Skip to main content
Log in

Adherens Junction and E-Cadherin complex regulation by epithelial polarity

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

E-Cadherin-based Adherens Junctions (AJs) are a defining feature of all epithelial sheets. Through the homophilic association of E-Cadherin molecules expressed on neighboring cells, they ensure intercellular adhesion amongst epithelial cells, and regulate many key aspects of epithelial biology. While their adhesive role requires these structures to remain stable, AJs are also extremely plastic. This plasticity allows for the adaptation of the cell to its changing environment: changes in neighbors after cell division, cell death, or cell movement, and changes in cell shape during differentiation. In this review we focus on the recent advances highlighting the critical role of the apico-basal polarity machinery, and in particular of the Par3/Bazooka scaffold, in the regulation and remodeling of AJs. We propose that by regulating key phosphorylation events on the core E-Cadherin complex components, Par3 and epithelial polarity promote meta-stable protein complexes governing the correct formation, localization, and functioning of AJ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bryant DM, Mostov KE (2008) From cells to organs: building polarized tissue. Nat Rev Mol Cell Biol 9:887–901. doi:10.1038/nrm2523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Goldstein B, Macara IG (2007) The PAR proteins: fundamental players in animal cell polarization. Dev Cell 13:609–622. doi:10.1016/j.devcel.2007.10.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. St Johnston D, Ahringer J (2010) Cell polarity in eggs and epithelia: parallels and diversity. Cell 141:757–774. doi:10.1016/j.cell.2010.05.011

    Article  CAS  PubMed  Google Scholar 

  4. Tepass U (2012) The apical polarity protein network in Drosophila epithelial cells: regulation of polarity, junctions, morphogenesis, cell growth, and survival. Annu Rev Cell Dev Biol 28:655–685. doi:10.1146/annurev-cellbio-092910-154033

    Article  CAS  PubMed  Google Scholar 

  5. Nelson WJ, Dickinson DJ, Weis WI (2013) Roles of cadherins and catenins in cell-cell adhesion and epithelial cell polarity. Prog Mol Biol Transl Sci 116:3–23. doi:10.1016/B978-0-12-394311-8.00001-7

    Article  CAS  PubMed  Google Scholar 

  6. Wei Q, Huang H (2013) Insights into the role of cell–cell junctions in physiology and disease. Int Rev Cell Mol Biol 306:187–221. doi:10.1016/B978-0-12-407694-5.00005-5

    Article  CAS  PubMed  Google Scholar 

  7. Harder JL, Margolis B (2008) SnapShot: tight and adherens junction signaling. Cell 133:1118.e1–1118.e2. doi:10.1016/j.cell.2008.06.002

    Article  CAS  Google Scholar 

  8. Harris TJC (2012) Adherens junction assembly and function in the Drosophila embryo. Int Rev Cell Mol Biol 293:45–83. doi:10.1016/B978-0-12-394304-0.00007-5

    Article  CAS  PubMed  Google Scholar 

  9. Baum B, Georgiou M (2011) Dynamics of adherens junctions in epithelial establishment, maintenance, and remodeling. J Cell Biol 192:907–917. doi:10.1083/jcb.201009141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Röper K (2015) Integration of cell–cell adhesion and contractile actomyosin activity during morphogenesis. Curr Top Dev Biol 112:103–127. doi:10.1016/bs.ctdb.2014.11.017

    Article  PubMed  Google Scholar 

  11. Collinet C, Lecuit T (2013) Stability and dynamics of cell–cell junctions. Prog Mol Biol Transl Sci 116:25–47. doi:10.1016/B978-0-12-394311-8.00002-9

    Article  CAS  PubMed  Google Scholar 

  12. de Beco S, Gueudry C, Amblard F, Coscoy S (2009) Endocytosis is required for E-Cadherin redistribution at mature adherens junctions. Proc Natl Acad Sci U S A 106:7010–7015. doi:10.1073/pnas.0811253106

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lecuit T, Yap AS (2015) E-cadherin junctions as active mechanical integrators in tissue dynamics. Nat Cell Biol 17:533–539. doi:10.1038/ncb3136

    Article  CAS  PubMed  Google Scholar 

  14. Yap AS, Crampton MS, Hardin J (2007) Making and breaking contacts: the cellular biology of cadherin regulation. Curr Opin Cell Biol 19:508–514. doi:10.1016/j.ceb.2007.09.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ivanov AI, Naydenov NG (2013) Dynamics and regulation of epithelial adherens junctions: recent discoveries and controversies. Int Rev Cell Mol Biol 303:27–99. doi:10.1016/B978-0-12-407697-6.00002-7

    Article  CAS  PubMed  Google Scholar 

  16. St Johnston D, Sanson B (2011) Epithelial polarity and morphogenesis. Curr Opin Cell Biol 23:540–546. doi:10.1016/j.ceb.2011.07.005

    Article  CAS  PubMed  Google Scholar 

  17. Gumbiner BM (2005) Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol 6:622–634. doi:10.1038/nrm1699

    Article  CAS  PubMed  Google Scholar 

  18. Desai R, Sarpal R, Ishiyama N, Pellikka M, Ikura M, Tepass U (2013) Monomeric α-catenin links cadherin to the actin cytoskeleton. Nat Cell Biol 15:261–273. doi:10.1038/ncb2685

    Article  CAS  PubMed  Google Scholar 

  19. Nagafuchi A, Ishihara S, Tsukita S (1994) The roles of catenins in the cadherin-mediated cell adhesion: functional analysis of E-Cadherin-alpha catenin fusion molecules. J Cell Biol 127:235–245

    Article  CAS  PubMed  Google Scholar 

  20. Cavey M, Rauzi M, Lenne P-F, Lecuit T (2008) A two-tiered mechanism for stabilization and immobilization of E-cadherin. Nature 453:751–756. doi:10.1038/nature06953

    Article  CAS  PubMed  Google Scholar 

  21. Yonemura S, Wada Y, Watanabe T, Nagafuchi A, Shibata M (2010) alpha-Catenin as a tension transducer that induces adherens junction development. Nat Cell Biol 12:533–542. doi:10.1038/ncb2055

