Skip to main content
Log in

Organization and dynamics of the actin cytoskeleton during dendritic spine morphological remodeling

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

In the central nervous system, most excitatory post-synapses are small subcellular structures called dendritic spines. Their structure and morphological remodeling are tightly coupled to changes in synaptic transmission. The F-actin cytoskeleton is the main driving force of dendritic spine remodeling and sustains synaptic plasticity. It is therefore essential to understand how changes in synaptic transmission can regulate the organization and dynamics of actin binding proteins (ABPs). In this review, we will provide a detailed description of the organization and dynamics of F-actin and ABPs in dendritic spines and will discuss the current models explaining how the actin cytoskeleton sustains both structural and functional synaptic plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ABP:

Actin binding proteins

ASD:

Autism spectrum disorders

EM:

Electron microscopy

FRAP:

Fluorescence recovery after photobleaching

FRET:

Fluorescence resonance energy transfer

LTD:

Long-term depression

LTP:

Long-term potentiation

NPFs:

Nucleation promoting factors

PSD:

Post-synaptic density

SMLM:

Single molecule localization microscopy

sptPALM:

Single particle tracking photoactivation localization microscopy

STED:

Simulated emission depletion microscopy

References

  1. Ramón y Cajal S S (1888) Estructura de los centros nerviosos de las aves. Rev Trim Histol Norm Pat 1:1–10

    Google Scholar 

  2. Yuste R (2015) The discovery of dendritic spines by Cajal. Front Neuroanat 9:1–6. doi:10.3389/fnana.2015.00018

    Article  Google Scholar 

  3. Ramón y Cajal S (1891) Significación fisiológica de las expansiones protoplásmicas y nerviosas de la sustancia gris. Rev Cienc Med Barcelona 22:23

    Google Scholar 

  4. Ramón y Cajal S (1893) Neue darstellung vom histologischen bau des centralnervensystem. Arch Anat Entwick 319–428

  5. Ramón y Cajal S (1894) La fine structure des centres nerveux. The croonian lecture. Proc R Soc Lond B 55:443–468

    Google Scholar 

  6. Gray EG (1959) Electron microscopy of synaptic contacts on dendrite spines of the cerebral cortex. Nature 183:1592–1593. doi:10.1038/1831592a0

    Article  CAS  PubMed  Google Scholar 

  7. Gray EG (1959) Axo-somatic and axo-dendritic synapses of the cerebral cortex. J Anat 93:420–433. doi:10.1038/1831592a0

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Guillery RW (2000) Early electron microscopic observations of synaptic structures in the cerebral cortex: a view of the contributions made by George Gray (1924–1999). Trends Neurosci 23:594–598. doi:10.1016/S0166-2236(00)01635-0

    Article  CAS  PubMed  Google Scholar 

  9. Hebb DO (1949) The organization of behaviour: a neuropsychological theory. Wiley, New York

    Google Scholar 

  10. Kandel ER (2009) The biology of memory: a forty-year perspective. J Neurosci 29:12748–12756. doi:10.1523/JNEUROSCI.3958-09.2009

    Article  CAS  PubMed  Google Scholar 

  11. Squire LR (2009) Memory and brain systems: 1969–2009. J Neurosci 29:12711–12716. doi:10.1523/JNEUROSCI.3575-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nabavi S, Fox R, Proulx CD, Lin JY, Tsien RY, Malinow R (2014) Engineering a memory with LTD and LTP. Nature 511:348–352. doi:10.1038/nature13294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hayashi-Takagi A, Yagishita S, Nakamura M, Shirai F, Wu YI, Loshbaugh AL, Kuhlman B, Hahn KM, Kasai H (2015) Labelling and optical erasure of synaptic memory traces in the motor cortex. Nature 525:333–338. doi:10.1038/nature15257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Harris KM, Jensen FE, Tsao B (1992) Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J Neurosci 12:2685–2705

    CAS  PubMed  Google Scholar 

  15. Bourne JN, Harris KM (2008) Balancing structure and function at hippocampal dendritic spines. Annu Rev Neurosci 31:47–67. doi:10.1146/annurev.neuro.31.060407.125646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nägerl UV, Willig KI, Hein B, Hell SW, Bonhoeffer T (2008) Live-cell imaging of dendritic spines by STED microscopy. Proc Natl Acad Sci USA 105:18982–18987. doi:10.1073/pnas.0810028105

    Article  PubMed  PubMed Central  Google Scholar 

  17. Izeddin I, Specht CG, Lelek M, Darzacq X, Triller A, Zimmer C, Dahan M (2011) Super-resolution dynamic imaging of dendritic spines using a low-affinity photoconvertible actin probe. PLoS ONE 6:e15611. doi:10.1371/journal.pone.0015611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dailey E, Smith S (1996) The dynamics of dendritic structure in developing hippocampal slices. J Neurosci 16:2983–2994

    CAS  PubMed  Google Scholar 

  19. Fischer M, Kaech S, Knutti D, Matus A (1998) Rapid actin-based plasticity in dendritic spines. Neuron 20:847–854

    Article  CAS  PubMed  Google Scholar 

  20. Lendvai B, Stern EA, Chen B, Svoboda K (2000) Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature 404:876–881. doi:10.1038/35009107

    Article  CAS  PubMed  Google Scholar 

  21. Grutzendler J, Kasthuri N, Gan W-B (2002) Long-term dendritic spine stability in the adult cortex. Nature 420:812–816. doi:10.1038/nature01276

    Article  CAS  PubMed  Google Scholar 

  22. Berning S, Willig KI, Steffens H, Dibaj P, Hell SW (2012) Nanoscopy in a living mouse brain. Science 335:551. doi:10.1126/science.1215369

    Article  CAS  PubMed  Google Scholar 

  23. Buchs PA, Muller D (1996) Induction of long-term potentiation is associated with major ultrastructural changes of activated synapses. Proc Natl Acad Sci USA 93:8040–8045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Engert F, Bonhoeffer T (1999) Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399:66–70. doi:10.1038/19978

    Article  CAS  PubMed  Google Scholar 

  25. Toni N, Buchs P, Nikonenko I, Bron C, Muller D (1999) LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 402:421–425. doi:10.1038/46574

    Article  CAS  PubMed  Google Scholar 

  26. Nägerl UV, Eberhorn N, Cambridge SB, Bonhoeffer T (2004) Bidirectional activity-dependent morphological plasticity in hippocampal neurons. Neuron 44:759–767. doi:10.1016/j.neuron.2004.11.016

    Article  PubMed  Google Scholar 

  27. Nishiyama J, Yasuda R (2015) Biochemical computation for spine structural plasticity. Neuron 87:63–75. doi:10.1016/j.neuron.2015.05.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Matsuzaki M, Honkura N, Ellis-Davies GCR, Kasai H (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429:761–766. doi:10.1038/nature02617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhou Q, Homma KJ, Poo MM (2004) Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 44:749–757. doi:10.1016/j.neuron.2004.11.011

    Article  CAS  PubMed  Google Scholar 

  30. Oh WC, Hill TC, Zito K (2013) Synapse-specific and size-dependent mechanisms of spine structural plasticity accompanying synaptic weakening. Proc Natl Acad Sci USA 110:E305–E312. doi:10.1073/pnas.1214705110

    Article  CAS  PubMed  Google Scholar 

  31. Tønnesen J, Katona G, Rózsa B, Nägerl UV (2014) Spine neck plasticity regulates compartmentalization of synapses. Nat Neurosci 17:678–685. doi:10.1038/nn.3682

    Article  PubMed  CAS  Google Scholar 

  32. Noguchi J, Nagaoka A, Watanabe S, Ellis-Davies GCR, Kitamura K, Kano M, Matsuzaki M, Kasai H (2011) In vivo two-photon uncaging of glutamate revealing the structure-function relationships of dendritic spines in the neocortex of adult mice. J Physiol 589:2447–2457. doi:10.1113/jphysiol.2011.207100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Loewenstein Y, Kuras A, Rumpel S (2011) Multiplicative dynamics underlie the emergence of the log-normal distribution of spine sizes in the neocortex in vivo. J Neurosci 31:9481–9488. doi:10.1523/JNEUROSCI.6130-10.2011

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Y, Cudmore RH, Lin D-T, Linden DJ, Huganir RL (2015) Visualization of NMDA receptor-dependent AMPA receptor synaptic plasticity in vivo. Nat Neurosci 18:402–407. doi:10.1038/nn.3936

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Sheng M, Hoogenraad CC (2007) The postsynaptic architecture of excitatory synapses: a more quantitative view. Annu Rev Biochem 76:823–847. doi:10.1146/annurev.biochem.76.060805.160029

    Article  CAS  PubMed  Google Scholar 

  36. Fifkova E, Delay RJ (1982) Cytoplasmic actin in neuronal processes as a possible mediator of synaptic plasticity. J Cell Biol 95:345–350

    Article  CAS  PubMed  Google Scholar 

  37. Kaech S, Fischer M, Doll T, Matus A (1997) Isoform specificity in the relationship of actin to dendritic spines. J Neurosci 17:9565–9572

    CAS  PubMed  Google Scholar 

  38. Cheng D, Hoogenraad C, Rush J, Schlager M, Duong D, Xu P, Wijayawardana S, Hanfelt J, Nakagawa T, Sheng M, Peng J (2006) Relative and absolute quantification of postsynaptic density proteome isolated from rat forebrain and cerebellum. Mol Cell Proteomics 5:1158–1170. doi:10.1074/mcp.D500009-MCP200

