Skip to main content
Log in

Genome maintenance in the context of 4D chromatin condensation

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The eukaryotic genome is packaged in the three-dimensional nuclear space by forming loops, domains, and compartments in a hierarchical manner. However, when duplicated genomes prepare for segregation, mitotic cells eliminate topologically associating domains and abandon the compartmentalized structure. Alongside chromatin architecture reorganization during the transition from interphase to mitosis, cells halt most DNA-templated processes such as transcription and repair. The intrinsically condensed chromatin serves as a sophisticated signaling module subjected to selective relaxation for programmed genomic activities. To understand the elaborate genome–epigenome interplay during cell cycle progression, the steady three-dimensional genome requires a time scale to form a dynamic four-dimensional and a more comprehensive portrait. In this review, we will dissect the functions of critical chromatin architectural components in constructing and maintaining an orderly packaged chromatin environment. We will also highlight the importance of the spatially and temporally conscious orchestration of chromatin remodeling to ensure high-fidelity genetic transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Campos EI, Reinberg D (2009) Histones: annotating chromatin. Annu Rev Genet 43:559–599. doi:10.1146/annurev.genet.032608.103928

    Article  CAS  PubMed  Google Scholar 

  2. Schneider R, Grosschedl R (2007) Dynamics and interplay of nuclear architecture, genome organization, and gene expression. Genes Dev 21:3027–3043. doi:10.1101/gad.1604607

    Article  CAS  PubMed  Google Scholar 

  3. Phillips-Cremins JE, Sauria ME, Sanyal A et al (2013) Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 153:1281–1295. doi:10.1016/j.cell.2013.04.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shachar S, Voss TC, Pegoraro G et al (2015) Identification of gene positioning factors using high-throughput imaging mapping. Cell 162:911–923. doi:10.1016/j.cell.2015.07.035

    Article  CAS  PubMed  Google Scholar 

  5. Dowen JM, Fan ZP, Hnisz D et al (2014) Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell 159:374–387. doi:10.1016/j.cell.2014.09.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gibcus JH, Dekker J (2013) The hierarchy of the 3D genome. Mol Cell 49:773–782. doi:10.1016/j.molcel.2013.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Naumova N, Imakaev M, Fudenberg G et al (2013) Organization of the mitotic chromosome. Science 342:948–953. doi:10.1126/science.1236083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Daban JR (2015) Stacked thin layers of metaphase chromatin explain the geometry of chromosome rearrangements and banding. Sci Rep 5:14891. doi:10.1038/srep14891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Grigoryev SA, Bascom G, Buckwalter JM et al (2016) Hierarchical looping of zigzag nucleosome chains in metaphase chromosomes. Proc Natl Acad Sci USA 113:1238–1243. doi:10.1073/pnas.1518280113

    Article  CAS  PubMed  Google Scholar 

  10. Martinez-Balbas MA, Dey A, Rabindran SK et al (1995) Displacement of sequence-specific transcription factors from mitotic chromatin. Cell 83:29–38

    Article  CAS  PubMed  Google Scholar 

  11. Heijink AM, Krajewska M, van Vugt MA (2013) The DNA damage response during mitosis. Mutat Res 750:45–55. doi:10.1016/j.mrfmmm.2013.07.003

    Article  CAS  PubMed  Google Scholar 

  12. Dekker J, Rippe K, Dekker M et al (2002) Capturing chromosome conformation. Science 295:1306–1311. doi:10.1126/science.1067799

    Article  CAS  PubMed  Google Scholar 

  13. de Laat W, Dekker J (2012) 3C-based technologies to study the shape of the genome. Methods 58:189–191. doi:10.1016/j.ymeth.2012.11.005

    Article  PubMed  CAS  Google Scholar 

  14. Dixon JR, Selvaraj S, Yue F et al (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376–380. doi:10.1038/nature11082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lieberman-Aiden E, van Berkum NL, Williams L et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293. doi:10.1126/science.1181369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rao SS, Huntley MH, Durand NC et al (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159:1665–1680. doi:10.1016/j.cell.2014.11.021

    Article  CAS  PubMed  Google Scholar 

  17. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705. doi:10.1016/j.cell.2007.02.005

    Article  CAS  PubMed  Google Scholar 

  18. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080. doi:10.1126/science.1063127

    Article  CAS  PubMed  Google Scholar 

  19. Davey CA, Sargent DF, Luger K et al (2002) Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution. J Mol Biol 319:1097–1113

    Article  CAS  PubMed  Google Scholar 

  20. Luger K, Mader AW, Richmond RK et al (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y, Fischle W, Cheung W et al (2004) Beyond the double helix: writing and reading the histone code. Novartis Found Symp 259:3–17 (discussion 17–21, 163–169)

    Article  CAS  PubMed  Google Scholar 

  22. Hansen JC, Tse C, Wolffe AP (1998) Structure and function of the core histone N-termini: more than meets the eye. Biochemistry 37:17637–17641