    Article  CAS  PubMed  Google Scholar 

  22. Buckley CD, Tan J, Anderson KL, Hanein D, Volkmann N, Weis WI et al (2014) Cell adhesion. The minimal cadherin-catenin complex binds to actin filaments under force. Science 346:1254211. doi:10.1126/science.1254211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Abe K, Takeichi M (2008) EPLIN mediates linkage of the cadherin catenin complex to F-actin and stabilizes the circumferential actin belt. Proc Natl Acad Sci U S A 105:13–19. doi:10.1073/pnas.0710504105

    Article  CAS  PubMed  Google Scholar 

  24. Bershadsky A (2004) Magic touch: how does cell-cell adhesion trigger actin assembly? Trends Cell Biol 14:589–593. doi:10.1016/j.tcb.2004.09.009

    Article  CAS  PubMed  Google Scholar 

  25. Yonemura S (2011) Cadherin-actin interactions at adherens junctions. Curr Opin Cell Biol 23:515–522. doi:10.1016/j.ceb.2011.07.001

    Article  CAS  PubMed  Google Scholar 

  26. Kourtidis A, Ngok SP, Anastasiadis PZ (2013) p120 catenin: an essential regulator of cadherin stability, adhesion-induced signaling, and cancer progression. Prog Mol Biol Transl Sci 116:409–432. doi:10.1016/B978-0-12-394311-8.00018-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shahbazi MN, Megias D, Epifano C, Akhmanova A, Gundersen GG, Fuchs E et al (2013) CLASP2 interacts with p120-catenin and governs microtubule dynamics at adherens junctions. J Cell Biol 203:1043–1061. doi:10.1083/jcb.201306019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen X, Kojima S, Borisy GG, Green KJ (2003) p120 catenin associates with kinesin and facilitates the transport of cadherin-catenin complexes to intercellular junctions. J Cell Biol 163:547–557. doi:10.1083/jcb.200305137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wildenberg GA, Dohn MR, Carnahan RH, Davis MA, Lobdell NA, Settleman J et al (2006) p120-catenin and p190RhoGAP regulate cell–cell adhesion by coordinating antagonism between Rac and Rho. Cell 127:1027–1039. doi:10.1016/j.cell.2006.09.046

    Article  CAS  PubMed  Google Scholar 

  30. Noren NK, Liu BP, Burridge K, Kreft B (2000) p120 catenin regulates the actin cytoskeleton via Rho family GTPases. J Cell Biol 150:567–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Davis MA, Ireton RC, Reynolds AB (2003) A core function for p120-catenin in cadherin turnover. J Cell Biol 163:525–534. doi:10.1083/jcb.200307111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hoshino T, Sakisaka T, Baba T, Yamada T, Kimura T, Takai Y (2005) Regulation of E-cadherin endocytosis by nectin through afadin, Rap1, and p120ctn. J Biol Chem 280:24095–24103. doi:10.1074/jbc.M414447200

    Article  CAS  PubMed  Google Scholar 

  33. Smith AL, Dohn MR, Brown MV, Reynolds AB (2012) Association of Rho-associated protein kinase 1 with E-cadherin complexes is mediated by p120-catenin. Mol Biol Cell 23:99–110. doi:10.1091/mbc.E11-06-0497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Myster SH, Cavallo R, Anderson CT, Fox DT, Peifer M (2003) Drosophila p120catenin plays a supporting role in cell adhesion but is not an essential Adherens Junction component. J Cell Biol 160:433–449. doi:10.1083/jcb.200211083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pacquelet A, Lin L, Rorth P (2003) Binding site for p120/delta-catenin is not required for Drosophila E-cadherin function in vivo. J Cell Biol 160:313–319. doi:10.1083/jcb.200207160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bulgakova NA, Brown NH (2016) Drosophila p120-catenin is crucial for endocytosis of the dynamic E-cadherin-Bazooka complex. J Cell Sci 129:477–482. doi:10.1242/jcs.177527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stappert J, Kemler R (1994) A short core region of E-cadherin is essential for catenin binding and is highly phosphorylated. Cell Adhes Commun 2:319–327

    Article  CAS  PubMed  Google Scholar 

  38. Behrens J, Vakaet L, Friis R, Winterhager E, Van Roy F, Mareel MM et al (1993) Loss of epithelial differentiation and gain of invasiveness correlates with tyrosine phosphorylation of the E-cadherin/beta-catenin complex in cells transformed with a temperature-sensitive v-SRC gene. J Cell Biol 120:757–766

    Article  CAS  PubMed  Google Scholar 

  39. Matsuyoshi N, Hamaguchi M, Taniguchi S, Nagafuchi A, Tsukita S, Takeichi M (1992) Cadherin-mediated cell–cell adhesion is perturbed by v-src tyrosine phosphorylation in metastatic fibroblasts. J Cell Biol 118:703–714

    Article  CAS  PubMed  Google Scholar 

  40. Fujita Y, Krause G, Scheffner M, Zechner D, Leddy HEM, Behrens J et al (2002) Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nat Cell Biol 4:222–231. doi:10.1038/ncb758

    Article  CAS  PubMed  Google Scholar 

  41. Smyth D, Leung G, Fernando M, McKay DM (2012) Reduced surface expression of epithelial E-cadherin evoked by interferon-gamma is Fyn kinase-dependent. PLoS One 7:e38441. doi:10.1371/journal.pone.0038441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nam J-S, Ino Y, Sakamoto M, Hirohashi S (2002) Src family kinase inhibitor PP2 restores the E-cadherin/catenin cell adhesion system in human cancer cells and reduces cancer metastasis. Clin Cancer Res Off J Am Assoc Cancer Res 8:2430–2436

    CAS  Google Scholar 

  43. Hu P, O’Keefe EJ, Rubenstein DS (2001) Tyrosine phosphorylation of human keratinocyte beta-catenin and plakoglobin reversibly regulates their binding to E-cadherin and alpha-catenin. J Invest Dermatol 117:1059–1067. doi:10.1046/j.0022-202x.2001.01523.x

    Article  CAS  PubMed  Google Scholar 

  44. Roura S, Miravet S, Piedra J, García de Herreros A, Duñach M (1999) Regulation of E-cadherin/Catenin association by tyrosine phosphorylation. J Biol Chem 274:36734–36740

