Skip to main content

Advertisement

Log in

Cytokine responses and epithelial function in the intestinal mucosa

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Inflammatory diseases of mucosal organs are significantly influenced by the microenvironment in which they reside. Cytokines found within this microenvironment contribute significantly to endpoint functions of the mucosa. Studies dating back to the 1990s have revealed that epithelial cells are both a source as well as a target for numerous cytokines and that such signaling can substantially influence the outcome of mucosal disease, such as inflammatory bowel disease. Here, we will review literature regarding intestinal epithelial cells as sources and responders to cytokines found in the intestinal milieu. These studies highlight the dynamic nature of these pathways and lend insight into the complexity of treating mucosal inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kagnoff MF (2014) The intestinal epithelium is an integral component of a communications network. J Clin Invest 124:2841–2843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ivanov AI, Parkos CA, Nusrat A (2010) Cytoskeletal regulation of epithelial barrier function during inflammation. Am J Pathol 177:512–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Brandner JM, Schulzke JD (2015) Hereditary barrier-related diseases involving the tight junction: lessons from skin and intestine. Cell Tissue Res 360:723–748

    Article  PubMed  Google Scholar 

  4. Thiagarajah JR, Verkman AS (2013) Chloride channel-targeted therapy for secretory diarrheas. Curr Opin Pharmacol 13:888–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Iwasaki A, Medzhitov R (2015) Control of adaptive immunity by the innate immune system. Nat Immunol 16:343–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Madara JL, Stafford J (1989) Interferon-gamma directly affects barrier function of cultured intestinal epithelial monolayers. J Clin Invest 83:724–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Quiding M, Nordstrom I, Kilander A et al (1991) Intestinal immune responses in humans: oral cholera vaccination induces strong intestinal antibody responses and interferon-gamma production and evokes local immunological memory. J Clin Invest 88:143–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cerf-Bensussan N, Quaroni A, Kurnick JT et al (1984) Intraepithelial lymphocytes modulate Ia expression by intestinal epithelial cells. J Immunol 132:2244–2252

    CAS  PubMed  Google Scholar 

  9. Mayer L, Shlien R (1987) Evidence for function of Ia molecules on gut epithelial cells in man. J Exp Med 166:1471–1483

    Article  CAS  PubMed  Google Scholar 

  10. Panja A, Goldberg S, Eckmann L et al (1998) The regulation and functional consequence of proinflammatory cytokine binding on human intestinal epithelial cells. J Immunol 161:3675–3684

    CAS  PubMed  Google Scholar 

  11. Taylor CT, Dzus AL, Colgan SP (1998) Autocrine regulation of intestinal epithelial permeability induced by hypoxia: role for basolateral release of tumor necrosis factor-a (TNF-a). Gastroenterology 114:657–668

    Article  CAS  PubMed  Google Scholar 

  12. Ciacci C, Mahida YR, Dignass A et al (1993) Functional IL-2 receptors on intestinal epithelial cells. J Clin Invest 92:527–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Demoulin JB, Renauld JC (1998) Signalling by cytokines interacting with the interleukin-2 receptor gamma chain. Cytokines Cell Mol Ther 4:243–256

    CAS  PubMed  Google Scholar 

  14. Zurawski SM, Vega FJ, Huyghe B et al (1993) Receptors for interleukin-13 and interleukin-4 are complex and share a novel component that functions in signal transduction. EMBO J 12:2663–2670

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kominsky DJ, Campbell EL, Ehrentraut SF et al (2014) IFN-gamma-mediated induction of an apical IL-10 receptor on polarized intestinal epithelia. J Immunol 192:1267–1276

    Article  CAS  PubMed  Google Scholar 

  16. Commins S, Steinke JW, Borish L (2008) The extended IL-10 superfamily: IL-10, IL-19, IL-20, IL-22, IL-24, IL-26, IL-28, and IL-29. J Allergy Clin Immunol 121:1108–1111