    Article  CAS  PubMed  Google Scholar 

  23. Tropberger P, Schneider R (2013) Scratching the (lateral) surface of chromatin regulation by histone modifications. Nat Struct Mol Biol 20:657–661. doi:10.1038/nsmb.2581

    Article  CAS  PubMed  Google Scholar 

  24. Bartova E, Krejci J, Harnicarova A et al (2008) Histone modifications and nuclear architecture: a review. J Histochem Cytochem 56:711–721. doi:10.1369/jhc.2008.951251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Black JC, Van Rechem C, Whetstine JR (2012) Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell 48:491–507. doi:10.1016/j.molcel.2012.11.006

    Article  CAS  PubMed  Google Scholar 

  26. Choi JK, Howe LJ (2009) Histone acetylation: truth of consequences? Biochem Cell Biol 87:139–150. doi:10.1139/O08-112

    Article  CAS  PubMed  Google Scholar 

  27. Murray K (1964) The occurrence of epsilon-N-methyl lysine in histones. Biochemistry 3:10–15

    Article  CAS  PubMed  Google Scholar 

  28. Byvoet P, Shepherd GR, Hardin JM et al (1972) The distribution and turnover of labeled methyl groups in histone fractions of cultured mammalian cells. Arch Biochem Biophys 148:558–567

    Article  CAS  PubMed  Google Scholar 

  29. Peterson CL, Laniel MA (2004) Histones and histone modifications. Curr Biol 14:R546–R551. doi:10.1016/j.cub.2004.07.007

    Article  CAS  PubMed  Google Scholar 

  30. Wang X, Hayes JJ (2008) Acetylation mimics within individual core histone tail domains indicate distinct roles in regulating the stability of higher-order chromatin structure. Mol Cell Biol 28:227–236. doi:10.1128/MCB.01245-07

    Article  CAS  PubMed  Google Scholar 

  31. Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci USA 51:786–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Oliva R, Bazett-Jones DP, Locklear L et al (1990) Histone hyperacetylation can induce unfolding of the nucleosome core particle. Nucleic Acids Res 18:2739–2747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45. doi:10.1038/47412

    Article  CAS  PubMed  Google Scholar 

  34. Shogren-Knaak M, Ishii H, Sun JM et al (2006) Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311:844–847. doi:10.1126/science.1124000

    Article  CAS  PubMed  Google Scholar 

  35. Akhtar A, Becker PB (2000) Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila. Mol Cell 5:367–375

    Article  CAS  PubMed  Google Scholar 

  36. Osley MA (1991) The regulation of histone synthesis in the cell cycle. Annu Rev Biochem 60:827–861. doi:10.1146/annurev.bi.60.070191.004143

    Article  CAS  PubMed  Google Scholar 

  37. Ahmad K, Henikoff S (2002) The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell 9:1191–1200

    Article  CAS  PubMed  Google Scholar 

  38. Ahmad K, Henikoff S (2002) Histone H3 variants specify modes of chromatin assembly. Proc Natl Acad Sci USA 99(Suppl 4):16477–16484. doi:10.1073/pnas.172403699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Boulard M, Bouvet P, Kundu TK et al (2007) Histone variant nucleosomes: structure, function and implication in disease. Subcell Biochem 41:71–89

    PubMed  Google Scholar 

  40. Happel N, Doenecke D (2009) Histone H1 and its isoforms: contribution to chromatin structure and function. Gene 431:1–12. doi:10.1016/j.gene.2008.11.003

    Article  CAS  PubMed  Google Scholar 

  41. Terme JM, Sese B, Millan-Arino L et al (2011) Histone H1 variants are differentially expressed and incorporated into chromatin during differentiation and reprogramming to pluripotency. J Biol Chem 286:35347–35357. doi:10.1074/jbc.M111.281923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kamakaka RT, Biggins S (2005) Histone variants: deviants? Genes Dev 19:295–310. doi:10.1101/gad.1272805

    Article  CAS  PubMed  Google Scholar 

  43. Fernandez-Capetillo O, Lee A, Nussenzweig M et al (2004) H2AX: the histone guardian of the genome. DNA Repair (Amst) 3:959–967. doi:10.1016/j.dnarep.2004.03.024

    Article  CAS  Google Scholar 

  44. Redon C, Pilch D, Rogakou E et al (2002) Histone H2A variants H2AX and H2AZ. Curr Opin Genet Dev 12:162–169

    Article  CAS  PubMed  Google Scholar 

  45. Ausio J, Abbott DW (2002) The many tales of a tail: carboxyl-terminal tail heterogeneity specializes histone H2A variants for defined chromatin function. Biochemistry 41:5945–5949