    Article  CAS  PubMed  Google Scholar 

  45. Fernández-Sánchez ME, Barbier S, Whitehead J, Béalle G, Michel A, Latorre-Ossa H et al (2015) Mechanical induction of the tumorigenic β-catenin pathway by tumour growth pressure. Nature 523:92–95. doi:10.1038/nature14329

    Article  PubMed  CAS  Google Scholar 

  46. Castaño J, Solanas G, Casagolda D, Raurell I, Villagrasa P, Bustelo XR et al (2007) Specific phosphorylation of p120-catenin regulatory domain differently modulates its binding to RhoA. Mol Cell Biol 27:1745–1757. doi:10.1128/MCB.01974-06

    Article  PubMed  CAS  Google Scholar 

  47. Vidal M, Larson DE, Cagan RL (2006) Csk-deficient boundary cells are eliminated from normal Drosophila epithelia by exclusion, migration, and apoptosis. Dev Cell 10:33–44. doi:10.1016/j.devcel.2005.11.007

    Article  CAS  PubMed  Google Scholar 

  48. Piedra J, Miravet S, Castaño J, Pálmer HG, Heisterkamp N, García de Herreros A et al (2003) p120 Catenin-associated Fer and Fyn tyrosine kinases regulate beta-catenin Tyr-142 phosphorylation and beta-catenin-alpha-catenin Interaction. Mol Cell Biol 23:2287–2297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Krejci P, Aklian A, Kaucka M, Sevcikova E, Prochazkova J, Masek JK et al (2012) Receptor tyrosine kinases activate canonical WNT/β-catenin signaling via MAP kinase/LRP6 pathway and direct β-catenin phosphorylation. PLoS ONE 7:e35826. doi:10.1371/journal.pone.0035826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shindo M, Wada H, Kaido M, Tateno M, Aigaki T, Tsuda L et al (2008) Dual function of Src in the maintenance of adherens junctions during tracheal epithelial morphogenesis. Dev Camb Engl 135:1355–1364. doi:10.1242/dev.015982

    CAS  Google Scholar 

  51. Takahashi M, Takahashi F, Ui-Tei K, Kojima T, Saigo K (2005) Requirements of genetic interactions between Src42A, armadillo and shotgun, a gene encoding E-cadherin, for normal development in Drosophila. Dev Camb Engl 132:2547–2559. doi:10.1242/dev.01850

    CAS  Google Scholar 

  52. Tamada M, Farrell DL, Zallen JA (2012) Abl regulates planar polarized junctional dynamics through β-catenin tyrosine phosphorylation. Dev Cell 22:309–319. doi:10.1016/j.devcel.2011.12.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Singh J, Aaronson SA, Mlodzik M (2010) Drosophila Abelson kinase mediates cell invasion and proliferation through two distinct MAPK pathways. Oncogene 29:4033–4045. doi:10.1038/onc.2010.155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pedraza LG, Stewart RA, Li D-M, Xu T (2004) Drosophila Src-family kinases function with Csk to regulate cell proliferation and apoptosis. Oncogene 23:4754–4762. doi:10.1038/sj.onc.1207635

    Article  CAS  PubMed  Google Scholar 

  55. Langton PF, Colombani J, Aerne BL, Tapon N (2007) Drosophila ASPP regulates C-terminal Src kinase activity. Dev Cell 13:773–782. doi:10.1016/j.devcel.2007.11.005

    Article  CAS  PubMed  Google Scholar 

  56. Pang J-H, Kraemer A, Stehbens SJ, Frame MC, Yap AS (2005) Recruitment of phosphoinositide 3-kinase defines a positive contribution of tyrosine kinase signaling to E-cadherin function. J Biol Chem 280:3043–3050. doi:10.1074/jbc.M412148200

    Article  CAS  PubMed  Google Scholar 

  57. Veracini L, Grall D, Schaub S, la Forest Beghelli-de, Divonne S, Etienne-Grimaldi M-C, Milano G et al (2015) Elevated Src family kinase activity stabilizes E-cadherin-based junctions and collective movement of head and neck squamous cell carcinomas. Oncotarget 6:7570–7583. doi:10.18632/oncotarget.3071

    Article  PubMed  Google Scholar 

  58. Burks J, Agazie YM (2006) Modulation of alpha-catenin Tyr phosphorylation by SHP2 positively effects cell transformation induced by the constitutively active FGFR3. Oncogene 25:7166–7179. doi:10.1038/sj.onc.1209728

    Article  CAS  PubMed  Google Scholar 

  59. Larive RM, Urbach S, Poncet J, Jouin P, Mascré G, Sahuquet A et al (2009) Phosphoproteomic analysis of Syk kinase signaling in human cancer cells reveals its role in cell–cell adhesion. Oncogene 28:2337–2347. doi:10.1038/onc.2009.99

    Article  CAS  PubMed  Google Scholar 

  60. Zhang X, Shrikhande U, Alicie BM, Zhou Q, Geahlen RL (2009) Role of the protein tyrosine kinase Syk in regulating cell-cell adhesion and motility in breast cancer cells. Mol Cancer Res MCR 7:634–644. doi:10.1158/1541-7786.MCR-08-0371

    Article  CAS  PubMed  Google Scholar 

  61. Mariner DJ, Anastasiadis P, Keilhack H, Böhmer FD, Wang J, Reynolds AB (2001) Identification of Src phosphorylation sites in the catenin p120ctn. J Biol Chem 276:28006–28013. doi:10.1074/jbc.M102443200

    Article  CAS  PubMed  Google Scholar 

  62. Ozawa M, Ohkubo T (2001) Tyrosine phosphorylation of p120(ctn) in v-Src transfected L cells depends on its association with E-cadherin and reduces adhesion activity. J Cell Sci 114:503–512

    CAS  PubMed  Google Scholar 

  63. Lickert H, Bauer A, Kemler R, Stappert J (2000) Casein kinase II phosphorylation of E-cadherin increases E-cadherin/beta-catenin interaction and strengthens cell-cell adhesion. J Biol Chem 275:5090–5095

