Skip to main content
Log in

Searching for convergent pathways in autism spectrum disorders: insights from human brain transcriptome studies

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Autism spectrum disorder (ASD) is one of the most heritable neuropsychiatric conditions. The complex genetic landscape of the disorder includes both common and rare variants at hundreds of genetic loci. This marked heterogeneity has thus far hampered efforts to develop genetic diagnostic panels and targeted pharmacological therapies. Here, we give an overview of the current literature on the genetic basis of ASD, and review recent human brain transcriptome studies and their role in identifying convergent pathways downstream of the heterogeneous genetic variants. We also discuss emerging evidence on the involvement of non-coding genomic regions and non-coding RNAs in ASD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Volkmar F, Reichow B (2013) Autism in DSM-5: progress and challenges. Mol Autism 4(1):13

    Article  PubMed  PubMed Central  Google Scholar 

  2. Elsabbagh M et al (2012) Global prevalence of autism and other pervasive developmental disorders. Autism Res 5(3):160–179

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bailey A et al (1995) Autism as a strongly genetic disorder: evidence from a British twin study. Psychol Med 25(1):63–77

    Article  CAS  PubMed  Google Scholar 

  4. Steffenburg S et al (1989) A twin study of autism in Denmark, Finland, Iceland, Norway and Sweden. J Child Psychol Psychiatry 30(3):405–416

    Article  CAS  PubMed  Google Scholar 

  5. Hallmayer J et al (2011) Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry 68(11):1095–1102

    Article  PubMed  PubMed Central  Google Scholar 

  6. De Rubeis S, Buxbaum JD (2015) Recent advances in the genetics of autism spectrum disorder. Curr Neurol Neurosci Rep 15(6):36

    Article  PubMed  CAS  Google Scholar 

  7. Gaugler T et al (2014) Most genetic risk for autism resides with common variation. Nat Genet 46(8):881–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sandin S et al (2014) The familial risk of autism. JAMA 311(17):1770–1777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Genome of the Netherlands, C (2014) Whole-genome sequence variation, population structure and demographic history of the Dutch population. Nat Genet 46(8):818–825

    Article  CAS  Google Scholar 

  10. Fu W et al (2013) Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants. Nature 493(7431):216–220

    Article  CAS  PubMed  Google Scholar 

  11. Warrier V et al (2015) A comprehensive meta-analysis of common genetic variants in autism spectrum conditions. Mol Autism 6:49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Wang K et al (2009) Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature 459(7246):528–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Weiss L et al (2009) A genome-wide linkage and association scan reveals novel loci for autism. Nature 461(7265):802–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Anney R et al (2010) A genome-wide scan for common alleles affecting risk for autism. Hum Mol Genet 19(20):4072–4082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chaste P et al (2015) A genome-wide association study of autism using the Simons Simplex Collection: does reducing phenotypic heterogeneity in autism increase genetic homogeneity? Biol Psychiatry 77(9):775–784

    Article  PubMed  Google Scholar 

  16. Bernier R et al (2014) Disruptive CHD8 mutations define a subtype of autism early in development. Cell 158(2):263–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Klei L et al (2012) Common genetic variants, acting additively, are a major source of risk for autism. Mol Autism 3(1):9

    Article  PubMed  PubMed Central  Google Scholar 

  18. Marshall CR et al (2008) Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet 82(2):477–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ivanov A et al (2015) Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep 10(2):170–177

    Article  CAS  PubMed  Google Scholar 

  20. Chahrour M, Zoghbi HY (2007) The story of Rett syndrome: from clinic to neurobiology. Neuron 56(3):422–437

    Article  CAS  PubMed  Google Scholar 

  21. Bhakar A, Dölen G, Bear M (2012) The pathophysiology of fragile X (and what it teaches us about synapses). Annu Rev Neurosci 35:417–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tsai P, Sahin M (2011) Mechanisms of neurocognitive dysfunction and therapeutic considerations in tuberous sclerosis complex. Curr Opin Neurol 24(2):106–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bourgeron T (2015) From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat Rev Neurosci 16(9):551–563

    Article  CAS  PubMed  Google Scholar 

  24. Chen JA et al (2015) The emerging picture of autism spectrum disorder: genetics and pathology. Annu Rev Pathol 10:111–144