    Article  CAS  PubMed  Google Scholar 

  17. Denning TL, Campbell NA, Song F et al (2000) Expression of IL-10 receptors on epithelial cells from the murine small and large intestine. Int Immunol 12:133–139

    Article  CAS  PubMed  Google Scholar 

  18. Colgan SP, Parkos CA, Matthews JB et al (1994) Interferon-γ induces a surface phenotype switch in intestinal epithelia: downregulation of ion transport and upregulation of immune accessory ligands. Am J Physiol 267:C402–C410

    CAS  PubMed  Google Scholar 

  19. Clevers H (2013) The intestinal crypt, a prototype stem cell compartment. Cell 154:274–284

    Article  CAS  PubMed  Google Scholar 

  20. Sato T, Vries RG, Snippert HJ et al (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:262–265

    Article  CAS  PubMed  Google Scholar 

  21. Spence JR, Mayhew CN, Rankin SA et al (2011) Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470:105–109

    Article  PubMed  CAS  Google Scholar 

  22. Sato T, Stange DE, Ferrante M et al (2011) Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141:1762–1772

    Article  CAS  PubMed  Google Scholar 

  23. Abraham C, Cho JH (2009) Inflammatory Bowel Disease. N Eng J Med 361:2066–2076

    Article  CAS  Google Scholar 

  24. Mankertz J, Schulzke JD (2007) Altered permeability in inflammatory bowel disease: pathophysiology and clinical implications. Curr Opin Gastroenterol 23:379–383

    Article  CAS  PubMed  Google Scholar 

  25. Koch S, Nusrat A (2012) The life and death of epithelia during inflammation: lessons learned from the gut. Annu Rev Pathol 7:35–60

    Article  CAS  PubMed  Google Scholar 

  26. Mankertz J, Tavalali S, Schmitz H et al (2000) Expression from the human occludin promoter is affected by tumor necrosis factor alpha and interferon gamma. J Cell Sci 113:2085–2090

    CAS  PubMed  Google Scholar 

  27. Furuse M, Hirase T, Itoh M et al (1993) Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 123:1777–1788

    Article  CAS  PubMed  Google Scholar 

  28. Nava P, Koch S, Laukoetter MG et al (2010) Interferon-gamma regulates intestinal epithelial homeostasis through converging beta-catenin signaling pathways. Immunity 32:392–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Al-Sadi RM, Ma TY (2007) IL-1beta causes an increase in intestinal epithelial tight junction permeability. J Immunol 178:4641–4649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zund G, Madara JL, Dzus AL et al (1996) Interleukin-4 and interleukin-13 differentially regulate epithelial chloride secretion. J Biol Chem 271:7460–7464

    Article  CAS  PubMed  Google Scholar 

  31. Berin MC, Yang P-C, Ciok L et al (1999) Role of IL-4 in macromolecular transport across human intestinal epithelium. Am J Physiol (Cell Physiol) 276:C1046–C1052

    CAS  Google Scholar 

  32. Yu LC, Yang PC, Berin MC et al (2001) Enhanced transepithelial antigen transport in intestine of allergic mice is mediated by IgE/CD23 and regulated by interleukin-4. Gastroenterology 121:370–381

    Article  CAS  PubMed  Google Scholar 

  33. Al-Sadi R, Ye D, Boivin M et al (2014) Interleukin-6 modulation of intestinal epithelial tight junction permeability is mediated by JNK pathway activation of claudin-2 gene. PLoS One 9:e85345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Suzuki T, Yoshinaga N, Tanabe S (2011) Interleukin-6 (IL-6) regulates claudin-2 expression and tight junction permeability in intestinal epithelium. J Biol Chem 286:31263–31271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Grivennikov S, Karin E, Terzic J et al (2009) IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15:103–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kuhn KA, Manieri NA, Liu TC et al (2014) IL-6 stimulates intestinal epithelial proliferation and repair after injury. PLoS One 9:e114195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Madsen KL, Malfair D, Gray D et al (1999) Interleukin-10 gene-deficient mice develop a primary intestinal permeability defect in response to enteric microflora. Inflamm Bowel Dis 5:262–270

