin Pharmacol 2(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Collins GT et al (2009) Cocaine esterase prevents cocaine-induced toxicity and the ongoing intravenous self-administration of cocaine in rats. J Pharmacol Exp Ther 331(2):445–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Brim RL et al (2010) A thermally stable form of bacterial cocaine esterase: a potential therapeutic agent for treatment of cocaine abuse. Mol Pharmacol 77(4):593–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Montoya ID (2015) Biologics (vaccines, antibodies, enzymes) to treat drug addictions. In: Nady elGuebaly GC, Galanter M (eds) Textbook of Addiction Treatment: International Perspectives. Springer, New York, pp 683–692

  101. Bonoiu AC et al (2009) Nanotechnology approach for drug addiction therapy: gene silencing using delivery of gold nanorod-siRNA nanoplex in dopaminergic neurons. Proc Natl Acad Sci 106(14):5546–5550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fischer A et al (2010) Targeting the correct HDAC (s) to treat cognitive disorders. Trends Pharmacol Sci 31(12):605–617

    Article  CAS  PubMed  Google Scholar 

  103. Kazantsev AG, Thompson LM (2008) Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discovery 7(10):854–868

    Article  CAS  PubMed  Google Scholar 

  104. Cadet JL (2016) Epigenetics of stress, addiction, and resilience: therapeutic implications. Mol Neurobiol 53(1):545–560

    Article  CAS  PubMed  Google Scholar 

  105. Malvaez M et al (2011) CBP in the nucleus accumbens regulates cocaine-induced histone acetylation and is critical for cocaine-associated behaviors. J Neurosci 31(47):16941–16948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Madsen HB et al (2012) CREB1 and CREB-binding protein in striatal medium spiny neurons regulate behavioural responses to psychostimulants. Psychopharmacology (Berl) 219(3):699–713

    Article  CAS  Google Scholar 

  107. Tsankova NM et al (2006) Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 9(4):519–525

    Article  CAS  PubMed  Google Scholar 

  108. Levenson JM et al (2004) Regulation of histone acetylation during memory formation in the hippocampus. J Biol Chem 279(39):40545–40559

    Article  CAS  PubMed  Google Scholar 

  109. Renthal W, Nestler EJ (2009) Histone acetylation in drug addiction. In Seminars in cell & developmental biology. Academic Press 20(4):387–394

  110. Lewis CR, Olive MF (2013) Epigenetic modifications as novel targets for drug addiction. Front CNS Drug Discov 17:26–42

    Article  Google Scholar 

  111. Johnstone RW (2002) Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov 1(4) 287–299

    Article  CAS  PubMed  Google Scholar 

  112. Minucci S, Pelicci PG (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6(1):38–51

    Article  CAS  PubMed  Google Scholar 

  113. McQuown SC, Wood MA (2010) Epigenetic regulation in substance use disorders. Curr Psychiatry Rep 12(2):145–153

    Article  PubMed  PubMed Central  Google Scholar 

  114. Vecsey CG et al (2007) Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB: CBP-dependent transcriptional activation. J Neurosci 27(23):6128–6140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Stefanko DP et al (2009) Modulation of long-term memory for object recognition via HDAC inhibition. Proc Natl Acad Sci 106(23):9447–9452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Malvaez M et al (2010) Modulation of chromatin modification facilitates extinction of cocaine-induced conditioned place preference. Biol Psychiatry 67(1):36–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sun J et al (2008) The effects of sodium butyrate, an inhibitor of histone deacetylase, on the cocaine-and sucrose-maintained self-administration in rats. Neurosci Lett 441(1):72–76

    Article  CAS  PubMed  Google Scholar 

  118. Romieu P et al (2008) Histone deacetylase inhibitors decrease cocaine but not sucrose self-administration in rats. J Neurosci 28(38):9342–9348

    Article  CAS  PubMed  Google Scholar 

  119. D’Addario C et al (2013) Ethanol induces epigenetic modulation of prodynorphin and pronociceptin gene expression in the rat amygdala complex. J Mol Neurosci 49(2):312–319

    Article  PubMed  CAS  Google Scholar 

  120. Arora DS et al (2013) Hyposensitivity to gamma-aminobutyric acid in the ventral tegmental area during alcohol withdrawal: reversal by histone deacetylase inhibitors. Neuropsychopharmacology 38(9):1674–1684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Botia B et al (2012) Expression of ethanol-induced behavioral sensitization is associated with alteration of chromatin remodeling in mice. ​PloS one 7(10):e47527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kumar A et al (2005) Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron 48(2):303–314

    Article  CAS  PubMed  Google Scholar 

  123. Wang L et al (2009) Chronic cocaine-induced H3 acetylation and transcriptional activation of CaMKII[alpha] in the nucleus accumbens is critical for motivation for drug reinforcement. Neuropsychopharmacology 35(4):913–928

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Schmidt HD et al (2012) Increased brain-derived neurotrophic factor (BDNF) expression in the ventral tegmental area during cocaine abstinence is associated with increased histone acetylation at BDNF exon I-containing promoters. J Neurochem 120(2):202–209