    Article  CAS  PubMed  Google Scholar 

  46. Millar CB (2013) Organizing the genome with H2A histone variants. Biochem J 449:567–579. doi:10.1042/BJ20121646

    Article  CAS  PubMed  Google Scholar 

  47. Szilard RK, Jacques PE, Laramee L et al (2010) Systematic identification of fragile sites via genome-wide location analysis of gamma-H2AX. Nat Struct Mol Biol 17:299–305. doi:10.1038/nsmb.1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Seo J, Kim SC, Lee HS et al (2012) Genome-wide profiles of H2AX and gamma-H2AX differentiate endogenous and exogenous DNA damage hotspots in human cells. Nucleic Acids Res 40:5965–5974. doi:10.1093/nar/gks287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Celeste A, Petersen S, Romanienko PJ et al (2002) Genomic instability in mice lacking histone H2AX. Science 296:922–927. doi:10.1126/science.1069398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Celeste A, Difilippantonio S, Difilippantonio MJ et al (2003) H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell 114:371–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Filipescu D, Muller S, Almouzni G (2014) Histone H3 variants and their chaperones during development and disease: contributing to epigenetic control. Annu Rev Cell Dev Biol 30:615–646. doi:10.1146/annurev-cellbio-100913-013311

    Article  CAS  PubMed  Google Scholar 

  52. Valdivia MM, Hamdouch K, Ortiz M et al (2009) CENPA a genomic marker for centromere activity and human diseases. Curr Genomics 10:326–335. doi:10.2174/138920209788920985

    Article  CAS  PubMed  Google Scholar 

  53. McKinley KL, Cheeseman IM (2014) Polo-like kinase 1 licenses CENP-A deposition at centromeres. Cell 158:397–411. doi:10.1016/j.cell.2014.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Adolph KW, Cheng SM, Laemmli UK (1977) Role of nonhistone proteins in metaphase chromosome structure. Cell 12:805–816

    Article  CAS  PubMed  Google Scholar 

  55. Paulson JR, Laemmli UK (1977) The structure of histone-depleted metaphase chromosomes. Cell 12:817–828

    Article  CAS  PubMed  Google Scholar 

  56. Lewis CD, Laemmli UK (1982) Higher order metaphase chromosome structure: evidence for metalloprotein interactions. Cell 29:171–181

    Article  CAS  PubMed  Google Scholar 

  57. Earnshaw WC, Halligan B, Cooke CA et al (1985) Topoisomerase II is a structural component of mitotic chromosome scaffolds. J Cell Biol 100:1706–1715

    Article  CAS  PubMed  Google Scholar 

  58. Gasser SM, Laroche T, Falquet J et al (1986) Metaphase chromosome structure. Involvement of topoisomerase II. J Mol Biol 188:613–629

    Article  CAS  PubMed  Google Scholar 

  59. Saitoh N, Goldberg IG, Wood ER et al (1994) ScII: an abundant chromosome scaffold protein is a member of a family of putative ATPases with an unusual predicted tertiary structure. J Cell Biol 127:303–318

    Article  CAS  PubMed  Google Scholar 

  60. Hirano T, Kobayashi R, Hirano M (1997) Condensins, chromosome condensation protein complexes containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein. Cell 89:511–521

    Article  CAS  PubMed  Google Scholar 

  61. Michaelis C, Ciosk R, Nasmyth K (1997) Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91:35–45

    Article  CAS  PubMed  Google Scholar 

  62. Guacci V, Koshland D, Strunnikov A (1997) A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell 91:47–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Barbero JL (2009) Cohesins: chromatin architects in chromosome segregation, control of gene expression and much more. Cell Mol Life Sci 66:2025–2035. doi:10.1007/s00018-009-0004-8

    Article  CAS  PubMed  Google Scholar 

  64. Hirano T (2005) Condensins: organizing and segregating the genome. Curr Biol 15:R265–R275. doi:10.1016/j.cub.2005.03.037

    Article  CAS  PubMed  Google Scholar 

  65. Potts PR (2009) The Yin and Yang of the MMS21-SMC5/6 SUMO ligase complex in homologous recombination. DNA Repair (Amst) 8:499–506. doi:10.1016/j.dnarep.2009.01.009

    Article  CAS  Google Scholar 

  66. De Piccoli G, Torres-Rosell J, Aragon L (2009) The unnamed complex: what do we know about Smc5–Smc6? Chromosome Res 17:251–263. doi:10.1007/s10577-008-9016-8

    Article  PubMed  CAS  Google Scholar 

  67. Ball AR Jr, Yokomori K (2001) The structural maintenance of chromosomes (SMC) family of proteins in mammals. Chromosome Res 9:85–96

    Article  CAS  Google Scholar 

  68. Sjogren C, Nasmyth K (2001) Sister chromatid cohesion is required for postreplicative double-strand break repair in Saccharomyces cerevisiae. Curr Biol 11:991–995

    Article  CAS  PubMed  Google Scholar 

  69. Strom L, Lindroos HB, Shirahige K et al (2004) Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol Cell 16:1003–1015. doi:10.1016/j.molcel.2004.11.026