    Article  CAS  PubMed  Google Scholar 

  39. Korobova F, Svitkina T (2010) Molecular architecture of synaptic actin cytoskeleton in hippocampal neurons reveals a mechanism of dendritic spine morphogenesis. Mol Biol Cell 21:165–176. doi:10.1091/mbc.E09-07-0596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dunaevsky A, Tashiro A, Majewska A, Mason C, Yuste R (1999) Developmental regulation of spine motility in the mammalian central nervous system. Proc Natl Acad Sci USA 96:13438–13443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Korkotian E, Segal M (2001) Regulation of dendritic spine motility in cultured hippocampal neurons. J Neurosci 21:6115–6124

    CAS  PubMed  Google Scholar 

  42. Portera-Cailliau C, Pan DT, Yuste R (2003) Activity-regulated dynamic behavior of early dendritic protrusions: evidence for different types of dendritic filopodia. J Neurosci 23:7129–7142

    CAS  PubMed  Google Scholar 

  43. Cingolani LA, Goda Y (2008) Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat Rev Neurosci 9:344–356. doi:10.1038/nrn2373

    Article  CAS  PubMed  Google Scholar 

  44. Hotulainen P, Hoogenraad CC (2010) Actin in dendritic spines: connecting dynamics to function. J Cell Biol 189:619–629. doi:10.1083/jcb.201003008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pollard TD, Cooper JA (2009) Actin, a central player in cell shape and movement. Science 326:1208–1212. doi:10.1126/science.1175862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Carlier M-F, Pernier J, Montaville P, Shekhar S, Kühn S (2015) Control of polarized assembly of actin filaments in cell motility. Cell Mol Life Sci 72:3051–3067. doi:10.1007/s00018-015-1914-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pilo Boyl P, Witke W (2014) Small, smaller. dendritic spine. EMBO J 33:2737–2739. doi:10.15252/embj.201490137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Lin W-H, Webb DJ (2009) Actin and actin-binding proteins: masters of dendritic spine formation, morphology, and function. Open Neurosci J 3:54–66. doi:10.2174/1874082000903020054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bosch M, Castro J, Saneyoshi T, Matsuno H, Sur M, Hayashi Y (2014) Structural and molecular remodeling of dendritic spine substructures during long-term potentiation. Neuron 82:444–459. doi:10.1016/j.neuron.2014.03.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen X, Winters C, Azzam R, Li X, Galbraith JA, Leapman RD, Reese TS (2008) Organization of the core structure of the postsynaptic density. Proc Natl Acad Sci USA 105:4453–4458. doi:10.1073/pnas.0800897105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rácz B, Weinberg RJ (2013) Microdomains in forebrain spines: an ultrastructural perspective. Mol Neurobiol 47:77–89. doi:10.1007/s12035-012-8345-y

    Article  PubMed  CAS  Google Scholar 

  52. Huang B, Bates M, Zhuang X (2009) Super-resolution fluorescence microscopy. Annu Rev Biochem 78:993–1016. doi:10.1146/annurev.biochem.77.061906.092014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Maglione M, Sigrist SJ (2013) Seeing the forest tree by tree: super-resolution light microscopy meets the neurosciences. Nat Neurosci 16:790–797. doi:10.1038/nn.3403

    Article  CAS  PubMed  Google Scholar 

  54. Choquet D, Triller A (2013) The dynamic synapse. Neuron 80:691–703. doi:10.1016/j.neuron.2013.10.013

    Article  CAS  PubMed  Google Scholar 

  55. Adrian M, Kusters R, Wierenga CJ, Storm C, Hoogenraad CC, Kapitein LC (2014) Barriers in the brain: resolving dendritic spine morphology and compartmentalization. Front Neuroanat 8:1–12. doi:10.3389/fnana.2014.00142

    Article  Google Scholar 

  56. MacGillavry HD, Hoogenraad CC (2015) The internal architecture of dendritic spines revealed by super-resolution imaging: what did we learn so far? Exp Cell Res 335:180–186. doi:10.1016/j.yexcr.2015.02.024

    Article  CAS  PubMed  Google Scholar 

  57. Ziv NE, Smith SJ (1996) Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 17:91–102

    Article  CAS  PubMed  Google Scholar 

  58. Yuste R, Bonhoeffer T (2004) Genesis of dendritic spines: insights from ultrastructural and imaging studies. Nat Rev Neurosci 5:24–34. doi:10.1038/nrn1300

    Article  CAS  PubMed  Google Scholar 

  59. Zuo Y, Lin A, Chang P, Gan W-B (2005) Development of long-term dendritic spine stability in diverse regions of cerebral cortex. Neuron 46:181–189. doi:10.1016/j.neuron.2005.04.001

    Article  CAS  PubMed  Google Scholar 

  60. Chazeau A, Garcia M, Czondor K, Perrais D, Tessier B, Giannone G, Thoumine O (2015) Mechanical coupling between transsynaptic N-cadherin adhesions and actin flow stabilizes dendritic spines. Mol Biol Cell 26:859–873. doi:10.1091/mbc.E14-06-1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hotulainen P, Llano O, Smirnov S, Tanhuanpää K, Faix J, Rivera C, Lappalainen P (2009) Defining mechanisms of actin polymerization and depolymerization during dendritic spine morphogenesis. J Cell Biol 185:323–339. doi:10.1083/jcb.200809046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mallavarapu A, Mitchison T (1999) Regulated actin cytoskeleton assembly at filopodium tips controls their extension and retraction. J Cell Biol 146:1097–1106. doi:10.1083/jcb.146.5.1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ponti A, Machacek M, Gupton SL, Waterman-Storer CM, Danuser G (2004) Two distinct actin networks drive the protrusion of migrating cells. Science 305:1782–1786. doi:10.1126/science.1100533

    Article  CAS  PubMed  Google Scholar 

  64. Medeiros NA, Burnette DT, Forscher P (2006) Myosin II functions in actin-bundle turnover in neuronal growth cones. Nat Cell Biol 8:215–226. doi:10.1038/ncb1367

    Article  CAS  PubMed  Google Scholar 

  65. Giannone G, Dubin-Thaler BJ, Rossier O, Cai Y, Chaga O, Jiang G, Beaver W, Döbereiner H-G, Freund Y, Borisy G, Sheetz MP (2007) Lamellipodial actin mechanically links myosin activity with adhesion-site formation. Cell 128:561–575. doi:10.1016/j.cell.2006.12.039

    Article  CAS  PubMed  Google Scholar 

  66. Tatavarty V, Das S, Yu J (2012) Polarization of actin cytoskeleton is reduced in dendritic protrusions during early spine development in hippocampal neuron. Mol Biol Cell 23:3167–3177. doi:10.1091/mbc.E12-02-0165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chazeau A, Mehidi A, Nair D, Gautier JJ, Leduc C, Chamma I, Kage F, Kechkar A, Thoumine O, Rottner K, Choquet D, Gautreau A, Sibarita J-B, Giannone G (2014) Nanoscale segregation of actin nucleation and elongation factors determines dendritic spine protrusion. EMBO J 33:2745–2764. doi:10.15252/embj.201488837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mitchison T, Kirschner M (1988) Cytoskeletal dynamics and nerve growth. Neuron 1:761–772

    Article  CAS  PubMed  Google Scholar 

  69. Suter DM, Forscher P (2000) Substrate-cytoskeletal coupling as a mechanism for the regulation of growth cone motility and guidance. J Neurobiol 44:97–113. doi:10.1002/1097-4695(200008)44:2<97:AID-NEU2>3.3.CO;2-L

    Article  CAS  PubMed  Google Scholar 

  70. Giannone G, Mège R-M, Thoumine O (2009) Multi-level molecular clutches in motile cell processes. Trends Cell Biol 19:475–486. doi:10.1016/j.tcb.2009.07.001

    Article  CAS  PubMed  Google Scholar 

  71. Bard L, Boscher C, Lambert M, Mège R-M, Choquet D, Thoumine O (2008) A molecular clutch between the actin flow and N-cadherin adhesions drives growth cone migration. J Neurosci 28:5879–5890. doi:10.1523/JNEUROSCI.5331-07.2008

    Article  CAS  PubMed  Google Scholar 

  72. Garcia M, Leduc C, Lagardère M, Argento A, Sibarita J-B, Thoumine O (2015) Two-tiered coupling between flowing actin and immobilized N-cadherin/catenin complexes in neuronal growth cones. Proc Natl Acad Sci USA 112:201423455. doi:10.1073/pnas.1423455112

    Google Scholar 

  73. Spacek J, Harris KM (2004) Trans-endocytosis via spinules in adult rat hippocampus. J Neurosci 24:4233–4241. doi:10.1523/JNEUROSCI.0287-04.2004

    Article  CAS  PubMed  Google Scholar 

  74. Tao-Cheng J-H, Dosemeci A, Gallant PE, Miller S, Galbraith JA, Winters CA, Azzam R, Reese TS (2009) Rapid turnover of spinules at synaptic terminals. Neuroscience 160:42–50. doi:10.1016/j.neuroscience.2009.02.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Okamoto K-I, Nagai T, Miyawaki A, Hayashi Y (2004) Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat Neurosci 7:1104–1112. doi:10.1038/nn1311nn1311

    Article  CAS  PubMed  Google Scholar 

  76. Star EN, Kwiatkowski DJ, Murthy VN (2002) Rapid turnover of actin in dendritic spines and its regulation by activity. Nat Neurosci 5:239–246. doi:10.1038/nn811

    Article  CAS  PubMed  Google Scholar 

  77. Honkura N, Matsuzaki M, Noguchi J, Ellis-Davies GCR, Kasai H (2008) The subspine organization of actin fibers regulates the structure and plasticity of dendritic spines. Neuron 57:719–729. doi:10.1016/j.neuron.2008.01.013

    Article  CAS  PubMed  Google Scholar 

  78. Frost NA, Shroff H, Kong H, Betzig E, Blanpied TA (2010) Single-molecule discrimination of discrete perisynaptic and distributed sites of actin filament assembly within dendritic spines. Neuron 67:86–99. doi:10.1016/j.neuron.2010.05.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645. doi:10.1126/science.1127344