    Article  CAS  PubMed  Google Scholar 

  64. Serres M, Filhol O, Lickert H, Grangeasse C, Chambaz EM, Stappert J et al (2000) The disruption of adherens junctions is associated with a decrease of E-cadherin phosphorylation by protein kinase CK2. Exp Cell Res 257:255–264. doi:10.1006/excr.2000.4895

    Article  CAS  PubMed  Google Scholar 

  65. Ji H, Wang J, Nika H, Hawke D, Keezer S, Ge Q et al (2009) EGF-induced ERK activation promotes CK2-mediated disassociation of alpha-Catenin from beta-Catenin and transactivation of beta-Catenin. Mol Cell 36:547–559. doi:10.1016/j.molcel.2009.09.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Escobar DJ, Desai R, Ishiyama N, Folmsbee SS, Novak MN, Flozak AS et al (2015) α-Catenin phosphorylation promotes intercellular adhesion through a dual-kinase mechanism. J Cell Sci 128:1150–1165. doi:10.1242/jcs.163824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Casagolda D, Del Valle-Pérez B, Valls G, Lugilde E, Vinyoles M, Casado-Vela J et al (2010) A p120-catenin-CK1epsilon complex regulates Wnt signaling. J Cell Sci 123:2621–2631. doi:10.1242/jcs.067512

    Article  CAS  PubMed  Google Scholar 

  68. Del Valle-Pérez B, Casagolda D, Lugilde E, Valls G, Codina M, Dave N et al (2011) Wnt controls the transcriptional activity of Kaiso through CK1ε-dependent phosphorylation of p120-catenin. J Cell Sci 124:2298–2309. doi:10.1242/jcs.082693

    Article  PubMed  CAS  Google Scholar 

  69. Valls G, Codina M, Miller RK, Del Valle-Pérez B, Vinyoles M, Caelles C et al (2012) Upon Wnt stimulation, Rac1 activation requires Rac1 and Vav2 binding to p120-catenin. J Cell Sci 125:5288–5301. doi:10.1242/jcs.101030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Xia X, Mariner DJ, Reynolds AB (2003) Adhesion-associated and PKC-modulated changes in serine/threonine phosphorylation of p120-catenin. Biochemistry (Mosc) 42:9195–9204. doi:10.1021/bi034597h

    Article  CAS  Google Scholar 

  71. Brown MV, Burnett PE, Denning MF, Reynolds AB (2009) PDGF receptor activation induces p120-catenin phosphorylation at serine 879 via a PKCalpha-dependent pathway. Exp Cell Res 315:39–49. doi:10.1016/j.yexcr.2008.09.025

    Article  CAS  PubMed  Google Scholar 

  72. Dann SG, Golas J, Miranda M, Shi C, Wu J, Jin G et al (2014) p120 catenin is a key effector of a Ras-PKCɛ oncogenic signaling axis. Oncogene 33:1385–1394. doi:10.1038/onc.2013.91

    Article  CAS  PubMed  Google Scholar 

  73. Hinck L, Näthke IS, Papkoff J, Nelson WJ (1994) Dynamics of cadherin/catenin complex formation: novel protein interactions and pathways of complex assembly. J Cell Biol 125:1327–1340

    Article  CAS  PubMed  Google Scholar 

  74. Huber AH, Weis WI (2001) The structure of the beta-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by beta-catenin. Cell 105:391–402

    Article  CAS  PubMed  Google Scholar 

  75. Dupre-Crochet S, Figueroa A, Hogan C, Ferber EC, Bialucha CU, Adams J et al (2007) Casein kinase 1 is a novel negative regulator of E-cadherin-based cell–cell contacts. Mol Cell Biol 27:3804–3816. doi:10.1128/MCB.01590-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Inuzuka H, Gao D, Finley LWS, Yang W, Wan L, Fukushima H et al (2012) Acetylation-dependent regulation of Skp2 function. Cell 150:179–193. doi:10.1016/j.cell.2012.05.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Stamos JL, Weis WI (2013) The β-catenin destruction complex. Cold Spring Harb Perspect Biol 5:a007898. doi:10.1101/cshperspect.a007898

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Lee M-H, Koria P, Qu J, Andreadis ST (2009) JNK phosphorylates beta-catenin and regulates adherens junctions. FASEB J Off Publ Fed Am Soc Exp Biol 23:3874–3883. doi:10.1096/fj.08-117804

    CAS  Google Scholar 

  79. Ohama T, Wang L, Griner EM, Brautigan DL (2013) Protein Ser/Thr phosphatase-6 is required for maintenance of E-cadherin at adherens junctions. BMC Cell Biol 14:42. doi:10.1186/1471-2121-14-42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Takahashi K, Nakajima E, Suzuki K (2006) Involvement of protein phosphatase 2A in the maintenance of E-cadherin-mediated cell-cell adhesion through recruitment of IQGAP1. J Cell Physiol 206:814–820. doi:10.1002/jcp.20524

    Article  CAS  PubMed  Google Scholar 

  81. Marchesini N, Jones JA, Hannun YA (2007) Confluence induced threonine41/serine45 phospho-beta-catenin dephosphorylation via ceramide-mediated activation of PP1cgamma. Biochim Biophys Acta 1771:1418–1428. doi:10.1016/j.bbalip.2007.10.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Müller T, Choidas A, Reichmann E, Ullrich A (1999) Phosphorylation and free pool of beta-catenin are regulated by tyrosine kinases and tyrosine phosphatases during epithelial cell migration. J Biol Chem 274:10173–10183

    Article  PubMed  Google Scholar 

  83. Yan H-X, Yang W, Zhang R, Chen L, Tang L, Zhai B et al (2006) Protein-tyrosine phosphatase PCP-2 inhibits beta-catenin signaling and increases E-cadherin-dependent cell adhesion. J Biol Chem 281:15423–15433. doi:10.1074/jbc.M602607200

    Article  CAS  PubMed  Google Scholar 

  84. Takahashi K, Matafonov A, Sumarriva K, Ito H, Lauhan C, Zemel D et al (2014) CD148 tyrosine phosphatase promotes cadherin cell adhesion. PLoS One 9:e112753. doi:10.1371/journal.pone.0112753

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Shashikanth N, Petrova YI, Park S, Chekan J, Maiden S, Spano M et al (2015) Allosteric regulation of E-Cadherin adhesion. J Biol Chem 290:21749–21761. doi:10.1074/jbc.M115.657098