    Article  CAS  PubMed  Google Scholar 

  38. Colgan SP, Hershberg RM, Furuta GT et al (1999) Ligation of intestinal epithelial CD1d induces bioactive IL-10: critical role of the cytoplasmic tail in autocrine signaling. Proc Natl Acad Sci USA 96:13938–13943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Arrieta MC, Madsen K, Doyle J et al (2009) Reducing small intestinal permeability attenuates colitis in the IL10 gene-deficient mouse. Gut 58:41–48

    Article  CAS  PubMed  Google Scholar 

  40. Ito S, Ansari P, Sakatsume M et al (1999) Interleukin-10 inhibits expression of both interferon alpha- and interferon gamma-induced genes by suppressing tyrosine phosphorylation of STAT1. Blood 93:1456–1463

    CAS  PubMed  Google Scholar 

  41. Li LJ, Gong C, Zhao MH et al (2014) Role of interleukin-22 in inflammatory bowel disease. World J Gastroenterol 20:18177–18188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liang SC, Tan XY, Luxenberg DP et al (2006) Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 203:2271–2279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Satoh-Takayama N, Vosshenrich CA, Lesjean-Pottier S et al (2008) Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29:958–970

    Article  CAS  PubMed  Google Scholar 

  44. Takatori H, Kanno Y, Watford WT et al (2009) Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J Exp Med 206:35–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cella M, Fuchs A, Vermi W et al (2009) A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 457:722–725

    Article  CAS  PubMed  Google Scholar 

  46. Kotenko SV, Izotova LS, Mirochnitchenko OV et al (2001) Identification, cloning, and characterization of a novel soluble receptor that binds IL-22 and neutralizes its activity. J Immunol 166:7096–7103

    Article  CAS  PubMed  Google Scholar 

  47. Sugimoto K, Ogawa A, Mizoguchi E et al (2008) IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J Clin Invest 118:534–544

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Xie MH, Aggarwal S, Ho WH et al (2000) Interleukin (IL)-22, a novel human cytokine that signals through the interferon receptor-related proteins CRF2-4 and IL-22R. J Biol Chem 275:31335–31339

    Article  CAS  PubMed  Google Scholar 

  49. Zheng Y, Valdez PA, Danilenko DM et al (2008) Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med 14:282–289

    Article  CAS  PubMed  Google Scholar 

  50. Nagalakshmi ML, Rascle A, Zurawski S et al (2004) Interleukin-22 activates STAT3 and induces IL-10 by colon epithelial cells. Int Immunopharmacol 4:679–691

    Article  CAS  PubMed  Google Scholar 

  51. Sugimoto K (2008) Role of STAT3 in inflammatory bowel disease. World J Gastroenterol 14:5110–5114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Brand S, Beigel F, Olszak T et al (2006) IL-22 is increased in active Crohn’s disease and promotes proinflammatory gene expression and intestinal epithelial cell migration. Am J Physiol Gastrointest Liver Physiol 290:G827–G838

    Article  CAS  PubMed  Google Scholar 

  53. Bensancon F, Przewlocki G, Baro I et al (1994) Interferon-g downregulates CFTR gene expression in epithelial cells. Am J Physiol 267:C1398–C1404

    Google Scholar 

  54. Rocha F, Musch MW, Lishanskiy L et al (2001) IFN-gamma downregulates expression of Na(+)/H(+) exchangers NHE2 and NHE3 in rat intestine and human Caco-2/bbe cells. Am J Physiol Cell Physiol 280:C1224–C1232

    CAS  PubMed  Google Scholar 

  55. Sugi K, Musch MW, Field M et al (2001) Inhibition of Na+, K+-ATPase by interferon gamma down-regulates intestinal epithelial transport and barrier function. Gastroenterology 120:1393–1403