    Article  CAS  PubMed  Google Scholar 

  80. Manley S, Gillette JM, Patterson GH, Shroff H, Hess HF, Betzig E, Lippincott-Schwartz J (2008) High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat Methods 5:155–157. doi:10.1038/nmeth.1176

    Article  CAS  PubMed  Google Scholar 

  81. Tatavarty V, Kim E-J, Rodionov V, Yu J (2009) Investigating sub-spine actin dynamics in rat hippocampal neurons with super-resolution optical imaging. PLoS ONE 4:e7724. doi:10.1371/journal.pone.0007724

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Pollard TD (2003) The cytoskeleton, cellular motility and the reductionist agenda. Nature 422:741–745. doi:10.1038/nature01598

    Article  CAS  PubMed  Google Scholar 

  83. Lai FPL, Szczodrak M, Block J, Faix J, Breitsprecher D, Mannherz HG, Stradal TEB, Dunn GA, Small JV, Rottner K (2008) Arp2/3 complex interactions and actin network turnover in lamellipodia. EMBO J 27:982–992. doi:10.1038/emboj.2008.34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Achard V, Martiel J-L, Michelot A, Guérin C, Reymann A-C, Blanchoin L, Boujemaa-Paterski R (2010) A “primer”-based mechanism underlies branched actin filament network formation and motility. Curr Biol 20:423–428. doi:10.1016/j.cub.2009.12.056

    Article  CAS  PubMed  Google Scholar 

  85. Sykes C, Plastino J (2010) Cell biology: actin filaments up against a wall. Nature 464:365–366. doi:10.1038/464365a

    Article  CAS  PubMed  Google Scholar 

  86. Frost NA, Kerr JM, Lu HE, Blanpied TA (2010) A network of networks: cytoskeletal control of compartmentalized function within dendritic spines. Curr Opin Neurobiol 20:578–587. doi:10.1016/j.conb.2010.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rácz B, Weinberg RJ (2008) Organization of the Arp2/3 complex in hippocampal spines. J Neurosci 28:5654–5659. doi:10.1523/JNEUROSCI.0756-08.2008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Burette AC, Lesperance T, Crum J, Martone M, Volkmann N, Ellisman MH, Weinberg RJ (2012) Electron tomographic analysis of synaptic ultrastructure. J Comp Neurol 520:2697–2711. doi:10.1002/cne.23067

    Article  PubMed  Google Scholar 

  89. Blanchoin L, Amann KJ, Higgs HN, Marchand J, Kaiser DA, Pollard TD (2000) Direct observation of dendritic actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins. Nature 171:1007–1011

    Google Scholar 

  90. Amann KJ, Pollard TD (2001) Direct real-time observation of actin filament branching mediated by Arp2/3 complex using total internal reflection fluorescence microscopy. Proc Natl Acad Sci USA 98:15009–15013. doi:10.1073/pnas.211556398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Goley ED, Welch MD (2006) The ARP2/3 complex: an actin nucleator comes of age. Nat Rev Mol Cell Biol 7:713–726. doi:10.1038/nrm2026

    Article  CAS  PubMed  Google Scholar 

  92. Campellone KG, Welch MD (2010) A nucleator arms race: cellular control of actin assembly. Nat Rev Mol Cell Biol 11:237–251. doi:10.1038/nrm2867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kim IH, Racz B, Wang H, Burianek L, Weinberg R, Yasuda R, Wetsel WC, Soderling SH (2013) Disruption of Arp2/3 results in asymmetric structural plasticity of dendritic spines and progressive synaptic and behavioral abnormalities. J Neurosci 33:6081–6092. doi:10.1523/JNEUROSCI.0035-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Helgeson LA, Nolen BJ (2013) Mechanism of synergistic activation of Arp2/3 complex by cortactin and N-WASP. Elife 2:e00884. doi:10.7554/eLife.00884

    Article  PubMed  PubMed Central  Google Scholar 

  95. Helgeson LA, Prendergast JG, Wagner AR, Rodnick-Smith M, Nolen BJ (2014) Interactions with actin monomers, actin filaments, and Arp2/3 complex define the roles of WASP family proteins and cortactin in coordinately regulating branched actin networks. J Biol Chem 289:28856–28869. doi:10.1074/jbc.M114.587527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rocca DL, Martin S, Jenkins EL, Hanley JG (2008) Inhibition of Arp2/3-mediated actin polymerization by PICK1 regulates neuronal morphology and AMPA receptor endocytosis. Nat Cell Biol 10:259–271. doi:10.1038/ncb1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kim Y, Sung JY, Ceglia I, Lee K-W, Ahn J-H, Halford JM, Kim AM, Kwak SP, Park JB, Ho Ryu S, Schenck A, Bardoni B, Scott JD, Nairn AC, Greengard P (2006) Phosphorylation of WAVE1 regulates actin polymerization and dendritic spine morphology. Nature 442:814–817. doi:10.1038/nature04976

    Article  CAS  PubMed  Google Scholar 

  98. Grove M, Demyanenko G, Echarri A, Zipfel PA, Quiroz ME, Rodriguiz RM, Playford M, Martensen SA, Robinson MR, Wetsel WC, Maness PF, Pendergast AM (2004) ABI2-deficient mice exhibit defective cell migration, aberrant dendritic spine morphogenesis, and deficits in learning and memory. Mol Cell Biol 24:10905–10922. doi:10.1128/MCB.24.24.10905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Pilpel Y, Segal M (2005) Rapid WAVE dynamics in dendritic spines of cultured hippocampal neurons is mediated by actin polymerization. J Neurochem 95:1401–1410. doi:10.1111/j.1471-4159.2005.03467.x

    Article  CAS  PubMed  Google Scholar 

  100. Soderling SH, Guire ES, Kaech S, White J, Zhang F, Schutz K, Langeberg LK, Banker G, Raber J, Scott JD (2007) A WAVE-1 and WRP signaling complex regulates spine density, synaptic plasticity, and memory. J Neurosci 27:355–365. doi:10.1523/JNEUROSCI.3209-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Proepper C, Johannsen S, Liebau S, Dahl J, Vaida B, Bockmann J, Kreutz MR, Gundelfinger ED, Boeckers TM (2007) Abelson interacting protein 1 (Abi-1) is essential for dendrite morphogenesis and synapse formation. EMBO J 26:1397–1409. doi:10.1038/sj.emboj.7601569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hering H, Sheng M (2003) Activity-dependent redistribution and essential role of cortactin in dendritic spine morphogenesis. J Neurosci 23:11759–11769 (pii:23/37/11759)

    CAS  PubMed  Google Scholar 

  103. Racz B, Weinberg RJ (2004) The subcellular organization of cortactin in hippocampus. J Neurosci 24:10310–10317. doi:10.1523/JNEUROSCI.2080-04.2004

    Article  CAS  PubMed  Google Scholar 

  104. Lee S, Lee K, Hwang S, Kim SH, Song WK, Park ZY, Chang S (2006) SPIN90/WISH interacts with PSD-95 and regulates dendritic spinogenesis via an N-WASP-independent mechanism. EMBO J 25:4983–4995. doi:10.1038/sj.emboj.7601349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wegner AM, Nebhan CA, Hu L, Majumdar D, Meier KM, Weaver AM, Webb DJ (2008) N-wasp and the arp2/3 complex are critical regulators of actin in the development of dendritic spines and synapses. J Biol Chem 283:15912–15920. doi:10.1074/jbc.M801555200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nakamura Y, Wood CL, Patton AP, Jaafari N, Henley JM, Mellor JR, Hanley JG (2011) PICK1 inhibition of the Arp2/3 complex controls dendritic spine size and synaptic plasticity. EMBO J 30:719–730. doi:10.1038/emboj.2010.357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mejillano MR, Kojima S, Applewhite DA, Gertler FB, Svitkina TM, Borisy GG (2004) Lamellipodial versus filopodial mode of the actin nanomachinery. Cell 118:363–373. doi:10.1016/j.cell.2004.07.019

    Article  CAS  PubMed  Google Scholar 

  108. Goldschmidt-Clermont PJ, Machesky LM, Doberstein SK, Pollard TD (1991) Mechanism of the interaction of human platelet profilin with actin. J Cell Biol 113:1081–1089

    Article  CAS  PubMed  Google Scholar 

  109. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000) Molecular cell biology, 4th edn. Section 18.2: the dynamics of actin assembly. W. H. Freeman, New York

  110. Ackermann M, Matus A (2003) Activity-induced targeting of profilin and stabilization of dendritic spine morphology. Nat Neurosci 6:1194–1200. doi:10.1038/nn1135nn1135

    Article  CAS  PubMed  Google Scholar 

  111. Chesarone MA, DuPage AG, Goode BL (2010) Unleashing formins to remodel the actin and microtubule cytoskeletons. Nat Rev Mol Cell Biol 11:62–74. doi:10.1038/nrm2816

    Article  CAS  PubMed  Google Scholar 

  112. Breitsprecher D, Kiesewetter AK, Linkner J, Vinzenz M, Stradal TEB, Small JV, Curth U, Dickinson RB, Faix J (2011) Molecular mechanism of Ena/VASP-mediated actin-filament elongation. EMBO J 30:456–467. doi:10.1038/emboj.2010.348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Breitsprecher D, Jaiswal R, Bombardier JP, Gould CJ, Gelles J, Goode BL (2012) Rocket launcher mechanism of collaborative actin assembly defined by single-molecule imaging. Science 336:1164–1168. doi:10.1126/science.1218062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Edwards M, Zwolak A, Schafer DA, Sept D, Dominguez R, Cooper JA (2014) Capping protein regulators fine-tune actin assembly dynamics. Nat Rev Mol Cell Biol 15:677–689. doi:10.1038/nrm3869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Disanza A, Carlier M-F, Stradal TEB, Didry D, Frittoli E, Confalonieri S, Croce A, Wehland J, Di Fiore PP, Scita G (2004) Eps8 controls actin-based motility by capping the barbed ends of actin filaments. Nat Cell Biol 6:1180–1188. doi:10.1038/ncb1199