    Article  CAS  PubMed  Google Scholar 

  25. Glessner J et al (2009) Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature 459(7246):569–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Morrow EM (2010) Genomic copy number variation in disorders of cognitive development. J Am Acad Child Adolesc Psychiatry 49(11):1091–1104

    PubMed  PubMed Central  Google Scholar 

  27. Pinto D et al (2010) Functional impact of global rare copy number variation in autism spectrum disorders. Nature 466(7304):368–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sebat J et al (2007) Strong association of de novo copy number mutations with autism. Science 316(5823):445–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. De Rubeis S et al (2014) Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515(7526):209–215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Iossifov I et al (2012) De novo gene disruptions in children on the autistic spectrum. Neuron 74(2):285–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. O’Roak B et al (2012) Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485(7397):246–250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. O’Roak BJ et al (2011) Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet 43(6):585–589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Sanders S et al (2012) De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485(7397):237–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Neale B et al (2012) Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485(7397):242–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sanders S et al (2011) Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron 70(5):863–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sanders SJ et al (2015) Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron 87(6):1215–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Colantuoni C et al (2011) Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature 478(7370):519–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kang HJ et al (2011) Spatio-temporal transcriptome of the human brain. Nature 478(7370):483–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hawrylycz MJ et al (2012) An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489(7416):391–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Langfelder P, Mischel PS, Horvath S (2013) When is hub gene selection better than standard meta-analysis? PLoS One 8(4):e61505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinform 9:559

    Article  CAS  Google Scholar 

  43. Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4: article 17

  44. Voineagu I et al (2011) Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 474(7351):380–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cantor RM, Lange K, Sinsheimer JS (2010) Prioritizing GWAS results: a review of statistical methods and recommendations for their application. Am J Hum Genet 86(1):6–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gupta S et al (2014) Transcriptome analysis reveals dysregulation of innate immune response genes and neuronal activity-dependent genes in autism. Nat Commun 5:5748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jepson JE et al (2011) Engineered alterations in RNA editing modulate complex behavior in Drosophila: regulatory diversity of adenosine deaminase acting on RNA (ADAR) targets. J Biol Chem 286(10):8325–8337

    Article  CAS  PubMed  Google Scholar 

  48. Tonkin LA et al (2002) RNA editing by ADARs is important for normal behavior in Caenorhabditis elegans. EMBO J 21(22):6025–6035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Eran A et al (2013) Comparative RNA editing in autistic and neurotypical cerebella. Mol Psychiatry 18(9):1041–1048

    Article  CAS  PubMed  Google Scholar 

  50. Parikshak NN et al (2013) Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell 155(5):1008–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Willsey AJ et al (2013) Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. Cell 155(5):997–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xu X, Nehorai A, Dougherty J (2013) Cell type specific analysis of human brain transcriptome data to predict alterations in cellular composition. Syst Biomed (Austin) 1(3):151–160

    Article  Google Scholar 

  53. Garbett K et al (2008) Immune transcriptome alterations in the temporal cortex of subjects with autism. Neurobiol Dis 30(3):303–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pramparo T et al (2015) Cell cycle networks link gene expression dysregulation, mutation, and brain maldevelopment in autistic toddlers. Mol Syst Biol 11(12):841

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Miller JA et al (2014) Transcriptional landscape of the prenatal human brain. Nature 508(7495):199–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ben-David E, Shifman S (2012) Networks of neuronal genes affected by common and rare variants in autism spectrum disorders. PLoS Genet 8(3):e1002556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mahfouz A et al (2015) Shared pathways among autism candidate genes determined by co-expression network analysis of the developing human brain transcriptome. J Mol Neurosci 57(4):580–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pinto D et al (2014) Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. Am J Hum Genet 94(5):677–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hormozdiari F et al (2015) The discovery of integrated gene networks for autism and related disorders. Genome Res 25(1):142–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Parikshak NN, Gandal MJ, Geschwind DH (2015) Systems biology and gene networks in neurodevelopmental and neurodegenerative disorders. Nat Rev Genet 16(8):441–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mattick JS (2001) Non‐coding RNAs: the architects of eukaryotic complexity. 2:986–991

  62. Briggs JA et al (2015) Mechanisms of long non-coding RNAs in mammalian nervous system development, plasticity, disease, and evolution. Neuron 88(5):861–877

    Article  CAS  PubMed  Google Scholar 

  63. Morris KV, Mattick JS (2014) The rise of regulatory RNA. Nat Rev Genet 15(6):423–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Roberts TC, Morris KV, Wood MJ (2014) The role of long non-coding RNAs in neurodevelopment, brain function and neurological disease. Philos Trans R Soc Lond B Biol Sci 369(1652)