    Article  PubMed  Google Scholar 

  70. Degner SC, Verma-Gaur J, Wong TP et al (2011) CCCTC-binding factor (CTCF) and cohesin influence the genomic architecture of the Igh locus and antisense transcription in pro-B cells. Proc Natl Acad Sci USA 108:9566–9571. doi:10.1073/pnas.1019391108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yan J, Enge M, Whitington T et al (2013) Transcription factor binding in human cells occurs in dense clusters formed around cohesin anchor sites. Cell 154:801–813. doi:10.1016/j.cell.2013.07.034

    Article  CAS  PubMed  Google Scholar 

  72. Heale JT, Ball AR Jr, Schmiesing JA et al (2006) Condensin I interacts with the PARP-1-XRCC1 complex and functions in DNA single-strand break repair. Mol Cell 21:837–848. doi:10.1016/j.molcel.2006.01.036

    Article  CAS  PubMed  Google Scholar 

  73. Wallace HA, Bosco G (2013) Condensins and 3D organization of the interphase nucleus. Curr Genet Med Rep 1:219–229. doi:10.1007/s40142-013-0024-4

    Article  PubMed  PubMed Central  Google Scholar 

  74. Piazza I, Haering CH, Rutkowska A (2013) Condensin: crafting the chromosome landscape. Chromosoma 122:175–190. doi:10.1007/s00412-013-0405-1

    Article  CAS  PubMed  Google Scholar 

  75. Hirano T (2006) At the heart of the chromosome: SMC proteins in action. Nat Rev Mol Cell Biol 7:311–322. doi:10.1038/nrm1909

    Article  CAS  PubMed  Google Scholar 

  76. Shintomi K, Hirano T (2011) The relative ratio of condensin I to II determines chromosome shapes. Genes Dev 25:1464–1469. doi:10.1101/gad.2060311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lee J, Ogushi S, Saitou M et al (2011) Condensins I and II are essential for construction of bivalent chromosomes in mouse oocytes. Mol Biol Cell 22:3465–3477. doi:10.1091/mbc.E11-05-0423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Green LC, Kalitsis P, Chang TM et al (2012) Contrasting roles of condensin I and condensin II in mitotic chromosome formation. J Cell Sci 125:1591–1604. doi:10.1242/jcs.097790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Onn I, Aono N, Hirano M et al (2007) Reconstitution and subunit geometry of human condensin complexes. EMBO J 26:1024–1034. doi:10.1038/sj.emboj.7601562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Haarhuis JH, Elbatsh AM, Rowland BD (2014) Cohesin and its regulation: on the logic of X-shaped chromosomes. Dev Cell 31:7–18. doi:10.1016/j.devcel.2014.09.010

    Article  CAS  PubMed  Google Scholar 

  81. Liu LF, Liu CC, Alberts BM (1980) Type II DNA topoisomerases: enzymes that can unknot a topologically knotted DNA molecule via a reversible double-strand break. Cell 19:697–707

    Article  CAS  PubMed  Google Scholar 

  82. Brown PO, Cozzarelli NR (1979) A sign inversion mechanism for enzymatic supercoiling of DNA. Science 206:1081–1083

    Article  CAS  PubMed  Google Scholar 

  83. Gellert M, Mizuuchi K, O’Dea MH et al (1976) DNA gyrase: an enzyme that introduces superhelical turns into DNA. Proc Natl Acad Sci USA 73:3872–3876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Goto T, Wang JC (1982) Yeast DNA topoisomerase II. An ATP-dependent type II topoisomerase that catalyzes the catenation, decatenation, unknotting, and relaxation of double-stranded DNA rings. J Biol Chem 257:5866–5872

    CAS  PubMed  Google Scholar 

  85. Hsieh T, Brutlag D (1980) ATP-dependent DNA topoisonmerase from D. melanogaster reversibly catenates duplex DNA rings. Cell 21:115–125

    Article  CAS  PubMed  Google Scholar 

  86. Roca J, Wang JC (1996) The probabilities of supercoil removal and decatenation by yeast DNA topoisomerase II. Genes Cells 1:17–27

    Article  CAS  PubMed  Google Scholar 

  87. Vologodskii AV, Zhang W, Rybenkov VV et al (2001) Mechanism of topology simplification by type II DNA topoisomerases. Proc Natl Acad Sci USA 98:3045–3049. doi:10.1073/pnas.061029098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Charvin G, Bensimon D, Croquette V (2003) Single-molecule study of DNA unlinking by eukaryotic and prokaryotic type-II topoisomerases. Proc Natl Acad Sci USA 100:9820–9825. doi:10.1073/pnas.1631550100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Baxter J, Sen N, Martinez VL et al (2011) Positive supercoiling of mitotic DNA drives decatenation by topoisomerase II in eukaryotes. Science 331:1328–1332. doi:10.1126/science.1201538

    Article  CAS  PubMed  Google Scholar 

  90. Downes CS, Clarke DJ, Mullinger AM et al (1994) A topoisomerase II-dependent G2 cycle checkpoint in mammalian cells. Nature 372:467–470. doi:10.1038/372467a0