    Article  CAS  PubMed  Google Scholar 

  116. Fan Y, Tang X, Vitriol E, Chen G, Zheng JQ (2011) Actin capping protein is required for dendritic spine development and synapse formation. J Neurosci 31:10228–10233. doi:10.1523/JNEUROSCI.0115-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Menna E, Zambetti S, Morini R, Donzelli A, Disanza A, Calvigioni D, Braida D, Nicolini C, Orlando M, Fossati G, Cristina Regondi M, Pattini L, Frassoni C, Francolini M, Scita G, Sala M, Fahnestock M, Matteoli M (2013) Eps8 controls dendritic spine density and synaptic plasticity through its actin-capping activity. EMBO J 32:1730–1744. doi:10.1038/emboj.2013.107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Suarez C, Roland J, Boujemaa-Paterski R, Kang H, McCullough BR, Reymann A-C, Guérin C, Martiel J-L, De la Cruz EM, Blanchoin L (2011) Cofilin tunes the nucleotide state of actin filaments and severs at bare and decorated segment boundaries. Curr Biol 21:862–868. doi:10.1016/j.cub.2011.03.064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. McCullough BR, Grintsevich EE, Chen CK, Kang H, Hutchison AL, Henn A, Cao W, Suarez C, Martiel J-L, Blanchoin L, Reisler E, De La Cruz EM (2011) Cofilin-linked changes in actin filament flexibility promote severing. Biophys J 101:151–159. doi:10.1016/j.bpj.2011.05.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Jansen S, Collins A, Chin SM, Ydenberg CA, Gelles J, Goode BL (2015) Single-molecule imaging of a three-component ordered actin disassembly mechanism. Nat Commun 6:7202. doi:10.1038/ncomms8202

    Article  PubMed  PubMed Central  Google Scholar 

  121. Gressin L, Guillotin A, Guérin C, Blanchoin L, Michelot A (2015) Architecture dependence of actin filament network disassembly. Curr Biol 25:1437–1447. doi:10.1016/j.cub.2015.04.011

    Article  CAS  PubMed  Google Scholar 

  122. Meng Y, Zhang Y, Tregoubov V, Janus C, Cruz L, Jackson M, Lu WY, MacDonald JF, Wang JY, Falls DL, Jia Z (2002) Abnormal spine morphology and enhanced LTP in LIMK-1 knockout mice. Neuron 35:121–133. doi:10.1016/S0896-6273(02)00758-4

    Article  CAS  PubMed  Google Scholar 

  123. Zhou L, Jones EV, Murai KK (2012) EphA signaling promotes actin-based dendritic spine remodeling through slingshot phosphatase. J Biol Chem 287:9346–9359. doi:10.1074/jbc.M111.302802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Scita G, Confalonieri S, Lappalainen P, Suetsugu S (2008) IRSp53: crossing the road of membrane and actin dynamics in the formation of membrane protrusions. Trends Cell Biol 18:52–60. doi:10.1016/j.tcb.2007.12.002

    Article  CAS  PubMed  Google Scholar 

  125. Suetsugu S, Gautreau A (2012) Synergistic BAR-NPF interactions in actin-driven membrane remodeling. Trends Cell Biol 22:141–150. doi:10.1016/j.tcb.2012.01.001

    Article  CAS  PubMed  Google Scholar 

  126. Bockmann J, Kreutz MR, Gundelfinger ED, Böckers TM (2002) ProSAP/Shank postsynaptic density proteins interact with insulin receptor tyrosine kinase substrate IRSp53. J Neurochem 83:1013–1017

    Article  CAS  PubMed  Google Scholar 

  127. Choi J, Ko J, Racz B, Burette A, Lee J-R, Kim S, Na M, Lee HW, Kim K, Weinberg RJ, Kim E (2005) Regulation of dendritic spine morphogenesis by insulin receptor substrate 53, a downstream effector of Rac1 and Cdc42 small GTPases. J Neurosci 25:869–879. doi:10.1523/JNEUROSCI.3212-04.2005

    Article  CAS  PubMed  Google Scholar 

  128. Park E, Chi S, Park D (2012) Activity-dependent modulation of the interaction between CaMKIIα and Abi1 and its involvement in spine maturation. J Neurosci 32:13177–13188. doi:10.1523/JNEUROSCI.2257-12.2012

    Article  CAS  PubMed  Google Scholar 

  129. Han K, Holder JL, Schaaf CP, Lu H, Chen H, Kang H, Tang J, Wu Z, Hao S, Cheung SW, Yu P, Sun H, Breman AM, Patel A, Lu H-C, Zoghbi HY (2013) SHANK3 overexpression causes manic-like behaviour with unique pharmacogenetic properties. Nature 503:72–77. doi:10.1038/nature12630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Chen B, Brinkmann K, Chen Z, Pak CW, Liao Y, Shi S, Henry L, Grishin NV, Bogdan S, Rosen MK (2014) The WAVE regulatory complex links diverse receptors to the actin cytoskeleton. Cell 156:195–207. doi:10.1016/j.cell.2013.11.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Chen XJ, Squarr AJ, Stephan R, Chen B, Higgins TE, Barry DJ, Martin MC, Rosen MK, Bogdan S, Way M (2014) Ena/VASP proteins cooperate with the WAVE complex to regulate the actin cytoskeleton. Dev Cell 30:569–584. doi:10.1016/j.devcel.2014.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Yang C, Svitkina T (2011) Filopodia initiation: focus on the Arp2/3 complex and formins. Cell Adh Migr 5(5):402–408. doi: 10.4161/cam.5.5.16971

    Article  PubMed  PubMed Central  Google Scholar 

  133. Giannone G, Dubin-Thaler BJ, Döbereiner H-G, Kieffer N, Bresnick AR, Sheetz MP (2004) Periodic lamellipodial contractions correlate with rearward actin waves. Cell 116:431–443

    Article  CAS  PubMed  Google Scholar 

  134. Ylänne J, Scheffzek K, Young P, Saraste M (2001) Crystal structure of the alpha-actinin rod reveals an extensive torsional twist. Structure 9:597–604. doi:10.1016/S0969-2126(01)00619-0

    Article  PubMed  Google Scholar 

  135. Nakagawa T, Engler JA, Sheng M (2004) The dynamic turnover and functional roles of α-actinin in dendritic spines. Neuropharmacology 47:734–745. doi:10.1016/j.neuropharm.2004.07.022

    Article  CAS  PubMed  Google Scholar 

  136. Hodges JL, Vilchez SM, Asmussen H, Whitmore LA, Horwitz AR (2014) α-actinin-2 mediates spine morphology and assembly of the post-synaptic density in hippocampal neurons. PLoS ONE 9:e101770. doi:10.1371/journal.pone.0101770

    Article  PubMed  PubMed Central  Google Scholar 

  137. Allen PB, Ouimet CC, Greengard P (1997) Spinophilin, a novel protein phosphatase 1 binding protein localized to dendritic spines. Proc Natl Acad Sci USA 94:9956–9961. doi:10.1073/pnas.94.18.9956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Nakanishi H, Obaishi H, Satoh A, Wada M, Mandai K, Satoh K, Nishioka H, Matsuura Y, Mizoguchi A, Takai Y (1997) Neurabin: a novel neural tissue-specific actin filament-binding protein involved in neurite formation. J Cell Biol 139:951–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Satoh A, Nakanishi H, Obaishi H, Wada M, Takahashi K, Satoh K, Hirao K, Nishioka H, Hata Y, Al E (1998) Neurabin-II/spinophilin: an actin filament-binding protein with one PDZ domain localized at cadherin-based cell-cell adhesion sites. J Biol Chem 273:3470–3475. doi:10.1074/jbc.273.6.3470

    Article  CAS  PubMed  Google Scholar 

  140. Zito K, Knott G, Shepherd GMG, Shenolikar S, Svoboda K (2004) Induction of spine growth and synapse formation by regulation of the spine actin cytoskeleton. Neuron 44:321–334. doi:10.1016/j.neuron.2004.09.022

    Article  CAS  PubMed  Google Scholar 

  141. Sarrouilhe D, di Tommaso A, Métayé T, Ladeveze V (2006) Spinophilin: from partners to functions. Biochimie 88:1099–1113. doi:10.1016/j.biochi.2006.04.010

    Article  CAS  PubMed  Google Scholar 

  142. Aoki C, Sekino Y, Hanamura K, Fujisawa S, Mahadomrongkul V, Ren Y, Shirao T (2005) Drebrin A is a postsynaptic protein that localizes in vivo to the submembranous surface of dendritic sites forming excitatory synapses. J Comp Neurol 483:383–402. doi:10.1002/cne.20449

    Article  CAS  PubMed  Google Scholar 

  143. Mikati MA, Grintsevich EE, Reisler E (2013) Drebrin-induced stabilization of actin filaments. J Biol Chem 288:19926–19938. doi:10.1074/jbc.M113.472647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Worth DC, Daly CN, Geraldo S, Oozeer F, Gordon-Weeks PR (2013) Drebrin contains a cryptic F-actin-bundling activity regulated by Cdk5 phosphorylation. J Cell Biol 202:793–806. doi:10.1083/jcb.201303005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Kreis P, Hendricusdottir R, Kay L, Papageorgiou IE, van Diepen M, Mack T, Ryves J, Harwood A, Leslie NR, Kann O, Parsons M, Eickholt BJ (2013) Phosphorylation of the actin binding protein drebrin at S647 is regulated by neuronal activity and PTEN. PLoS ONE 8:1–12. doi:10.1371/journal.pone.0071957