    Article  CAS  PubMed  Google Scholar 

  56. Asfaha S, MacNaughton WK, Appleyard CB et al (2001) Persistent epithelial dysfunction and bacterial translocation after resolution of intestinal inflammation. Am J Physiol Gastrointest Liver Physiol 281:G635–G644

    CAS  PubMed  Google Scholar 

  57. Colgan SP, Resnick MB, Parkos CA et al (1994) IL-4 directly modulates function of a model human intestinal epithelium. J Immunol 153:2122–2129

    CAS  PubMed  Google Scholar 

  58. Ceponis PJ, Botelho F, Richards CD et al (2000) Interleukins 4 and 13 increase intestinal epithelial permeability by a phosphatidylinositol 3-kinase pathway. Lack of evidence for STAT 6 involvement. J Biol Chem 275:29132–29137

    Article  CAS  PubMed  Google Scholar 

  59. Gauchat JF, Schlagenhauf E, Feng NP et al (1997) A novel 4-kb interleukin-13 receptor alpha mRNA expressed in human B, T, and endothelial cells encoding an alternate type-II interleukin- 4/interleukin-13 receptor. Eur J Immunol 27:971–978

    Article  CAS  PubMed  Google Scholar 

  60. Miloux B, Laurent P, Bonnin O et al (1997) Cloning of the human IL-13R alpha1 chain and reconstitution with the IL4R alpha of a functional IL-4/IL-13 receptor complex. FEBS Lett 401:163–166

    Article  CAS  PubMed  Google Scholar 

  61. Keely SJ, Uribe JM, Barrett KE (1998) Carbachol stimulates transactivation of epidermal growth factor receptor and mitogen-activated protein kinase in T84 cells. Implications for carbachol-stimulated chloride secretion. J Biol Chem 273:27111–27117

    Article  CAS  PubMed  Google Scholar 

  62. Lozupone CA, Stombaugh JI, Gordon JI et al (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489:220–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Marques R, Boneca IG (2011) Expression and functional importance of innate immune receptors by intestinal epithelial cells. Cell Mol Life Sci 68:3661–3673

    Article  CAS  PubMed  Google Scholar 

  64. Lee J, Mo JH, Katakura K et al (2006) Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. Nat Cell Biol 8:1327–1336

    Article  CAS  PubMed  Google Scholar 

  65. Gewirtz AT, Navas TA, Lyons S et al (2001) Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol 167:1882–1885

    Article  CAS  PubMed  Google Scholar 

  66. Lee J, Gonzales-Navajas JM, Raz E (2008) The, “polarizing-tolerizing” mechanism of intestinal epithelium: its relevance to colonic homeostasis. Semin Immunopathol 30:3–9

    Article  PubMed  Google Scholar 

  67. Haller D, Bode C, Hammes WP et al (2000) Non-pathogenic bacteria elicit a differential cytokine response by intestinal epithelial cell/leucocyte co-cultures. Gut 47:79–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vijay-Kumar M, Sanders CJ, Taylor RT et al (2007) Deletion of TLR5 results in spontaneous colitis in mice. J Clin Invest 117:3909–3921

    CAS  PubMed  PubMed Central  Google Scholar 

  69. He B, Xu W, Santini PA et al (2007) Intestinal bacteria trigger T cell-independent immunoglobulin A(2) class switching by inducing epithelial-cell secretion of the cytokine APRIL. Immunity 26:812–826

    Article  CAS  PubMed  Google Scholar 

  70. Rochman Y, Spolski R, Leonard WJ (2009) New insights into the regulation of T cells by gamma(c) family cytokines. Nat Rev Immunol 9:480–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lee HC, Ziegler SF (2007) Inducible expression of the proallergic cytokine thymic stromal lymphopoietin in airway epithelial cells is controlled by NFkappaB. Proc Natl Acad Sci USA 104:914–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zeuthen LH, Fink LN, Frokiaer H (2008) Epithelial cells prime the immune response to an array of gut-derived commensals towards a tolerogenic phenotype through distinct actions of thymic stromal lymphopoietin and transforming growth factor-beta. Immunology 123:197–208