    Article  CAS  PubMed  Google Scholar 

  91. Luo K, Yuan J, Chen J et al (2009) Topoisomerase IIalpha controls the decatenation checkpoint. Nat Cell Biol 11:204–210. doi:10.1038/ncb1828

    Article  CAS  PubMed  Google Scholar 

  92. Nitiss JL (2009) DNA topoisomerase II and its growing repertoire of biological functions. Nat Rev Cancer 9:327–337. doi:10.1038/nrc2608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Vos SM, Tretter EM, Schmidt BH et al (2011) All tangled up: how cells direct, manage and exploit topoisomerase function. Nat Rev Mol Cell Biol 12:827–841. doi:10.1038/nrm3228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Maeshima K, Laemmli UK (2003) A two-step scaffolding model for mitotic chromosome assembly. Dev Cell 4:467–480

    Article  CAS  PubMed  Google Scholar 

  95. James TC, Elgin SC (1986) Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene. Mol Cell Biol 6:3862–3872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Krouwels IM, Wiesmeijer K, Abraham TE et al (2005) A glue for heterochromatin maintenance: stable SUV39H1 binding to heterochromatin is reinforced by the SET domain. J Cell Biol 170:537–549. doi:10.1083/jcb.200502154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Garcia-Cao M, O’Sullivan R, Peters AHFM et al (2004) Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nat Genet 36:94–99

    Article  CAS  PubMed  Google Scholar 

  98. Canzio D, Chang EY, Shankar S et al (2011) Chromodomain-mediated oligomerization of HP1 suggests a nucleosome-bridging mechanism for heterochromatin assembly. Mol Cell 41:67–81. doi:10.1016/j.molcel.2010.12.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Canzio D, Liao M, Naber N et al (2013) A conformational switch in HP1 releases auto-inhibition to drive heterochromatin assembly. Nature 496:377–381. doi:10.1038/nature12032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Teif VB, Kepper N, Yserentant K et al (2015) Affinity, stoichiometry and cooperativity of heterochromatin protein 1 (HP1) binding to nucleosomal arrays. J Phys Condens Matter 27:064110. doi:10.1088/0953-8984/27/6/064110

    Article  PubMed  CAS  Google Scholar 

  101. Zeng W, Ball AR Jr, Yokomori K (2010) HP1: heterochromatin binding proteins working the genome. Epigenetics 5:287–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Luijsterburg MS, Dinant C, Lans H et al (2009) Heterochromatin protein 1 is recruited to various types of DNA damage. J Cell Biol 185:577–586. doi:10.1083/jcb.200810035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Baniahmad A, Steiner C, Kohne AC et al (1990) Modular structure of a chicken lysozyme silencer: involvement of an unusual thyroid hormone receptor binding site. Cell 61:505–514

    Article  CAS  PubMed  Google Scholar 

  104. Lobanenkov VV, Nicolas RH, Adler VV et al (1990) A novel sequence-specific DNA binding protein which interacts with three regularly spaced direct repeats of the CCCTC-motif in the 5′-flanking sequence of the chicken c-myc gene. Oncogene 5:1743–1753

    CAS  PubMed  Google Scholar 

  105. Ong CT, Corces VG (2014) CTCF: an architectural protein bridging genome topology and function. Nat Rev Genet 15:234–246. doi:10.1038/nrg3663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Heger P, Marin B, Bartkuhn M et al (2012) The chromatin insulator CTCF and the emergence of metazoan diversity. Proc Natl Acad Sci USA 109:17507–17512. doi:10.1073/pnas.1111941109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kim TH, Abdullaev ZK, Smith AD et al (2007) Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell 128:1231–1245. doi:10.1016/j.cell.2006.12.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Vietri Rudan M, Barrington C, Henderson S et al (2015) Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture. Cell Rep 10:1297–1309. doi:10.1016/j.celrep.2015.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hadjur S, Williams LM, Ryan NK et al (2009) Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus. Nature 460:410–413. doi:10.1038/nature08079

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Zuin J, Dixon JR, van der Reijden MI et al (2014) Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells. Proc Natl Acad Sci USA 111:996–1001. doi:10.1073/pnas.1317788111

    Article  CAS  PubMed  Google Scholar 

  111. Brien GL, Bracken AP (2009) Transcriptomics: unravelling the biology of transcription factors and chromatin remodelers during development and differentiation. Semin Cell Dev Biol 20:835–841. doi:10.1016/j.semcdb.2009.07.010

    Article  CAS  PubMed  Google Scholar 

  112. Erdel F, Krug J, Langst G et al (2011) Targeting chromatin remodelers: signals and search mechanisms. Biochim Biophys Acta 1809:497–508. doi:10.1016/j.bbagrm.2011.06.005

    Article  CAS  PubMed  Google Scholar 

  113. Langst G, Manelyte L (2015) Chromatin remodelers: from function to dysfunction. Genes (Basel) 6:299–324. doi:10.3390/genes6020299

    Google Scholar 

  114. Hauk G, Berger JM (2016) The role of ATP-dependent machines in regulating genome topology. Curr Opin Struct Biol 36:85–96. doi:10.1016/j.sbi.2016.01.006