    Article  CAS  PubMed  Google Scholar 

  86. Bilder D, Schober M, Perrimon N (2003) Integrated activity of PDZ protein complexes regulates epithelial polarity. Nat Cell Biol 5:53–58. doi:10.1038/ncb897

    Article  CAS  PubMed  Google Scholar 

  87. Heisenberg C-P, Bellaïche Y (2013) Forces in tissue morphogenesis and patterning. Cell 153:948–962. doi:10.1016/j.cell.2013.05.008

    Article  CAS  PubMed  Google Scholar 

  88. Founounou N, Loyer N, Le Borgne R (2013) Septins regulate the contractility of the actomyosin ring to enable adherens junction remodeling during cytokinesis of epithelial cells. Dev Cell 24:242–255. doi:10.1016/j.devcel.2013.01.008

    Article  CAS  PubMed  Google Scholar 

  89. Herszterg S, Leibfried A, Bosveld F, Martin C, Bellaiche Y (2013) Interplay between the dividing cell and its neighbors regulates adherens junction formation during cytokinesis in epithelial tissue. Dev Cell 24:256–270. doi:10.1016/j.devcel.2012.11.019

    Article  CAS  PubMed  Google Scholar 

  90. Guillot C, Lecuit T (2013) Adhesion disengagement uncouples intrinsic and extrinsic forces to drive cytokinesis in epithelial tissues. Dev Cell 24:227–241. doi:10.1016/j.devcel.2013.01.010

    Article  CAS  PubMed  Google Scholar 

  91. Grammont M (2007) Adherens junction remodeling by the Notch pathway in Drosophila melanogaster oogenesis. J Cell Biol 177:139–150. doi:10.1083/jcb.200609079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kolahi KS, White PF, Shreter DM, Classen A-K, Bilder D, Mofrad MRK (2009) Quantitative analysis of epithelial morphogenesis in Drosophila oogenesis: new insights based on morphometric analysis and mechanical modeling. Dev Biol 331:129–139. doi:10.1016/j.ydbio.2009.04.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mandai K, Rikitake Y, Shimono Y, Takai Y (2013) Afadin/AF-6 and canoe: roles in cell adhesion and beyond. Prog Mol Biol Transl Sci 116:433–454. doi:10.1016/B978-0-12-394311-8.00019-4

    Article  CAS  PubMed  Google Scholar 

  94. Chen X, Macara IG (2005) Par-3 controls tight junction assembly through the Rac exchange factor Tiam1. Nat Cell Biol 7:262–269. doi:10.1038/ncb1226

    Article  CAS  PubMed  Google Scholar 

  95. Georgiou M, Baum B (2010) Polarity proteins and Rho GTPases cooperate to spatially organise epithelial actin-based protrusions. J Cell Sci 123:1089–1098. doi:10.1242/jcs.060772

    Article  CAS  PubMed  Google Scholar 

  96. Drees F, Pokutta S, Yamada S, Nelson WJ, Weis WI (2005) Alpha-catenin is a molecular switch that binds E-cadherin-beta-catenin and regulates actin-filament assembly. Cell 123:903–915. doi:10.1016/j.cell.2005.09.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ratheesh A, Gomez GA, Priya R, Verma S, Kovacs EM, Jiang K et al (2012) Centralspindlin and α-catenin regulate Rho signalling at the epithelial zonula adherens. Nat Cell Biol 14:818–828. doi:10.1038/ncb2532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Etemad-Moghadam B, Guo S, Kemphues KJ (1995) Asymmetrically distributed PAR-3 protein contributes to cell polarity and spindle alignment in early C. elegans embryos. Cell 83:743–752

    Article  CAS  PubMed  Google Scholar 

  99. Kuchinke U, Grawe F, Knust E (1998) Control of spindle orientation in Drosophila by the Par-3-related PDZ-domain protein Bazooka. Curr Biol CB 8:1357–1365

    Article  CAS  PubMed  Google Scholar 

  100. Wodarz A (2002) Establishing cell polarity in development. Nat Cell Biol 4:E39–E44. doi:10.1038/ncb0202-e39

    Article  CAS  PubMed  Google Scholar 

  101. Harris TJC, Peifer M (2004) Adherens junction-dependent and -independent steps in the establishment of epithelial cell polarity in Drosophila. J Cell Biol 167:135–147. doi:10.1083/jcb.200406024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. McGill MA, McKinley RFA, Harris TJC (2009) Independent cadherin-catenin and Bazooka clusters interact to assemble adherens junctions. J Cell Biol 185:787–796. doi:10.1083/jcb.200812146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. McKinley RFA, Yu CG, Harris TJC (2012) Assembly of Bazooka polarity landmarks through a multifaceted membrane-association mechanism. J Cell Sci 125:1177–1190. doi:10.1242/jcs.091884

    Article  CAS  PubMed  Google Scholar 

  104. Krahn MP, Klopfenstein DR, Fischer N, Wodarz A (2010) Membrane targeting of Bazooka/PAR-3 is mediated by direct binding to phosphoinositide lipids. Curr Biol CB 20:636–642. doi:10.1016/j.cub.2010.01.065

    Article  CAS  PubMed  Google Scholar 

  105. Zallen JA, Wieschaus E (2004) Patterned gene expression directs bipolar planar polarity in Drosophila. Dev Cell 6:343–355

    Article  CAS  PubMed  Google Scholar 

  106. Sde Simões M, Blankenship JT, Weitz O, Farrell DL, Tamada M, Fernandez-Gonzalez R et al (2010) Rho-kinase directs Bazooka/Par-3 planar polarity during Drosophila axis elongation. Dev Cell 19:377–388. doi:10.1016/j.devcel.2010.08.011

    Article  CAS  Google Scholar 

  107. Bertet C, Sulak L, Lecuit T (2004) Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature 429:667–671. doi:10.1038/nature02590

    Article  CAS  PubMed  Google Scholar 

  108. Walther RF, Pichaud F (2010) Crumbs/DaPKC-dependent apical exclusion of Bazooka promotes photoreceptor polarity remodeling. Curr Biol CB 20:1065–1074. doi:10.1016/j.cub.2010.04.049