  65. Lin M et al (2011) RNA-Seq of human neurons derived from iPS cells reveals candidate long non-coding RNAs involved in neurogenesis and neuropsychiatric disorders. PLoS One 6(9):e23356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ng SY, Johnson R, Stanton LW (2012) Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors. EMBO J 31(3):522–533

    Article  CAS  PubMed  Google Scholar 

  67. Varela MA, Roberts TC, Wood MJ (2013) Epigenetics and ncRNAs in brain function and disease: mechanisms and prospects for therapy. Neurotherapeutics 10(4):621–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Feng J et al (2006) The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev 20(11):1470–1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Young TL, Matsuda T, Cepko CL (2005) The noncoding RNA taurine upregulated gene 1 is required for differentiation of the murine retina. Curr Biol 15(6):501–512

    Article  CAS  PubMed  Google Scholar 

  70. Issler O, Chen A (2015) Determining the role of microRNAs in psychiatric disorders. Nat Rev Neurosci 16(4):201–212

    Article  CAS  PubMed  Google Scholar 

  71. Kerin T et al (2012) A noncoding RNA antisense to moesin at 5p14.1 in autism. Sci Transl Med 4(128):128ra40

  72. Schizophrenia Working Group of the Psychiatric Genomics, C. (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511(7510):421–427

    Article  CAS  Google Scholar 

  73. Ziats MN, Rennert OM (2013) Aberrant expression of long noncoding RNAs in autistic brain. J Mol Neurosci 49(3):589–593

    Article  CAS  PubMed  Google Scholar 

  74. Stamova B et al (2015) Specific regional and age-related small noncoding RNA expression patterns within superior temporal gyrus of typical human brains are less distinct in autism brains. J Child Neurol 30(14):1930–1946

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ziats MN, Rennert OM (2014) Identification of differentially expressed microRNAs across the developing human brain. Mol Psychiatry 19(7):848–852

    Article  CAS  PubMed  Google Scholar 

  76. Wall DP et al (2010) Genotator: a disease-agnostic tool for genetic annotation of disease. BMC Med Genomics 3:50

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Maston GA et al (2012) Characterization of enhancer function from genome-wide analyses. Annu Rev Genomics Hum Genet 13:29–57

    Article  CAS  PubMed  Google Scholar 

  78. Wenger AM et al (2013) The enhancer landscape during early neocortical development reveals patterns of dense regulation and co-option. PLoS Genet 9(8):e1003728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kim TK et al (2010) Widespread transcription at neuronal activity-regulated enhancers. Nature 465(7295):182–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Andersson R et al (2014) An atlas of active enhancers across human cell types and tissues. Nature 507(7493):455–461

    Article  CAS  PubMed  Google Scholar 

  81. Lam MT et al (2014) Enhancer RNAs and regulated transcriptional programs. Trends Biochem Sci 39(4):170–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wu H et al (2014) Tissue-specific RNA expression marks distant-acting developmental enhancers. PLoS Genet 10(9):e1004610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Kharchenko PV et al (2011) Comprehensive analysis of the chromatin landscape in Drosophila melanogaster. Nature 471(7339):480–485

    Article  CAS  PubMed  Google Scholar 

  84. Hah N et al (2013) Enhancer transcripts mark active estrogen receptor binding sites. Genome Res 23(8):1210–1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Melo CA et al (2013) eRNAs are required for p53-dependent enhancer activity and gene transcription. Mol Cell 49(3):524–535

    Article  CAS  PubMed  Google Scholar 

  86. Mousavi K et al (2013) eRNAs promote transcription by establishing chromatin accessibility at defined genomic loci. Mol Cell 51(5):606–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Schaukowitch K et al (2014) Enhancer RNA facilitates NELF release from immediate early genes. Mol Cell 56(1):29–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lam MT et al (2013) Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription. Nature 498(7455):511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pnueli L et al (2015) RNA transcribed from a distal enhancer is required for activating the chromatin at the promoter of the gonadotropin alpha-subunit gene. Proc Natl Acad Sci USA 112(14):4369–4374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hsieh CL et al (2014) Enhancer RNAs participate in androgen receptor-driven looping that selectively enhances gene activation. Proc Natl Acad Sci USA 111(20):7319–7324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Li W et al (2013) Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature 498(7455):516–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sigova AA et al (2015) Transcription factor trapping by RNA in gene regulatory elements. Science 350(6263):978–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Telese F et al (2015) LRP8-Reelin-regulated neuronal enhancer signature underlying learning and memory formation. Neuron 86(3):696–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Adelman K, Lis JT (2012) Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat Rev Genet 13(10):720–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yao P et al (2015) Coexpression networks identify brain region-specific enhancer RNAs in the human brain. Nat Neurosci 18(8):1168–1174