    Article  CAS  PubMed  Google Scholar 

  115. Dekker J, Marti-Renom MA, Mirny LA (2013) Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat Rev Genet 14:390–403. doi:10.1038/nrg3454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Dekker J (2014) Two ways to fold the genome during the cell cycle: insights obtained with chromosome conformation capture. Epigenetics Chromatin 7:25. doi:10.1186/1756-8935-7-25

    Article  PubMed  PubMed Central  Google Scholar 

  117. Ma Y, Kanakousaki K, Buttitta L (2015) How the cell cycle impacts chromatin architecture and influences cell fate. Front Genet 6:19. doi:10.3389/fgene.2015.00019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Pope BD, Ryba T, Dileep V et al (2014) Topologically associating domains are stable units of replication-timing regulation. Nature 515:402–405. doi:10.1038/nature13986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128:707–719. doi:10.1016/j.cell.2007.01.015

    Article  CAS  PubMed  Google Scholar 

  120. MacAlpine HK, Gordan R, Powell SK et al (2010) Drosophila ORC localizes to open chromatin and marks sites of cohesin complex loading. Genome Res 20:201–211. doi:10.1101/gr.097873.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Dorn ES, Cook JG (2014) Nucleosomes in the neighborhood. Epigenetics 6:552–559. doi:10.4161/epi.6.5.15082

    Article  CAS  Google Scholar 

  122. Karnani N, Taylor CM, Malhotra A et al (2010) Genomic study of replication initiation in human chromosomes reveals the influence of transcription regulation and chromatin structure on origin selection. Mol Biol Cell 21:393–404. doi:10.1091/mbc.E09-08-0707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Goren A, Tabib A, Hecht M et al (2008) DNA replication timing of the human beta-globin domain is controlled by histone modification at the origin. Genes Dev 22:1319–1324. doi:10.1101/gad.468308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Xu Y, Price BD (2011) Chromatin dynamics and the repair of DNA double strand breaks. Cell Cycle 10:261–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Huyen Y, Zgheib O, Ditullio RA Jr et al (2004) Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432:406–411. doi:10.1038/nature03114

    Article  CAS  PubMed  Google Scholar 

  126. Ohsawa R, Seol J-H, Tyler JK (2013) At the intersection of non-coding transcription, DNA repair, chromatin structure, and cellular senescence. Front Genet 4:136. doi:10.3389/fgene.2013.00136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Tsukuda T, Fleming AB, Nickoloff JA et al (2005) Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae. Nature 438:379–383. doi:10.1038/nature04148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Khurana S, Kruhlak MJ, Kim J et al (2014) A macrohistone variant links dynamic chromatin compaction to BRCA1-dependent genome maintenance. Cell Rep 8:1049–1062. doi:10.1016/j.celrep.2014.07.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Baldeyron C, Soria G, Roche D et al (2011) HP1alpha recruitment to DNA damage by p150CAF-1 promotes homologous recombination repair. J Cell Biol 193:81–95. doi:10.1083/jcb.201101030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Mailand N, Bekker-Jensen S, Faustrup H et al (2007) RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell 131:887–900. doi:10.1016/j.cell.2007.09.040

    Article  CAS  PubMed  Google Scholar 

  131. Huen MS, Grant R, Manke I et al (2007) RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell 131:901–914. doi:10.1016/j.cell.2007.09.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kolas NK, Chapman JR, Nakada S et al (2007) Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase. Science 318:1637–1640. doi:10.1126/science.1150034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Doil C, Mailand N, Bekker-Jensen S et al (2009) RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins. Cell 136:435–446. doi:10.1016/j.cell.2008.12.041

    Article  CAS  PubMed  Google Scholar 

  134. Stewart GS, Panier S, Townsend K et al (2009) The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage. Cell 136:420–434. doi:10.1016/j.cell.2008.12.042

    Article  CAS  PubMed  Google Scholar 

  135. Jackson SP, Durocher D (2013) Regulation of DNA damage responses by ubiquitin and SUMO. Mol Cell 49:795–807. doi:10.1016/j.molcel.2013.01.017

    Article  CAS  PubMed  Google Scholar 

  136. Hofmann RM, Pickart CM (1999) Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 96:645–653

    Article  CAS  PubMed  Google Scholar 

  137. Thorslund T, Ripplinger A, Hoffmann S et al (2015) Histone H1 couples initiation and amplification of ubiquitin signalling after DNA damage. Nature 527:389–393. doi:10.1038/nature15401

    Article  CAS  PubMed  Google Scholar 

  138. Khan WA, Rogan PK, Knoll JH (2014) Localized, non-random differences in chromatin accessibility between homologous metaphase chromosomes. Mol Cytogenet 7:70. doi:10.1186/s13039-014-0070-y