    Article  CAS  Google Scholar 

  146. Jayo A, Parsons M (2010) Fascin: a key regulator of cytoskeletal dynamics. Int J Biochem Cell Biol 42:1614–1617. doi:10.1016/j.biocel.2010.06.019

    Article  CAS  PubMed  Google Scholar 

  147. Breitsprecher D, Koestler SA, Chizhov I, Nemethova M, Mueller J, Goode BL, Small JV, Rottner K, Faix J (2011) Cofilin cooperates with fascin to disassemble filopodial actin filaments. J Cell Sci 124:3305–3318. doi:10.1242/jcs.086934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Terry-Lorenzo R, Roadcap D, Otsuka T, Blanpied T, Zamorano P, Garner C, Shenolikar S, Ehlers M (2005) Neurabin/protein phosphatase-1 complex regulates dendritic spine morphogenesis and maturation. Mol Biol Cell 16:2349–2362. doi:10.1091/mbc.E04-12-1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Biou V, Brinkhaus H, Malenka RC, Matus A (2008) Interactions between drebrin and Ras regulate dendritic spine plasticity. Eur J Neurosci 27:2847–2859. doi:10.1111/j.1460-9568.2008.06269.x

    Article  PubMed  Google Scholar 

  150. Wyszynski M, Lin J, Rao A, Nigh E, Beggs AH, Craig AM, Sheng M (1997) Competitive binding of alpha-actinin and calmodulin to the NMDA receptor. Nature 385:439–442. doi:10.1038/385439a0

    Article  CAS  PubMed  Google Scholar 

  151. Shirao T, González-Billault C (2013) Actin filaments and microtubules in dendritic spines. J Neurochem 126:155–164. doi:10.1111/jnc.12313

    Article  CAS  PubMed  Google Scholar 

  152. Mizui T, Sekino Y, Yamazaki H, Ishizuka Y, Takahashi H, Kojima N, Kojima M, Shirao T (2014) Myosin II ATPase activity mediates the long-term potentiation-induced exodus of stable F-actin bound by drebrin A from dendritic spines. PLoS ONE 9:e85367. doi:10.1371/journal.pone.0085367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Okamoto K, Bosch M, Hayashi Y (2009) The roles of CaMKII and F-actin in the structural plasticity of dendritic spines: a potential molecular identity of a synaptic tag? Physiology (Bethesda) 24:357–366. doi:10.1152/physiol.00029.2009

    Article  CAS  Google Scholar 

  154. Lisman J, Yasuda R, Raghavachari S (2012) Mechanisms of CaMKII action in long-term potentiation. Nat Rev Neurosci 13:169–182. doi:10.1038/nrn3192

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Hell JW (2014) CaMKII: claiming center stage in postsynaptic function and organization. Neuron 81:249–265. doi:10.1016/j.neuron.2013.12.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Okamoto K-I, Narayanan R, Lee SH, Murata K, Hayashi Y (2007) The role of CaMKII as an F-actin-bundling protein crucial for maintenance of dendritic spine structure. Proc Natl Acad Sci USA 104:6418–6423. doi:10.1073/pnas.0701656104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Lin Y-C, Redmond L (2008) CaMKIIbeta binding to stable F-actin in vivo regulates F-actin filament stability. Proc Natl Acad Sci USA 105:15791–15796. doi:10.1073/pnas.0804399105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kim K, Lakhanpal G, Lu HE, Khan M, Suzuki A, Kato Hayashi M, Narayanan R, Luyben TT, Matsuda T, Nagai T, Blanpied TA, Hayashi Y, Okamoto K (2015) A temporary gating of actin remodeling during synaptic plasticity consists of the interplay between the kinase and structural functions of CaMKII. Neuron 87:813–826. doi:10.1016/j.neuron.2015.07.023

    Article  CAS  PubMed  Google Scholar 

  159. Lu HE, MacGillavry HD, Frost NA, Blanpied TA (2014) Multiple spatial and kinetic subpopulations of CaMKII in spines and dendrites as resolved by single-molecule tracking PALM. J Neurosci 34:7600–7610. doi:10.1523/JNEUROSCI.4364-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Wilson CA, Tsuchida MA, Allen GM, Barnhart EL, Applegate KT, Yam PT, Ji L, Keren K, Danuser G, Theriot JA (2010) Myosin II contributes to cell-scale actin network treadmilling through network disassembly. Nature 465:373–377. doi:10.1038/nature08994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Burnette DT, Manley S, Sengupta P, Sougrat R, Davidson MW, Kachar B, Lippincott-Schwartz J (2011) A role for actin arcs in the leading-edge advance of migrating cells. Nat Cell Biol 13:371–381. doi:10.1038/ncb2205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Yang Q, Zhang X-F, Pollard TD, Forscher P (2012) Arp2/3 complex-dependent actin networks constrain myosin II function in driving retrograde actin flow. J Cell Biol 197:939–956. doi:10.1083/jcb.201111052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Reymann A-C, Boujemaa-Paterski R, Martiel J-L, Guérin C, Cao W, Chin HF, De La Cruz EM, Théry M, Blanchoin L (2012) Actin network architecture can determine myosin motor activity. Science 336:1310–1314. doi:10.1126/science.1221708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Burnette DT, Shao L, Ott C, Pasapera AM, Fischer RS, Baird MA, Der Loughian C, Delanoe-Ayari H, Paszek MJ, Davidson MW, Betzig E, Lippincott-Schwartz J (2014) A contractile and counterbalancing adhesion system controls the 3D shape of crawling cells. J Cell Biol 205:83–96. doi:10.1083/jcb.201311104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Zhang H, Webb DJ, Asmussen H, Niu S, Horwitz AF (2005) A GIT1/PIX/Rac/PAK signaling module regulates spine morphogenesis and synapse formation through MLC. J Neurosci 25:3379–3388. doi:10.1523/JNEUROSCI.3553-04.2005

    Article  CAS  PubMed  Google Scholar 

  166. Ryu J, Liu L, Wong TP, Wu DC, Burette A, Weinberg R, Wang YT, Sheng M (2006) A critical role for myosin IIb in dendritic spine morphology and synaptic function. Neuron 49:175–182. doi:10.1016/j.neuron.2005.12.017

    Article  CAS  PubMed  Google Scholar 

  167. Hodges JL, Newell-Litwa K, Asmussen H, Vicente-Manzanares M, Horwitz AR (2011) Myosin IIb activity and phosphorylation status determines dendritic spine and post-synaptic density morphology. PLoS ONE 6:e24149. doi:10.1371/journal.pone.0024149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Rubio MDM, Johnson R, Miller CA, Huganir RL, Rumbaugh G (2011) Regulation of synapse structure and function by distinct myosin II motors. J Neurosci 31:1448–1460. doi:10.1523/JNEUROSCI.3294-10.2011.Regulation

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Rex CS, Gavin CF, Rubio MD, Kramar EA, Chen LY, Jia Y, Huganir RL, Muzyczka N, Gall CM, Miller CA, Lynch G, Rumbaugh G (2010) Myosin IIb regulates actin dynamics during synaptic plasticity and memory formation. Neuron 67:603–617. doi:10.1016/j.neuron.2010.07.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Koskinen M, Bertling E, Hotulainen R, Tanhuanpää K, Hotulainen P (2014) Myosin IIb controls actin dynamics underlying the dendritic spine maturation. Mol Cell Neurosci 61:56–64. doi:10.1016/j.mcn.2014.05.008

    Article  CAS  PubMed  Google Scholar 

  171. Qualmann B, Boeckers TM, Jeromin M, Gundelfinger ED, Kessels MM (2004) Linkage of the actin cytoskeleton to the postsynaptic density via direct interactions of Abp1 with the ProSAP/Shank family. J Neurosci 24:2481–2495. doi:10.1523/JNEUROSCI.5479-03.2004

    Article  CAS  PubMed  Google Scholar 

  172. Haeckel A, Ahuja R, Gundelfinger ED, Qualmann B, Kessels MM (2008) The actin-binding protein Abp1 controls dendritic spine morphology and is important for spine head and synapse formation. J Neurosci 28:10031–10044. doi:10.1523/JNEUROSCI.0336-08.2008

    Article  CAS  PubMed  Google Scholar 

  173. Vlachos A, Korkotian E, Schonfeld E, Copanaki E, Deller T, Segal M (2009) Synaptopodin regulates plasticity of dendritic spines in hippocampal neurons. J Neurosci 29:1017–1033. doi:10.1523/JNEUROSCI.5528-08.2009

    Article  CAS  PubMed  Google Scholar 

  174. Korkotian E, Frotscher M, Segal M (2014) Synaptopodin regulates spine plasticity: mediation by calcium stores. J Neurosci 34:11641–11651. doi:10.1523/JNEUROSCI.0381-14.2014

    Article  CAS  PubMed  Google Scholar 

  175. Cueille N, Blanc CT, Popa-Nita S, Kasas S, Catsicas S, Dietler G, Riederer BM (2007) Characterization of MAP1B heavy chain interaction with actin. Brain Res Bull 71:610–618. doi:10.1016/j.brainresbull.2006.12.003

    Article  CAS  PubMed  Google Scholar 

  176. Tortosa E, Montenegro-Venegas C, Benoist M, Hartel S, Gonzalez-Billault C, Esteban JA, Avila J (2011) Microtubule-associated protein 1B (MAP1B) is required for dendritic spine development and synaptic maturation. J Biol Chem 286:40638–40648. doi:10.1074/jbc.M111.271320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Saneyoshi T, Hayashi Y (2012) The Ca(2+) and Rho GTPase signaling pathways underlying activity-dependent actin remodeling at dendritic spines. Cytoskeleton (Hoboken) 69:545–554. doi:10.1002/cm.21037