    Article  CAS  PubMed  Google Scholar 

  125. Kennedy PJ et al (2013) Class I HDAC inhibition blocks cocaine-induced plasticity by targeted changes in histone methylation. Nat Neurosci 16(4):434–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Montoya ID, Vocci F (2008) Novel medications to treat addictive disorders. Curr Psychiatry Rep 10(5):392–398

    Article  PubMed  PubMed Central  Google Scholar 

  127. Jorenby DE et al (1999) A controlled trial of sustained-release bupropion, a nicotine patch, or both for smoking cessation. N Engl J Med 340(9):685–691

    Article  CAS  PubMed  Google Scholar 

  128. Johnson BA et al (2003) Dose-ranging kinetics and behavioral pharmacology of naltrexone and acamprosate, both alone and combined, in alcohol-dependent subjects. J Clin Psychopharmacol 23(3):281–293

    CAS  PubMed  Google Scholar 

  129. Substance Abuse and Mental Health Services Administration (SAMHSA) (2009) Incorporating alcohol pharmacotherapies into medical practice. Treatment improvement protocol (TIP) series 49. HHS publication no. (SMA) 12–4380  

  130. Johnson BA (2008) Update on neuropharmacological treatments for alcoholism: Scientific basis and clinical findings. Biochem Pharmacol 75(1):34–56

    Article  CAS  PubMed  Google Scholar 

  131. Fishman MJ et al (2010) Treatment of opioid dependence in adolescents and young adults with extended release naltrexone: preliminary case-series and feasibility. Addiction 105(9):1669–1676

    Article  PubMed  Google Scholar 

  132. Marsch LA et al (2005) Predictors of outcome in LAAM, buprenorphine, and methadone treatment for opioid dependence. Exp Clin Psychopharmacol 13(4):293

    Article  PubMed  Google Scholar 

  133. ​Leung CM (2003) Handbook of clinical alcoholism treatment. Hong Kong J Psychiatry 13(3):31–32

    Google Scholar 

  134. Heilig M, Egli M (2006) Pharmacological treatment of alcohol dependence: target symptoms and target mechanisms. Pharmacol Ther 111(3):855–876

    Article  CAS  PubMed  Google Scholar 

  135. Le Foll B, Goldberg SR (2005) Cannabinoid CB1 receptor antagonists as promising new medications for drug dependence. J Pharmacol Exp Ther 312(3):875–883

    Article  CAS  PubMed  Google Scholar 

  136. Karila L et al (2010) Pharmacological approaches to methamphetamine dependence: a focused review. Br J Clin Pharmacol 69(6):578–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Berk M et al (2013) The promise of N-acetylcysteine in neuropsychiatry. Trends Pharmacol Sci 34(3):167–177

    Article  CAS  PubMed  Google Scholar 

  138. Murray J, Lacoste J, Belin D (2012) N-Acetylcysteine as a treatment for addiction. In: Belin D (ed) Addictions: from pathophysiology to treatment. InTech, Rijeka, pp 335–380

  139. O’Brien CP (2005) Anticraving medications for relapse prevention: a possible new class of psychoactive medications. Am J Psychiatry 162(8):1423–1431

    Article  PubMed  Google Scholar 

  140. Leavitt S (2002) Evidence for the efficacy of naltrexone in the treatment of alcohol dependence (alcoholism). In: Addiction Treatment Forum: Naltrexone Clinical Update, pp 1–8

  141. Sinha R et al (2007) Sex steroid hormones, stress response, and drug craving in cocaine-dependent women: implications for relapse susceptibility. Exp Clin Psychopharmacol 15(5):445

    Article  CAS  PubMed  Google Scholar 

  142. Walsh SL et al (1996) Effects of naltrexone on response to intravenous cocaine, hydromorphone and their combination in humans. J Pharmacol Exp Ther 279(2):524–538

    CAS  PubMed  Google Scholar 

  143. Health, U.D.o. and H. Services, Substance Abuse and Mental Health Services Administration (2014) National registry of evidence-based programs and practices (NREPP), 2013

  144. Leshner AI (1997) Addiction is a brain disease, and it matters. Science 278(5335):45–47

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to express our appreciation to the College of Health Sciences (CHS) of University of KwaZulu-Natal for granting a PhD Scholarship to D.C Ajonijebu and a postdoctoral fellowship to O. Abboussi. The authors also wish to acknowledge the National Research Foundation (NRF) of South Africa who supports the research of MV Mabandla and WMU Daniels.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oualid Abboussi.

Ethics declarations

Conflict of interest

All authors have no conflict of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajonijebu, D.C., Abboussi, O., Russell, V.A. et al. Epigenetics: a link between addiction and social environment. Cell. Mol. Life Sci. 74, 2735–2747 (2017). https://doi.org/10.1007/s00018-017-2493-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2493-1

Keywords

Navigation