    Article  PubMed  PubMed Central  Google Scholar 

  139. Ono T, Losada A, Hirano M et al (2003) Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells. Cell 115:109–121

    Article  CAS  PubMed  Google Scholar 

  140. Koshland D, Strunnikov A (1996) Mitotic chromosome condensation. Annu Rev Cell Dev Biol 12:305–333. doi:10.1146/annurev.cellbio.12.1.305

    Article  CAS  PubMed  Google Scholar 

  141. Liang Z, Zickler D, Prentiss M et al (2015) Chromosomes progress to metaphase in multiple discrete steps via global compaction/expansion cycles. Cell 161:1124–1137. doi:10.1016/j.cell.2015.04.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Shintomi K, Takahashi TS, Hirano T (2015) Reconstitution of mitotic chromatids with a minimum set of purified factors. Nat Cell Biol 17:1014–1023. doi:10.1038/ncb3187

    Article  CAS  PubMed  Google Scholar 

  143. Hirano T (2012) Condensins: universal organizers of chromosomes with diverse functions. Genes Dev 26:1659–1678. doi:10.1101/gad.194746.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Alipour E, Marko JF (2012) Self-organization of domain structures by DNA-loop-extruding enzymes. Nucleic Acids Res 40:11202–11212. doi:10.1093/nar/gks925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Liu W, Tanasa B, Tyurina OV et al (2010) PHF8 mediates histone H4 lysine 20 demethylation events involved in cell cycle progression. Nature 466:508–512. doi:10.1038/nature09272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Wilkins BJ, Rall NA, Ostwal Y et al (2014) A cascade of histone modifications induces chromatin condensation in mitosis. Science 343:77–80. doi:10.1126/science.1244508

    Article  CAS  PubMed  Google Scholar 

  147. Hendzel MJ, Wei Y, Mancini MA et al (1997) Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106:348–360

    Article  CAS  PubMed  Google Scholar 

  148. Nowak SJ, Corces VG (2004) Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet 20:214–220. doi:10.1016/j.tig.2004.02.007

    Article  CAS  PubMed  Google Scholar 

  149. Zhou J, Fan JY, Rangasamy D et al (2007) The nucleosome surface regulates chromatin compaction and couples it with transcriptional repression. Nat Struct Mol Biol 14:1070–1076. doi:10.1038/nsmb1323

    Article  CAS  PubMed  Google Scholar 

  150. Fazzio TG, Panning B (2010) Condensin complexes regulate mitotic progression and interphase chromatin structure in embryonic stem cells. J Cell Biol 188:491–503. doi:10.1083/jcb.200908026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Murnion ME, Adams RR, Callister DM et al (2001) Chromatin-associated protein phosphatase 1 regulates aurora-B and histone H3 phosphorylation. J Biol Chem 276:26656–26665. doi:10.1074/jbc.M102288200

    Article  CAS  PubMed  Google Scholar 

  152. Chen ZH, Zhu M, Yang J et al (2014) PTEN interacts with histone H1 and controls chromatin condensation. Cell Rep 8:2003–2014. doi:10.1016/j.celrep.2014.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Gong L, Govan JM, Evans EB et al (2015) Nuclear PTEN tumor-suppressor functions through maintaining heterochromatin structure. Cell Cycle. doi:10.1080/15384101.2015.1044174

    PubMed  PubMed Central  Google Scholar 

  154. Chalhoub N, Baker SJ (2009) PTEN and the PI3-kinase pathway in cancer. Annu Rev Pathol 4:127–150. doi:10.1146/annurev.pathol.4.110807.092311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Puc J, Keniry M, Li HS et al (2005) Lack of PTEN sequesters CHK1 and initiates genetic instability. Cancer Cell 7:193–204. doi:10.1016/j.ccr.2005.01.009

    Article  CAS  PubMed  Google Scholar 

  156. Shen WH, Balajee AS, Wang J et al (2007) Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell 128:157–170. doi:10.1016/j.cell.2006.11.042

    Article  CAS  PubMed  Google Scholar 

  157. Maser RS, Choudhury B, Campbell PJ et al (2007) Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers. Nature 447:966–971. doi:10.1038/nature05886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Ehlers JP, Worley L, Onken MD et al (2008) Integrative genomic analysis of aneuploidy in uveal melanoma. Clin Cancer Res 14:115–122. doi:10.1158/1078-0432.CCR-07-1825

    Article  CAS  PubMed  Google Scholar 

  159. Carver BS, Chapinski C, Wongvipat J et al (2011) Reciprocal feedback regulation of PI3 K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell 19:575–586. doi:10.1016/j.ccr.2011.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Li G, Hu Y, Huo Y et al (2006) PTEN deletion leads to up-regulation of a secreted growth factor pleiotrophin. J Biol Chem 281:10663–10668. doi:10.1074/jbc.M512509200

    Article  CAS  PubMed  Google Scholar 

  161. Mulholland DJ, Kobayashi N, Ruscetti M et al (2012) Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells. Cancer Res 72:1878–1889. doi:10.1158/0008-5472.CAN-11-3132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Vivanco I, Palaskas N, Tran C et al (2007) Identification of the JNK signaling pathway as a functional target of the tumor suppressor PTEN. Cancer Cell 11:555–569. doi:10.1016/j.ccr.2007.04.021