    Article  CAS  PubMed  Google Scholar 

  109. Ooshio T, Fujita N, Yamada A, Sato T, Kitagawa Y, Okamoto R et al (2007) Cooperative roles of Par-3 and afadin in the formation of adherens and tight junctions. J Cell Sci 120:2352–2365. doi:10.1242/jcs.03470

    Article  CAS  PubMed  Google Scholar 

  110. McCaffrey LM, Montalbano J, Mihai C, Macara IG (2012) Loss of the Par3 polarity protein promotes breast tumorigenesis and metastasis. Cancer Cell 22:601–614. doi:10.1016/j.ccr.2012.10.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Xue B, Krishnamurthy K, Allred DC, Muthuswamy SK (2013) Loss of Par3 promotes breast cancer metastasis by compromising cell–cell cohesion. Nat Cell Biol 15:189–200. doi:10.1038/ncb2663

    Article  CAS  PubMed  Google Scholar 

  112. Lin D, Edwards AS, Fawcett JP, Mbamalu G, Scott JD, Pawson T (2000) A mammalian PAR-3–PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nat Cell Biol 2:540–547. doi:10.1038/35019582

    Article  CAS  PubMed  Google Scholar 

  113. Joberty G, Petersen C, Gao L, Macara IG (2000) The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nat Cell Biol 2:531–539. doi:10.1038/35019573

    Article  CAS  PubMed  Google Scholar 

  114. Harris KP, Tepass U (2008) Cdc42 and Par proteins stabilize dynamic adherens junctions in the Drosophila neuroectoderm through regulation of apical endocytosis. J Cell Biol 183:1129–1143. doi:10.1083/jcb.200807020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Georgiou M, Marinari E, Burden J, Baum B (2008) Cdc42, Par6, and aPKC regulate Arp2/3-mediated endocytosis to control local adherens junction stability. Curr Biol CB 18:1631–1638. doi:10.1016/j.cub.2008.09.029

    Article  CAS  PubMed  Google Scholar 

  116. Leibfried A, Fricke R, Morgan MJ, Bogdan S, Bellaiche Y (2008) Drosophila Cip4 and WASp define a branch of the Cdc42-Par6-aPKC pathway regulating E-cadherin endocytosis. Curr Biol CB 18:1639–1648. doi:10.1016/j.cub.2008.09.063

    Article  CAS  PubMed  Google Scholar 

  117. Mertens AEE, Rygiel TP, Olivo C, van der Kammen R, Collard JG (2005) The Rac activator Tiam1 controls tight junction biogenesis in keratinocytes through binding to and activation of the Par polarity complex. J Cell Biol 170:1029–1037. doi:10.1083/jcb.200502129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Nishimura T, Yamaguchi T, Kato K, Yoshizawa M, Nabeshima Y, Ohno S et al (2005) PAR-6–PAR-3 mediates Cdc42-induced Rac activation through the Rac GEFs STEF/Tiam1. Nat Cell Biol 7:270–277. doi:10.1038/ncb1227

    Article  CAS  PubMed  Google Scholar 

  119. Gladden AB, Hebert AM, Schneeberger EE, McClatchey AI (2010) The NF2 tumor suppressor, Merlin, regulates epidermal development through the establishment of a junctional polarity complex. Dev Cell 19:727–739. doi:10.1016/j.devcel.2010.10.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Maitra S, Kulikauskas RM, Gavilan H, Fehon RG (2006) The tumor suppressors Merlin and expanded function cooperatively to modulate receptor endocytosis and signaling. Curr Biol CB 16:702–709. doi:10.1016/j.cub.2006.02.063

    Article  CAS  PubMed  Google Scholar 

  121. Harris TJC, Peifer M (2005) The positioning and segregation of apical cues during epithelial polarity establishment in Drosophila. J Cell Biol 170:813–823. doi:10.1083/jcb.200505127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Morais-de-Sá E, Mirouse V, St Johnston D (2010) aPKC phosphorylation of Bazooka defines the apical/lateral border in Drosophila epithelial cells. Cell 141:509–523. doi:10.1016/j.cell.2010.02.040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Krahn MP, Bückers J, Kastrup L, Wodarz A (2010) Formation of a Bazooka-Stardust complex is essential for plasma membrane polarity in epithelia. J Cell Biol 190:751–760. doi:10.1083/jcb.201006029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Benton R, St Johnston D (2003) Drosophila PAR-1 and 14-3-3 inhibit Bazooka/PAR-3 to establish complementary cortical domains in polarized cells. Cell 115:691–704

    Article  CAS  PubMed  Google Scholar 

  125. Jiang T, McKinley RFA, McGill MA, Angers S, Harris TJC (2015) A Par-1–Par-3-centrosome cell polarity pathway and its tuning for isotropic cell adhesion. Curr Biol CB 25:2701–2708. doi:10.1016/j.cub.2015.08.063

    Article  CAS  PubMed  Google Scholar 

  126. Hirose T, Izumi Y, Nagashima Y, Tamai-Nagai Y, Kurihara H, Sakai T et al (2002) Involvement of ASIP/PAR-3 in the promotion of epithelial tight junction formation. J Cell Sci 115:2485–2495

    CAS  PubMed  Google Scholar 

  127. Nagai-Tamai Y, Mizuno K, Hirose T, Suzuki A, Ohno S (2002) Regulated protein-protein interaction between aPKC and PAR-3 plays an essential role in the polarization of epithelial cells. Genes Cells Devoted Mol Cell Mech 7:1161–1171

    Article  CAS  Google Scholar 

  128. Hurd TW, Fan S, Liu CJ, Kweon HK, Hakansson K, Margolis B (2003) Phosphorylation-dependent binding of 14-3-3 to the polarity protein Par3 regulates cell polarity in mammalian epithelia. Curr Biol CB 13:2082–2090

    Article  CAS  PubMed  Google Scholar 

  129. Traweger A, Wiggin G, Taylor L, Tate SA, Metalnikov P, Pawson T (2008) Protein phosphatase 1 regulates the phosphorylation state of the polarity scaffold Par-3. Proc Natl Acad Sci U S A 105:10402–10407. doi:10.1073/pnas.0804102105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Horikoshi Y, Hamada S, Ohno S, Suetsugu S (2011) Phosphoinositide binding by par-3 involved in par-3 localization. Cell Struct Funct 36:97–102