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Taylor BC, Zaph C, Troy AE et al (2009) TSLP regulates intestinal immunity and inflammation in mouse models of helminth infection and colitis. J Exp Med 206:655–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shang L, Fukata M, Thirunarayanan N et al (2008) Toll-like receptor signaling in small intestinal epithelium promotes B-cell recruitment and IgA production in lamina propria. Gastroenterology 135:529–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Izadpanah A, Dwinell MB, Eckmann L et al (2001) Regulated MIP-3alpha/CCL20 production by human intestinal epithelium: mechanism for modulating mucosal immunity. Am J Physiol Gastrointest Liver Physiol 280:G710–G719

    CAS  PubMed  Google Scholar 

  76. Sierro F, Dubois B, Coste A et al (2001) Flagellin stimulation of intestinal epithelial cells triggers CCL20-mediated migration of dendritic cells. Proc Natl Acad Sci USA 98:13722–13727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sibartie S, O’Hara AM, Ryan J et al (2009) Modulation of pathogen-induced CCL20 secretion from HT-29 human intestinal epithelial cells by commensal bacteria. BMC Immunol 10:54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Bahrami B, Macfarlane S, Macfarlane GT (2011) Induction of cytokine formation by human intestinal bacteria in gut epithelial cell lines. J Appl Microbiol 110:353–363

    Article  CAS  PubMed  Google Scholar 

  79. Neish AS, Gewirtz AT, Zeng H et al (2000) Prokaryotic regulation of epithelial responses by inhibition of IkappaB-alpha ubiquitination. Science 289:1560–1563

    Article  CAS  PubMed  Google Scholar 

  80. Duerr RH, Taylor KD, Brant SR et al (2006) A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314:1461–1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zaph C, Du Y, Saenz SA et al (2008) Commensal-dependent expression of IL-25 regulates the IL-23-IL-17 axis in the intestine. J Exp Med 205:2191–2198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wedebye Schmidt EG, Larsen HL, Kristensen NN et al (2013) TH17 cell induction and effects of IL-17A and IL-17F blockade in experimental colitis. Inflamm Bowel Dis 19:1567–1576

    Article  PubMed  Google Scholar 

  83. Westendorf AM, Fleissner D, Groebe L et al (2009) CD4+ Foxp3+ regulatory T cell expansion induced by antigen-driven interaction with intestinal epithelial cells independent of local dendritic cells. Gut 58:211–219

    Article  CAS  PubMed  Google Scholar 

  84. Hershberg RM, Cho DH, Youakim A et al (1998) Highly polarized HLA class II antigen processing and presentation by human intestinal epithelial cells. J Clin Invest 102:792–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hershberg RM, Mayer LF (2000) Antigen processing and presentation by intestinal epithelial cells—polarity and complexity. Immunol Today 21:123–128

    Article  CAS  PubMed  Google Scholar 

  86. Hershberg RM, Framson PE, Cho DH et al (1997) Intestinal epithelial cells use two distinct pathways for HLA class II antigen processing. J Clin Invest 100:204–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Framson PE, Cho DH, Lee LY et al (1999) Polarized expression and function of the costimulatory molecule CD58 on human intestinal epithelial cells. Gastroenterology 116:1054–1062

    Article  CAS  PubMed  Google Scholar 

  88. Balk SP, Burke S, Polischuk JE et al (1994) b2-microglobulin-independent MHC class Ib molecule expressed by human intestinal epithelium. Science 265:259–262

    Article  CAS  PubMed  Google Scholar 

  89. Colgan SP, Morales VM, Madara JL et al (1996) IFN-g modulates CD1d expression on intestinal epithelia. Am J Physiol 271:C276–C283