    Article  CAS  Google Scholar 

  178. Lisman JE, Raghavachari S, Tsien RW (2007) The sequence of events that underlie quantal transmission at central glutamatergic synapses. Nat Rev Neurosci 8:597–609. doi:10.1038/nrn2191

    Article  CAS  PubMed  Google Scholar 

  179. Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279(5350):509–514. doi:10.1126/science.279.5350.509

    Article  CAS  PubMed  Google Scholar 

  180. Heasman SJ, Ridley AJ (2008) Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 9:690–701. doi:10.1038/nrm2476

    Article  CAS  PubMed  Google Scholar 

  181. Guilluy C, Garcia-Mata R, Burridge K (2011) Rho protein crosstalk: another social network? Trends Cell Biol 21:718–726. doi:10.1016/j.tcb.2011.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Stankiewicz TR, Linseman DA (2014) Rho family GTPases: key players in neuronal development, neuronal survival, and neurodegeneration. Front Cell Neurosci 8:314. doi:10.3389/fncel.2014.00314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Fleming IN, Elliott CM, Buchanan FG, Downes CP, Exton JH (1999) Ca2+/calmodulin-dependent protein kinase II regulates Tiam1 by reversible protein phosphorylation. J Biol Chem 274:12753–12758. doi:10.1074/jbc.274.18.12753

    Article  CAS  PubMed  Google Scholar 

  184. Okabe T, Nakamura T, Nishimura YN, Kohu K, Ohwada S, Morishita Y, Akiyama T (2003) RICS, a novel GTPase-activating protein for Cdc42 and Rac1, is involved in the beta-catenin-N-cadherin and N-methyl-d-aspartate receptor signaling. J Biol Chem 278:9920–9927. doi:10.1074/jbc.M208872200

    Article  CAS  PubMed  Google Scholar 

  185. Tolias KF, Bikoff JB, Burette A, Paradis S, Harrar D, Tavazoie S, Weinberg RJ, Greenberg ME (2005) The Rac1-GEF Tiam1 couples the NMDA receptor to the activity-dependent development of dendritic arbors and spines. Neuron 45:525–538. doi:10.1016/j.neuron.2005.01.024

    Article  CAS  PubMed  Google Scholar 

  186. Xie Z, Srivastava DP, Photowala H, Kai L, Cahill ME, Woolfrey KM, Shum CY, Surmeier DJ, Penzes P (2007) Kalirin-7 controls activity-dependent structural and functional plasticity of dendritic spines. Neuron 56:640–656. doi:10.1016/j.neuron.2007.10.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Grossman SD, Futter M, Snyder GL, Allen PB, Nairn AC, Greengard P, Hsieh-Wilson LC (2004) Spinophilin is phosphorylated by Ca2+/calmodulin-dependent protein kinase II resulting in regulation of its binding to F-actin. J Neurochem 90:317–324. doi:10.1111/j.1471-4159.2004.02491.x

    Article  CAS  PubMed  Google Scholar 

  188. Ryan XP, Alldritt J, Svenningsson P, Allen PB, Wu G-Y, Nairn AC, Greengard P (2005) The Rho-specific GEF Lfc interacts with neurabin and spinophilin to regulate dendritic spine morphology. Neuron 47:85–100. doi:10.1016/j.neuron.2005.05.013

    Article  CAS  PubMed  Google Scholar 

  189. Murakoshi H, Wang H, Yasuda R (2011) Local, persistent activation of Rho GTPases during plasticity of single dendritic spines. Nature 472:100–104. doi:10.1038/nature09823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Saneyoshi T, Wayman G, Fortin D, Davare M, Hoshi N, Nozaki N, Natsume T, Soderling TR (2008) Activity-dependent synaptogenesis: regulation by a CaM-kinase kinase/CaM-kinase I/betaPIX signaling complex. Neuron 57:94–107. doi:10.1016/j.neuron.2007.11.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Wayman GA, Lee Y-S, Tokumitsu H, Silva AJ, Silva A, Soderling TR (2008) Calmodulin-kinases: modulators of neuronal development and plasticity. Neuron 59:914–931. doi:10.1016/j.neuron.2008.08.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Takenawa T, Suetsugu S (2007) The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nat Rev Mol Cell Biol 8:37–48. doi:10.1038/nrm2069

    Article  CAS  PubMed  Google Scholar 

  193. Derivery E, Gautreau A (2010) Generation of branched actin networks: assembly and regulation of the N-WASP and WAVE molecular machines. BioEssays 32:119–131. doi:10.1002/bies.200900123

    Article  CAS  PubMed  Google Scholar 

  194. Chen Z, Borek D, Padrick SB, Gomez TS, Metlagel Z, Ismail AM, Umetani J, Billadeau DD, Otwinowski Z, Rosen MK (2010) Structure and control of the actin regulatory WAVE complex. Nature 468:533–538. doi:10.1038/nature09623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Riento K, Ridley AJ (2003) Rocks: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol 4:446–456. doi:10.1038/nrm1128

    Article  CAS  PubMed  Google Scholar 

  196. Rane CK, Minden A (2014) P21 activated kinases: structure, regulation, and functions. Small GTPases 5:37–41. doi:10.4161/sgtp.28003

    Article  Google Scholar 

  197. Julian L, Olson MF (2014) Rho-associated coiled-coil containing kinases (ROCK): structure, regulation, and functions. Small GTPases 5:e29846. doi:10.4161/sgtp.29846

    Article  PubMed  PubMed Central  Google Scholar 

  198. Niwa R, Nagata-Ohashi K, Takeichi M, Mizuno K, Uemura T (2002) Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell 108:233–246

    Article  CAS  PubMed  Google Scholar 

  199. Collingridge GL, Peineau S, Howland JG, Wang YT (2010) Long-term depression in the CNS. Nat Rev Neurosci 11:459–473. doi:10.1038/nrn2867

    Article  CAS  PubMed  Google Scholar 

  200. Hanley JG, Henley JM (2005) PICK1 is a calcium-sensor for NMDA-induced AMPA receptor trafficking. EMBO J 24:3266–3278. doi:10.1038/sj.emboj.7600801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Rocca DL, Amici M, Antoniou A, Blanco Suarez E, Halemani N, Murk K, McGarvey J, Jaafari N, Mellor JR, Collingridge GL, Hanley JG (2013) The small GTPase Arf1 modulates Arp2/3-mediated actin polymerization via PICK1 to regulate synaptic plasticity. Neuron 79:293–307. doi:10.1016/j.neuron.2013.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Rocca DL, Hanley JG (2015) PICK1 links AMPA receptor stimulation to Cdc42. Neurosci Lett 585:155–159. doi:10.1016/j.neulet.2014.11.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Machacek M, Hodgson L, Welch C, Elliott H, Pertz O, Nalbant P, Abell A, Johnson GL, Hahn KM, Danuser G (2009) Coordination of Rho GTPase activities during cell protrusion. Nature 461:99–103. doi:10.1038/nature08242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Wu YI, Frey D, Lungu OI, Jaehrig A, Schlichting I, Kuhlman B, Hahn KM (2009) A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461:104–108. doi:10.1038/nature08241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Lee SR, Escobedo-Lozoya Y, Szatmari EM, Yasuda R (2009) Activation of CaMKII in single dendritic spines during long-term potentiation. Nature 458:299–304. doi:10.1038/nature07842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Van Harreveld A, Fifkova E (1975) Swelling of dendritic spines in the fascia dentata after stimulation of the perforant fibers as a mechanism of post-tetanic potentiation. Exp Neurol 49:736–749. doi:10.1016/0014-4886(75)90055-2

    Article  PubMed  Google Scholar 

  207. Fifková E, Anderson CL (1981) Stimulation-induced changes in dimensions of stalks of dendritic spines in the dentate molecular layer. Exp Neurol 74:621–627. doi:10.1016/0014-4886(81)90197-7

    Article  PubMed  Google Scholar 

  208. Desmond N, Levy W (1986) Changes in the postsynaptic density with long-term potentiation in the dentate gyrus. J Comp Neurol 253:476–482. doi:10.1002/cne.902530405

    Article  CAS  PubMed  Google Scholar 

  209. Matsuzaki M, Ellis-Davies GC, Nemoto T, Miyashita Y, Iino M, Kasai H (2001) Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 4:1086–1092. doi:10.1038/nn736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Patterson MA, Szatmari EM, Yasuda R (2010) AMPA receptors are exocytosed in stimulated spines and adjacent dendrites in a Ras-ERK-dependent manner during long-term potentiation. Proc Natl Acad Sci USA 107:15951–15956. doi:10.1073/pnas.0913875107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Fukazawa Y, Saitoh Y, Ozawa F, Ohta Y, Mizuno K, Inokuchi K (2003) Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo. Neuron 38:447–460

    Article  CAS  PubMed  Google Scholar 

  212. Rochefort NL, Konnerth A (2012) Dendritic spines: from structure to in vivo function. EMBO Rep 13:699–708. doi:10.1038/embor.2012.102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Yamagata Y, Kobayashi S, Umeda T, Inoue A, Sakagami H, Fukaya M, Watanabe M, Hatanaka N, Totsuka M, Yagi T, Obata K, Imoto K, Yanagawa Y, Manabe T, Okabe S (2009) Kinase-dead knock-in mouse reveals an essential role of kinase activity of Ca2+/calmodulin-dependent protein kinase IIalpha in dendritic spine enlargement, long-term potentiation, and learning. J Neurosci 29:7607–7618. doi:10.1523/JNEUROSCI.0707-09.2009