    Article  CAS  PubMed  Google Scholar 

  131. Claret S, Jouette J, Benoit B, Legent K, Guichet A (2014) PI(4,5)P2 produced by the PI4P5K SKTL controls apical size by tethering PAR-3 in Drosophila epithelial cells. Curr Biol CB 24:1071–1079. doi:10.1016/j.cub.2014.03.056

    Article  CAS  PubMed  Google Scholar 

  132. von Stein W, Ramrath A, Grimm A, Müller-Borg M, Wodarz A (2005) Direct association of Bazooka/PAR-3 with the lipid phosphatase PTEN reveals a link between the PAR/aPKC complex and phosphoinositide signaling. Dev Camb Engl 132:1675–1686. doi:10.1242/dev.01720

    Google Scholar 

  133. Feng W, Wu H, Chan L-N, Zhang M (2008) Par-3-mediated junctional localization of the lipid phosphatase PTEN is required for cell polarity establishment. J Biol Chem 283:23440–23449. doi:10.1074/jbc.M802482200

    Article  CAS  PubMed  Google Scholar 

  134. Bardet P-L, Guirao B, Paoletti C, Serman F, Léopold V, Bosveld F et al (2013) PTEN controls junction lengthening and stability during cell rearrangement in epithelial tissue. Dev Cell 25:534–546. doi:10.1016/j.devcel.2013.04.020

    Article  CAS  PubMed  Google Scholar 

  135. Wei S-Y, Escudero LM, Yu F, Chang L-H, Chen L-Y, Ho Y-H et al (2005) Echinoid is a component of adherens junctions that cooperates with DE-Cadherin to mediate cell adhesion. Dev Cell 8:493–504. doi:10.1016/j.devcel.2005.03.015

    Article  CAS  PubMed  Google Scholar 

  136. Laplante C, Nilson LA (2006) Differential expression of the adhesion molecule Echinoid drives epithelial morphogenesis in Drosophila. Dev Camb Engl 133:3255–3264. doi:10.1242/dev.02492

    CAS  Google Scholar 

  137. Takekuni K, Ikeda W, Fujito T, Morimoto K, Takeuchi M, Monden M et al (2003) Direct binding of cell polarity protein PAR-3 to cell-cell adhesion molecule nectin at neuroepithelial cells of developing mouse. J Biol Chem 278:5497–5500. doi:10.1074/jbc.C200707200

    Article  CAS  PubMed  Google Scholar 

  138. Sottocornola R, Royer C, Vives V, Tordella L, Zhong S, Wang Y et al (2010) ASPP2 binds Par-3 and controls the polarity and proliferation of neural progenitors during CNS development. Dev Cell 19:126–137. doi:10.1016/j.devcel.2010.06.003

    Article  CAS  PubMed  Google Scholar 

  139. Cong W, Hirose T, Harita Y, Yamashita A, Mizuno K, Hirano H et al (2010) ASPP2 regulates epithelial cell polarity through the PAR complex. Curr Biol CB 20:1408–1414. doi:10.1016/j.cub.2010.06.024

    Article  CAS  PubMed  Google Scholar 

  140. Kim H, Claps G, Möller A, Bowtell D, Lu X, Ronai ZA (2014) Siah2 regulates tight junction integrity and cell polarity through control of ASPP2 stability. Oncogene 33:2004–2010. doi:10.1038/onc.2013.149

    Article  CAS  PubMed  Google Scholar 

  141. Wang Y, Bu F, Royer C, Serres S, Larkin JR, Soto MS et al (2014) ASPP2 controls epithelial plasticity and inhibits metastasis through β-catenin-dependent regulation of ZEB1. Nat Cell Biol 16:1092–1104. doi:10.1038/ncb3050

    Article  CAS  PubMed  Google Scholar 

  142. Zaessinger S, Zhou Y, Bray SJ, Tapon N, Djiane A (2015) Drosophila MAGI interacts with RASSF8 to regulate E-Cadherin-based adherens junctions in the developing eye. Dev Camb Engl 142:1102–1112. doi:10.1242/dev.116277

    CAS  Google Scholar 

  143. Hauri S, Wepf A, van Drogen A, Varjosalo M, Tapon N, Aebersold R et al (2013) Interaction proteome of human Hippo signaling: modular control of the co-activator YAP1. Mol Syst Biol 9:713. doi:10.1002/msb.201304750

    Article  PubMed  PubMed Central  Google Scholar 

  144. Langton PF, Colombani J, Chan EHY, Wepf A, Gstaiger M, Tapon N (2009) The dASPP-dRASSF8 complex regulates cell–cell adhesion during Drosophila retinal morphogenesis. Curr Biol CB 19:1969–1978. doi:10.1016/j.cub.2009.10.027

    Article  CAS  PubMed  Google Scholar 

  145. Lynch AM, Grana T, Cox-Paulson E, Couthier A, Cameron M, Chin-Sang I et al (2012) A genome-wide functional screen shows MAGI-1 is an L1CAM-dependent stabilizer of apical junctions in C. elegans. Curr Biol CB 22:1891–1899. doi:10.1016/j.cub.2012.08.024

    Article  CAS  PubMed  Google Scholar 

  146. Feng X, Jia S, Martin TA, Jiang WG (2014) Regulation and involvement in cancer and pathological conditions of MAGI1, a tight junction protein. Anticancer Res 34:3251–3256

    CAS  PubMed  Google Scholar 

  147. Kotelevets L, van Hengel J, Bruyneel E, Mareel M, van Roy F, Chastre E (2005) Implication of the MAGI-1b/PTEN signalosome in stabilization of adherens junctions and suppression of invasiveness. FASEB J Off Publ Fed Am Soc Exp Biol 19:115–117. doi:10.1096/fj.04-1942fje

    CAS  Google Scholar 

  148. Subauste MC, Nalbant P, Adamson ED, Hahn KM (2005) Vinculin controls PTEN protein level by maintaining the interaction of the adherens junction protein beta-catenin with the scaffolding protein MAGI-2. J Biol Chem 280:5676–5681. doi:10.1074/jbc.M405561200