    Article  CAS  PubMed  Google Scholar 

  163. Hong TM, Yang PC, Peck K et al (2000) Profiling the downstream genes of tumor suppressor PTEN in lung cancer cells by complementary DNA microarray. Am J Respir Cell Mol Biol 23:355–363. doi:10.1165/ajrcmb.23.3.4002

    Article  CAS  PubMed  Google Scholar 

  164. Matsushima-Nishiu M, Unoki M, Ono K et al (2001) Growth and gene expression profile analyses of endometrial cancer cells expressing exogenous PTEN. Cancer Res 61:3741–3749

    CAS  PubMed  Google Scholar 

  165. Bodor DL, Mata JF, Sergeev M et al (2014) The quantitative architecture of centromeric chromatin. Elife 3:e02137. doi:10.7554/eLife.02137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Kang X, Song C, Du X et al (2015) PTEN stabilizes TOP2A and regulates the DNA decatenation. Sci Rep 5:17873–17884. doi:10.1038/srep17873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. He J, Kang X, Yin Y et al (2015) PTEN regulates DNA replication progression and stalled fork recovery. Nat Commun 6:7620. doi:10.1038/ncomms8620

    Article  PubMed  PubMed Central  Google Scholar 

  168. Wang G, Li Y, Wang P et al (2015) PTEN regulates RPA1 and protects DNA replication forks. Cell Res 25:1189–1204. doi:10.1038/cr.2015.115

    Article  CAS  PubMed  Google Scholar 

  169. Feng J, Liang J, Li J et al (2015) PTEN controls the DNA replication process through MCM2 in response to replicative stress. Cell Rep 13:1295–1303. doi:10.1016/j.celrep.2015.10.016

    Article  CAS  PubMed  Google Scholar 

  170. Sun Z, Huang C, He J et al (2014) PTEN C-terminal deletion causes genomic instability and tumor development. Cell Rep 6:844–854. doi:10.1016/j.celrep.2014.01.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Orthwein A, Fradet-Turcotte A, Noordermeer SM et al (2014) Mitosis inhibits DNA double-strand break repair to guard against telomere fusions. Science 344:189–193. doi:10.1126/science.1248024

    Article  CAS  PubMed  Google Scholar 

  172. Minocherhomji S, Ying S, Bjerregaard VA et al (2015) Replication stress activates DNA repair synthesis in mitosis. Nature 528:286–290. doi:10.1038/nature16139

    Article  CAS  PubMed  Google Scholar 

  173. Brookes E, Shi Y (2014) Diverse epigenetic mechanisms of human disease. Annu Rev Genet 48:237–268. doi:10.1146/annurev-genet-120213-092518

    Article  CAS  PubMed  Google Scholar 

  174. Trencsenyi G, Nagy G, Bako F et al (2012) Incomplete chromatin condensation in enlarged rat myelocytic leukemia cells. DNA Cell Biol 31:470–478. doi:10.1089/dna.2011.1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Bassi C, Ho J, Srikumar T et al (2013) Nuclear PTEN controls DNA repair and sensitivity to genotoxic stress. Science 341:395–399. doi:10.1126/science.1236188

    Article  CAS  PubMed  Google Scholar 

  176. Morgan MA, Shilatifard A (2015) Chromatin signatures of cancer. Genes Dev 29:238–249. doi:10.1101/gad.255182.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Esteller M (2005) Aberrant DNA methylation as a cancer-inducing mechanism. Annu Rev Pharmacol Toxicol 45:629–656. doi:10.1146/annurev.pharmtox.45.120403.095832

    Article  CAS  PubMed  Google Scholar 

  178. Fraga MF, Ballestar E, Villar-Garea A et al (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37:391–400. doi:10.1038/ng1531

    Article  CAS  PubMed  Google Scholar 

  179. Peters AH, O’Carroll D, Scherthan H et al (2001) Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107:323–337

    Article  CAS  PubMed  Google Scholar 

  180. Van Rechem C, Whetstine JR (2014) Examining the impact of gene variants on histone lysine methylation. Biochim Biophys Acta 1839:1463–1476. doi:10.1016/j.bbagrm.2014.05.014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Schwartzentruber J, Korshunov A, Liu XY et al (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482:226–231. doi:10.1038/nature10833

    Article  CAS  PubMed  Google Scholar 

  182. Wu G, Diaz AK, Paugh BS et al (2014) The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet 46:444–450. doi:10.1038/ng.2938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Work in the authors’ laboratory is supported by NIH Grant R01GM100478.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen H. Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, S., Yang, F. & Shen, W.H. Genome maintenance in the context of 4D chromatin condensation. Cell. Mol. Life Sci. 73, 3137–3150 (2016). https://doi.org/10.1007/s00018-016-2221-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2221-2

Keywords

Navigation