    Article  CAS  PubMed  Google Scholar 

  214. Chen LY, Rex CS, Casale MS, Gall CM, Lynch G (2007) Changes in synaptic morphology accompany actin signaling during LTP. J Neurosci 27:5363–5372. doi:10.1523/JNEUROSCI.0164-07.2007

    Article  CAS  PubMed  Google Scholar 

  215. Ghosh M, Song X, Mouneimne G, Sidani M, Lawrence DS, Condeelis JS (2004) Cofilin promotes actin polymerization and defines the direction of cell motility. Science 304:743–746. doi:10.1126/science.1094561

    Article  CAS  PubMed  Google Scholar 

  216. Durand CM, Perroy J, Loll F, Perrais D, Fagni L, Bourgeron T, Montcouquiol M, Sans N (2012) SHANK3 mutations identified in autism lead to modification of dendritic spine morphology via an actin-dependent mechanism. Mol Psychiatry 17:71–84. doi:10.1038/mp.2011.57

    Article  CAS  PubMed  Google Scholar 

  217. Andrianantoandro E, Pollard TD (2006) Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin. Mol Cell 24:13–23. doi:10.1016/j.molcel.2006.08.006

    Article  CAS  PubMed  Google Scholar 

  218. Merriam EB, Millette M, Lumbard DC, Saengsawang W, Fothergill T, Hu X, Ferhat L, Dent EW (2013) Synaptic regulation of microtubule dynamics in dendritic spines by calcium, F-actin, and drebrin. J Neurosci 33:16471–16482. doi:10.1523/JNEUROSCI.0661-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Yang Y, Wang X-B, Frerking M, Zhou Q (2008) Spine expansion and stabilization associated with long-term potentiation. J Neurosci 28:5740–5751. doi:10.1523/JNEUROSCI.3998-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Fortin DA, Davare MA, Srivastava T, Brady JD, Nygaard S, Derkach VA, Soderling TR (2010) Long-term potentiation-dependent spine enlargement requires synaptic Ca2+-permeable AMPA receptors recruited by CaM-kinase I. J Neurosci 30:11565–11575. doi:10.1523/JNEUROSCI.1746-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Tai C-Y, Mysore SP, Chiu C, Schuman EM (2007) Activity-regulated N-cadherin endocytosis. Neuron 54:771–785. doi:10.1016/j.neuron.2007.05.013

    Article  CAS  PubMed  Google Scholar 

  222. Kobielak A, Pasolli HA, Fuchs E (2004) Mammalian formin-1 participates in adherens junctions and polymerization of linear actin cables. Nat Cell Biol 6:21–30. doi:10.1038/ncb1075

    Article  CAS  PubMed  Google Scholar 

  223. Okamura K, Tanaka H, Yagita Y, Saeki Y, Taguchi A, Hiraoka Y, Zeng L-H, Colman DR, Miki N (2004) Cadherin activity is required for activity-induced spine remodeling. J Cell Biol 167:961–972. doi:10.1083/jcb.200406030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Wang X, Yang Y, Zhou Q (2007) Independent expression of synaptic and morphological plasticity associated with long-term depression. J Neurosci 27:12419–12429. doi:10.1523/JNEUROSCI.2015-07.2007

    Article  CAS  PubMed  Google Scholar 

  225. He K, Lee A, Song L, Kanold PO, Lee H-K (2011) AMPA receptor subunit GluR1 (GluA1) serine-845 site is involved in synaptic depression but not in spine shrinkage associated with chemical long-term depression. J Neurophysiol 105:1897–1907. doi:10.1152/jn.00913.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Hayama T, Noguchi J, Watanabe S, Takahashi N, Hayashi-Takagi A, Ellis-Davies GCR, Matsuzaki M, Kasai H (2013) GABA promotes the competitive selection of dendritic spines by controlling local Ca2+ signaling. Nat Neurosci 16:1409–1416. doi:10.1038/nn.3496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Kopec CD, Li B, Wei W, Boehm J, Malinow R (2006) Glutamate receptor exocytosis and spine enlargement during chemically induced long-term potentiation. J Neurosci 26:2000–2009. doi:10.1523/JNEUROSCI.3918-05.2006

    Article  CAS  PubMed  Google Scholar 

  228. Kopec CD, Real E, Kessels HW, Malinow R (2007) GluR1 links structural and functional plasticity at excitatory synapses. J Neurosci 27:13706–13718. doi:10.1523/JNEUROSCI.3503-07.2007

    Article  CAS  PubMed  Google Scholar 

  229. Sdrulla AD, Linden DJ (2007) Double dissociation between long-term depression and dendritic spine morphology in cerebellar Purkinje cells. Nat Neurosci 10:546–548. doi:10.1038/nn1889

    Article  CAS  PubMed  Google Scholar 

  230. Gu J, Lee CW, Fan Y, Komlos D, Tang X, Sun C, Yu K, Hartzell HC, Chen G, Bamburg JR, Zheng JQ (2010) ADF/cofilin-mediated actin dynamics regulate AMPA receptor trafficking during synaptic plasticity. Nat Neurosci 13:1208–1215. doi:10.1038/nn.2634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Kim CH, Lisman JE (1999) A role of actin filament in synaptic transmission and long-term potentiation. J Neurosci 19:4314–4324

    CAS  PubMed  Google Scholar 

  232. Krucker T, Siggins GR, Halpain S (2000) Dynamic actin filaments are required for stable long-term potentiation (LTP) in area CA1 of the hippocampus. Proc Natl Acad Sci USA 97:6856–6861. doi:10.1073/pnas.100139797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Ramachandran B, Frey JU (2009) Interfering with the actin network and its effect on long-term potentiation and synaptic tagging in hippocampal CA1 neurons in slices in vitro. J Neurosci 29:12167–12173. doi:10.1523/JNEUROSCI.2045-09.2009

    Article  CAS  PubMed  Google Scholar 

  234. Soderling SH, Langeberg LK, Soderling JA, Davee SM, Simerly R, Raber J, Scott JD (2003) Loss of WAVE-1 causes sensorimotor retardation and reduced learning and memory in mice. Proc Natl Acad Sci USA 100:1723–1728. doi:10.1073/pnas.0438033100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Meng J, Meng Y, Hanna A, Janus C, Jia Z (2005) Abnormal long-lasting synaptic plasticity and cognition in mice lacking the mental retardation gene Pak3. J Neurosci 25:6641–6650. doi:10.1523/JNEUROSCI.0028-05.2005

    Article  CAS  PubMed  Google Scholar 

  236. Asrar S, Meng Y, Zhou Z, Todorovski Z, Huang WW, Jia Z (2009) Regulation of hippocampal long-term potentiation by p21-activated protein kinase 1 (PAK1). Neuropharmacology 56:73–80. doi:10.1016/j.neuropharm.2008.06.055

    Article  CAS  PubMed  Google Scholar 

  237. Haditsch U, Leone DP, Farinelli M, Chrostek-Grashoff A, Brakebusch C, Mansuy IM, McConnell SK, Palmer TD (2009) A central role for the small GTPase Rac1 in hippocampal plasticity and spatial learning and memory. Mol Cell Neurosci 41:409–419. doi:10.1016/j.mcn.2009.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Rust MB, Gurniak CB, Renner M, Vara H, Morando L, Görlich A, Sassoè-Pognetto M, Al Banchaabouchi M, Giustetto M, Triller A, Choquet D, Witke W (2010) Learning, AMPA receptor mobility and synaptic plasticity depend on n-cofilin-mediated actin dynamics. EMBO J 29:1889–1902. doi:10.1038/emboj.2010.72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Kang J, Park H, Kim E (2016) IRSp53/BAIAP2 in dendritic spine development, NMDA receptor regulation, and psychiatric disorders. Neuropharmacology 100:27–39. doi:10.1016/j.neuropharm.2015.06.019

    Article  CAS  PubMed  Google Scholar 

  240. Schenck A, Bardoni B, Langmann C, Harden N, Mandel JL, Giangrande A (2003) CYFIP/Sra-1 controls neuronal connectivity in Drosophila and links the Rac1 GTPase pathway to the fragile X protein. Neuron 38:887–898

    Article  CAS  PubMed  Google Scholar 

  241. Penzes P, Cahill ME, Jones KA, VanLeeuwen J-E, Woolfrey KM (2011) Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 14:285–293. doi:10.1038/nn.2741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. De Rubeis S, Pasciuto E, Li KW, Fernández E, Di Marino D, Buzzi A, Ostroff LE, Klann E, Zwartkruis FJT, Komiyama NH, Grant SGN, Poujol C, Choquet D, Achsel T, Posthuma D, Smit AB, Bagni C (2013) CYFIP1 coordinates mRNA translation and cytoskeleton remodeling to ensure proper dendritic spine formation. Neuron 79:1169–1182. doi:10.1016/j.neuron.2013.06.039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  243. Derkach VA, Oh MC, Guire ES, Soderling TR (2007) Regulatory mechanisms of AMPA receptors in synaptic plasticity. Nat Rev Neurosci 8:101–113. doi:10.1038/nrn2055

    Article  CAS  PubMed  Google Scholar 

  244. Lau CG, Takeuchi K, Rodenas-Ruano A, Takayasu Y, Murphy J, Bennett MVL, Zukin RS (2009) Regulation of NMDA receptor Ca2+ signalling and synaptic plasticity. Biochem Soc Trans 37:1369–1374. doi:10.1042/BST0371369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Lau CG, Zukin RS (2007) NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev Neurosci 8:413–426. doi:10.1038/nrn2153