    Article  CAS  PubMed  Google Scholar 

  149. Wu X, Hepner K, Castelino-Prabhu S, Do D, Kaye MB, Yuan XJ et al (2000) Evidence for regulation of the PTEN tumor suppressor by a membrane-localized multi-PDZ domain containing scaffold protein MAGI-2. Proc Natl Acad Sci U S A 97:4233–4238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wu Y, Dowbenko D, Spencer S, Laura R, Lee J, Gu Q et al (2000) Interaction of the tumor suppressor PTEN/MMAC with a PDZ domain of MAGI3, a novel membrane-associated guanylate kinase. J Biol Chem 275:21477–21485. doi:10.1074/jbc.M909741199

    Article  CAS  PubMed  Google Scholar 

  151. Mino A, Ohtsuka T, Inoue E, Takai Y (2000) Membrane-associated guanylate kinase with inverted orientation (MAGI)-1/brain angiogenesis inhibitor 1-associated protein (BAP1) as a scaffolding molecule for Rap small G protein GDP/GTP exchange protein at tight junctions. Genes Cells Devoted Mol Cell Mech 5:1009–1016

    Article  CAS  Google Scholar 

  152. Sakurai A, Fukuhara S, Yamagishi A, Sako K, Kamioka Y, Masuda M et al (2006) MAGI-1 is required for Rap1 activation upon cell-cell contact and for enhancement of vascular endothelial cadherin-mediated cell adhesion. Mol Biol Cell 17:966–976. doi:10.1091/mbc.E05-07-0647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Pannekoek W-J, Kooistra MRH, Zwartkruis FJT, Bos JL (2009) Cell–cell junction formation: the role of Rap1 and Rap1 guanine nucleotide exchange factors. Biochim Biophys Acta 1788:790–796. doi:10.1016/j.bbamem.2008.12.010

    Article  CAS  PubMed  Google Scholar 

  154. Patrie KM, Drescher AJ, Welihinda A, Mundel P, Margolis B (2002) Interaction of two actin-binding proteins, synaptopodin and alpha-actinin-4, with the tight junction protein MAGI-1. J Biol Chem 277:30183–30190. doi:10.1074/jbc.M203072200

    Article  CAS  PubMed  Google Scholar 

  155. Pirozzi G, McConnell SJ, Uveges AJ, Carter JM, Sparks AB, Kay BK et al (1997) Identification of novel human WW domain-containing proteins by cloning of ligand targets. J Biol Chem 272:14611–14616

    Article  CAS  PubMed  Google Scholar 

  156. Lock FE, Underhill-Day N, Dunwell T, Matallanas D, Cooper W, Hesson L et al (2010) The RASSF8 candidate tumor suppressor inhibits cell growth and regulates the Wnt and NF-kappaB signaling pathways. Oncogene 29:4307–4316. doi:10.1038/onc.2010.192

    Article  CAS  PubMed  Google Scholar 

  157. Wang Y, Du D, Fang L, Yang G, Zhang C, Zeng R et al (2006) Tyrosine phosphorylated Par3 regulates epithelial tight junction assembly promoted by EGFR signaling. EMBO J 25:5058–5070. doi:10.1038/sj.emboj.7601384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Severson EA, Kwon M, Hilgarth RS, Parkos CA, Nusrat A (2010) Glycogen Synthase Kinase 3 (GSK-3) influences epithelial barrier function by regulating occludin, claudin-1 and E-cadherin expression. Biochem Biophys Res Commun 397:592–597. doi:10.1016/j.bbrc.2010.05.164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Jaggi M, Rao PS, Smith DJ, Wheelock MJ, Johnson KR, Hemstreet GP et al (2005) E-cadherin phosphorylation by protein kinase D1/protein kinase C{mu} is associated with altered cellular aggregation and motility in prostate cancer. Cancer Res 65:483–492

    CAS  PubMed  Google Scholar 

  160. Choi SH, Estarás C, Moresco JJ, Yates JR, Jones KA (2013) α-Catenin interacts with APC to regulate β-catenin proteolysis and transcriptional repression of Wnt target genes. Genes Dev 27:2473–2488. doi:10.1101/gad.229062.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Amit S, Hatzubai A, Birman Y, Andersen JS, Ben-Shushan E, Mann M et al (2002) Axin-mediated CKI phosphorylation of beta-catenin at Ser 45: a molecular switch for the Wnt pathway. Genes Dev 16:1066–1076. doi:10.1101/gad.230302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. van Noort M, Meeldijk J, van der Zee R, Destree O, Clevers H (2002) Wnt signaling controls the phosphorylation status of beta-catenin. J Biol Chem 277:17901–17905. doi:10.1074/jbc.M111635200

    Article  PubMed  CAS  Google Scholar 

  163. Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y et al (2002) Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108:837–847

    Article  CAS  PubMed  Google Scholar 

  164. Hsu K-L, Fan H-J, Chen Y-C, Huang Y-S, Chen C-H, Wu J-C et al (2009) Protein kinase C-Fyn kinase cascade mediates the oleic acid-induced disassembly of neonatal rat cardiomyocyte adherens junctions. Int J Biochem Cell Biol 41:1536–1546. doi:10.1016/j.biocel.2008.12.016

    Article  CAS  PubMed  Google Scholar 

  165. Nakayama M, Goto TM, Sugimoto M, Nishimura T, Shinagawa T, Ohno S et al (2008) Rho-kinase phosphorylates PAR-3 and disrupts PAR complex formation. Dev Cell 14:205–215. doi:10.1016/j.devcel.2007.11.021

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the members of the PC and AD labs, and S. Zaessinger for critical reading. The PC lab is supported by grants from the “Plan Cancer/INCa” (ASC14021FSA) and the “Fondation ARC pour la recherche sur le cancer” (SL220110603480). The AD lab is supported by Grants from the “Fondation ARC pour la recherche sur le cancer”, “Marie Curie CIG”, and “ATIP/Avenir programme”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Djiane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coopman, P., Djiane, A. Adherens Junction and E-Cadherin complex regulation by epithelial polarity. Cell. Mol. Life Sci. 73, 3535–3553 (2016). https://doi.org/10.1007/s00018-016-2260-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2260-8

Keywords

Navigation