    CAS  PubMed  Google Scholar 

  90. Zeissig S, Blumberg RS (2013) Commensal microbiota and NKT cells in the control of inflammatory diseases at mucosal surfaces. Curr Opin Immunol 25:690–696

    Article  CAS  PubMed  Google Scholar 

  91. Elewaut D, Kronenberg M (2000) Molecular biology of NK T cell specificity and development. Semin Immunol 12:561–568

    Article  CAS  PubMed  Google Scholar 

  92. Olszak T, Neves JF, Dowds CM et al (2014) Protective mucosal immunity mediated by epithelial CD1d and IL-10. Nature 509:497–502. doi:10.1038/nature13150 Epub 2014 Apr 6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sumagin R, Parkos CA (2015) Epithelial adhesion molecules and the regulation of intestinal homeostasis during neutrophil transepithelial migration. Tissue Barriers 3:e969100

    Article  PubMed  CAS  Google Scholar 

  94. Takeuchi A (1967) Electron microscope studies of experimental Salmonella infection. Am J Pathol 50:109–119

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Phalipon A, Sansonetti PJ (2007) Shigella’s ways of manipulating the host intestinal innate and adaptive immune system: a tool box for survival? Immunol Cell Biol 85:119–129

    Article  CAS  PubMed  Google Scholar 

  96. Jung HC, Eckmann L, Yang SK et al (1995) A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion. J Clin Invest 95:55–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Vallee S, Laforest S, Fouchier F et al (2004) Cytokine-induced upregulation of NF-kappaB, IL-8, and ICAM-1 is dependent on colonic cell polarity: implication for PKCdelta. Exp Cell Res 297:165–185

    Article  CAS  PubMed  Google Scholar 

  98. Olsen I, Hajishengallis G (2015) Major neutrophil functions subverted by Porphyromonas gingivalis. J Oral Microbiol. doi:10.3402/jom.v8.30936 eCollection 2016

    Google Scholar 

  99. Parkos CA, Delp C, Arnaout MA et al (1991) Neutrophil migration across a cultured intestinal epithelium: dependence on a CD11b/CD18—mediated event and enhanced efficiency in the physiologic direction. J Clin Invest 88:1605–1612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fan Z, Ley K (2015) Leukocyte arrest: biomechanics and molecular mechanisms of beta2 integrin activation. Biorheology 52:353–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Huang GT, Eckmann L, Savidge TC et al (1996) Infection of human intestinal epithelial cells with invasive bacteria upregulates apical intercellular adhesion molecule-1 (ICAM)-1) expression and neutrophil adhesion. J Clin Invest 98:572–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Parkos CA, Colgan SP, Diamond MS et al (1996) Expression and polarization of intercellular adhesion molecule-1 on human intestinal epithelia: consequences for CD11b/18-mediated interactions with neutrophils. Mol Med 2:489–505

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Colgan SP, Parkos CA, Delp C et al (1993) Neutrophil migration across cultured intestinal epithelial monolayers is modulated by epithelial exposure to interferon-gamma in a highly polarized fashion. J Cell Biol 120:785–795

    Article  CAS  PubMed  Google Scholar 

  104. Parkos CA, Colgan SP, Liang A et al (1996) CD 47 mediates post-adhesive events required for neutrophil migration across polarized intestinal epithelia. J Cell Biol 132:437–450

    Article  CAS  PubMed  Google Scholar 

  105. Murata Y, Kotani T, Ohnishi H et al (2014) The CD47-SIRPalpha signalling system: its physiological roles and therapeutic application. J Biochem 155:335–344

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Veterans Administration and by Grants DK50189, DK095491 and DK104713 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean P. Colgan.

Ethics declarations

Conflict of interest

The authors declare no financial interests in any of the work submitted here.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onyiah, J.C., Colgan, S.P. Cytokine responses and epithelial function in the intestinal mucosa. Cell. Mol. Life Sci. 73, 4203–4212 (2016). https://doi.org/10.1007/s00018-016-2289-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2289-8

Keywords

Navigation