    Article  CAS  PubMed  Google Scholar 

  96. Chadwick LH (2012) The NIH roadmap epigenomics program data resource. Epigenomics 4(3):317–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jeck WR et al (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19(2):141–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Conn SJ et al (2015) The RNA binding protein quaking regulates formation of circRNAs. Cell 160(6):1125–1134

    Article  CAS  PubMed  Google Scholar 

  99. Zhang Y et al (2013) Circular intronic long noncoding RNAs. Mol Cell 51(6):792–806

    Article  CAS  PubMed  Google Scholar 

  100. Li Z et al (2015) Exon–intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22(3):256–264

    Article  CAS  PubMed  Google Scholar 

  101. Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32(5):453–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Cheng J, Metge F, Dieterich C (2016) Specific identification and quantification of circular RNAs from sequencing data. Bioinformatics 32(7):1094–1096

    Article  CAS  PubMed  Google Scholar 

  103. Szabo L et al (2015) Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. Genome Biol 16:126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Ashwal-Fluss R et al (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56(1):55–66

    Article  CAS  PubMed  Google Scholar 

  105. Westholm JO et al (2014) Genome-wide analysis of Drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep 9(5):1966–1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rybak-Wolf A et al (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell

  107. You X et al (2015) Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 18(4):603–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kuhn A et al (2011) Population-specific expression analysis (PSEA) reveals molecular changes in diseased brain. Nat Methods 8(11):945–947

    Article  CAS  PubMed  Google Scholar 

  109. Gaujoux R, Seoighe C (2013) Cell mix: a comprehensive toolbox for gene expression deconvolution. Bioinformatics 29(17):2211–2212

    Article  CAS  PubMed  Google Scholar 

  110. Gong T, Szustakowski JD (2013) DeconRNASeq: a statistical framework for deconvolution of heterogeneous tissue samples based on mRNA-Seq data. Bioinformatics 29(8):1083–1085

    Article  CAS  PubMed  Google Scholar 

  111. Zhong Y et al (2013) Digital sorting of complex tissues for cell type-specific gene expression profiles. BMC Bioinform 14(1):89

    Article  Google Scholar 

  112. Jaffe AE et al (2016) Mapping DNA methylation across development, genotype and schizophrenia in the human frontal cortex. Nat Neurosci 19(1):40–47

    Article  CAS  PubMed  Google Scholar 

  113. Dolmetsch R, Geschwind DH (2011) The human brain in a dish: the promise of iPSC-derived neurons. Cell 145(6):831–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hjelm BE et al (2013) In vitro-differentiated neural cell cultures progress towards donor-identical brain tissue. Hum Mol Genet 22(17):3534–3546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Darmanis S et al (2015) A survey of human brain transcriptome diversity at the single cell level. Proc Natl Acad Sci USA 112(23):7285–7290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Macosko EZ et al (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161(5):1202–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Akbarian S et al (2015) The PsychENCODE project. Nat Neurosci 18(12):1707–1712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. BrainSeq, A.H.B.G.C.E.a.d.l.o., A.H.B.G.C. BrainSeq (2015) BrainSeq: neurogenomics to drive novel target discovery for neuropsychiatric disorders. Neuron 88(6):1078–1083

Download references

Acknowledgments

This work was supported by an ARC DECRA fellowship (DE140101033) an NHMRC Project Grant (APP1062510) to IV, and an UNSW Brain Sciences Grant-in-Aid to A.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Voineagu.

Additional information

A. Gokoolparsadh and G. J. Sutton equally contributed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gokoolparsadh, A., Sutton, G.J., Charamko, A. et al. Searching for convergent pathways in autism spectrum disorders: insights from human brain transcriptome studies. Cell. Mol. Life Sci. 73, 4517–4530 (2016). https://doi.org/10.1007/s00018-016-2304-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2304-0

Keywords

Navigation