    Article  CAS  PubMed  Google Scholar 

  246. Anggono V, Huganir RL (2012) Regulation of AMPA receptor trafficking and synaptic plasticity. Curr Opin Neurobiol 22:461–469. doi:10.1016/j.conb.2011.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Opazo P, Sainlos M, Choquet D (2012) Regulation of AMPA receptor surface diffusion by PSD-95 slots. Curr Opin Neurobiol 22:453–460. doi:10.1016/j.conb.2011.10.010

    Article  CAS  PubMed  Google Scholar 

  248. Ladépêche L, Dupuis JP, Groc L (2014) Surface trafficking of NMDA receptors: gathering from a partner to another. Semin Cell Dev Biol 27:3–13. doi:10.1016/j.semcdb.2013.10.005

    Article  PubMed  CAS  Google Scholar 

  249. Hanley JG (2014) Actin-dependent mechanisms in AMPA receptor trafficking. Front Cell Neurosci 8:1–8. doi:10.3389/fncel.2014.00381

    Article  CAS  Google Scholar 

  250. Soltau M, Richter D, Kreienkamp H (2002) The insulin receptor substrate IRSp53 links postsynaptic shank1 to the small G-protein cdc42. Mol Cell Neurosci 21:575–583. doi:10.1006/mcne.2002.1201

    Article  CAS  PubMed  Google Scholar 

  251. Park E, Na M, Choi J, Kim S, Lee J-R, Yoon J, Park D, Sheng M, Kim E (2003) The Shank family of postsynaptic density proteins interacts with and promotes synaptic accumulation of the beta PIX guanine nucleotide exchange factor for Rac1 and Cdc42. J Biol Chem 278:19220–19229. doi:10.1074/jbc.M301052200

    Article  CAS  PubMed  Google Scholar 

  252. Soltau M, Berhörster K, Kindler S, Buck F, Richter D, Kreienkamp H-J (2004) Insulin receptor substrate of 53 kDa links postsynaptic shank to PSD-95. J Neurochem 90:659–665. doi:10.1111/j.1471-4159.2004.02523.x

    Article  CAS  PubMed  Google Scholar 

  253. Kuriu T, Inoue A, Bito H, Sobue K, Okabe S (2006) Differential control of postsynaptic density scaffolds via actin-dependent and -independent mechanisms. J Neurosci 26:7693–7706. doi:10.1523/JNEUROSCI.0522-06.2006

    Article  CAS  PubMed  Google Scholar 

  254. Kerr JM, Blanpied TA (2012) Subsynaptic AMPA receptor distribution is acutely regulated by actin-driven reorganization of the postsynaptic density. J Neurosci 32:658–673. doi:10.1523/JNEUROSCI.2927-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. MacGillavry HD, Song Y, Raghavachari S, Blanpied TA (2013) Nanoscale scaffolding domains within the postsynaptic density concentrate synaptic AMPA receptors. Neuron 78:615–622. doi:10.1016/j.neuron.2013.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Zhang W, Benson DL (2001) Stages of synapse development defined by dependence on F-actin. J Neurosci 21:5169–5181

    CAS  PubMed  Google Scholar 

  257. Allison DW, Gelfand VI, Spector I, Craig AM (1998) Role of actin in anchoring postsynaptic receptors in cultured hippocampal neurons: differential attachment of NMDA versus AMPA receptors. J Neurosci 18:2423–2436

    CAS  PubMed  Google Scholar 

  258. Renner M, Choquet D, Triller A (2009) Control of the postsynaptic membrane viscosity. J Neurosci 29:2926–2937. doi:10.1523/JNEUROSCI.4445-08.2009

    Article  CAS  PubMed  Google Scholar 

  259. Czondor K, Mondin M, Garcia M, Heine M, Frischknecht R, Choquet D, Sibarita J-B, Thoumine OR (2012) Unified quantitative model of AMPA receptor trafficking at synapses. Proc Natl Acad Sci USA 109:3522–3527. doi:10.1073/pnas.1109818109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Kusters R, Kapitein LC, Hoogenraad CC, Storm C (2013) Shape-induced asymmetric diffusion in dendritic spines allows efficient synaptic AMPA receptor trapping. Biophys J 105:2743–2750. doi:10.1016/j.bpj.2013.11.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Jewell JL, Luo W, Oh E, Wang Z, Thurmond DC (2008) Filamentous actin regulates insulin exocytosis through direct interaction with Syntaxin 4. J Biol Chem 283:10716–10726. doi:10.1074/jbc.M709876200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Jaiswal JK, Rivera VM, Simon SM (2009) Exocytosis of post-golgi vesicles is regulated by components of the endocytic machinery. Cell 137:1308–1319. doi:10.1016/j.cell.2009.04.064

    Article  PubMed  PubMed Central  Google Scholar 

  263. Yang Y, Wang X-B, Frerking M, Zhou Q (2008) Delivery of AMPA receptors to perisynaptic sites precedes the full expression of long-term potentiation. Proc Natl Acad Sci USA 105:11388–11393. doi:10.1073/pnas.0802978105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Porat-Shliom N, Milberg O, Masedunskas A, Weigert R (2013) Multiple roles for the actin cytoskeleton during regulated exocytosis. Cell Mol Life Sci 70:2099–2121. doi:10.1007/s00018-012-1156-5

    Article  CAS  PubMed  Google Scholar 

  265. Mooren OL, Galletta BJ, Cooper JA (2012) Roles for actin assembly in endocytosis. Annu Rev Biochem 81:661–686. doi:10.1146/annurev-biochem-060910-094416

    Article  CAS  PubMed  Google Scholar 

  266. Kennedy MJ, Davison IG, Robinson CG, Ehlers MD (2010) Syntaxin-4 defines a domain for activity-dependent exocytosis in dendritic spines. Cell 141:524–535. doi:10.1016/j.cell.2010.02.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Jullie D, Choquet D, Perrais D (2014) Recycling endosomes undergo rapid closure of a fusion pore on exocytosis in neuronal dendrites. J Neurosci 34:11106–11118. doi:10.1523/JNEUROSCI.0799-14.2014

    Article  PubMed  CAS  Google Scholar 

  268. Terashima A, Pelkey KA, Rah JC, Suh YH, Roche KW, Collingridge GL, McBain CJ, Isaac JTR (2008) An essential role for PICK1 in NMDA receptor-dependent bidirectional synaptic plasticity. Neuron 57:872–882. doi:10.1016/j.neuron.2008.01.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Kelly EE, Horgan CP, McCaffrey MW, Young P (2011) The role of endosomal-recycling in long-term potentiation. Cell Mol Life Sci 68:185–194. doi:10.1007/s00018-010-0516-2

    Article  CAS  PubMed  Google Scholar 

  270. Osterweil E, Wells DG, Mooseker MS (2005) A role for myosin VI in postsynaptic structure and glutamate receptor endocytosis. J Cell Biol 168:329–338. doi:10.1083/jcb.200410091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Wang Z, Edwards JG, Riley N, Provance DW, Karcher R, Li X-D, Davison IG, Ikebe M, Mercer JA, Kauer JA, Ehlers MD (2008) Myosin Vb mobilizes recycling endosomes and AMPA receptors for postsynaptic plasticity. Cell 135:535–548. doi:10.1016/j.cell.2008.09.057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Huber K, Kayser M, Bear M (2000) Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression. Science 288(5469):1254–1257. doi:10.1126/science.288.5469.1254

    Article  CAS  PubMed  Google Scholar 

  273. Nosyreva E, Huber K (2005) Developmental Switch in synaptic mechanisms of hippocampal metabotropic glutamate receptor-dependent long-term depression. J Neurosci 25:2992–3001. doi:10.1523/JNEUROSCI.3652-04.2005

    Article  CAS  PubMed  Google Scholar 

  274. Tanaka J-I, Horiike Y, Matsuzaki M, Miyazaki T, Ellis-Davies GCR, Kasai H (2008) Protein synthesis and neurotrophin-dependent structural plasticity of single dendritic spines. Science 319:1683–1687. doi:10.1126/science.1152864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Holbro N, Grunditz Å, Oertner TG (2009) Differential distribution of endoplasmic reticulum controls metabotropic signaling and plasticity at hippocampal synapses. Proc Natl Acad Sci USA 106:15055–15060. doi:10.1073/pnas.0905110106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Govindarajan A, Israely I, Huang S-Y, Tonegawa S (2011) The dendritic branch is the preferred integrative unit for protein synthesis-dependent LTP. Neuron 69:132–146. doi:10.1016/j.neuron.2010.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Ramiro-Cortés Y, Israely I (2013) Long lasting protein synthesis- and activity-dependent spine shrinkage and elimination after synaptic depression. PLoS ONE 8:e71155. doi:10.1371/journal.pone.0071155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  278. Lynch G, Kramár EA, Babayan AH, Rumbaugh G, Gall CM (2013) Differences between synaptic plasticity thresholds result in new timing rules for maximizing long-term potentiation. Neuropharmacology 64:27–36. doi:10.1016/j.neuropharm.2012.07.006

    Article  CAS  PubMed  Google Scholar 

  279. Redondo RL, Okuno H, Spooner PA, Frenguelli BG, Bito H, Morris RGM (2010) Synaptic tagging and capture: differential role of distinct calcium/calmodulin kinases in protein synthesis-dependent long-term potentiation. J Neurosci 30:4981–4989. doi:10.1523/JNEUROSCI.3140-09.2010

    Article  CAS  PubMed  Google Scholar 

  280. Redondo RL, Morris RGM (2011) Making memories last: the synaptic tagging and capture hypothesis. Nat Rev Neurosci 12:17–30. doi:10.1038/nrn2963

    Article  CAS  PubMed  Google Scholar 

  281. Tam J, Cordier GA, Bálint Š, Sandoval Álvarez Á, Borbely JS, Lakadamyali M (2014) A microfluidic platform for correlative live-cell and super-resolution microscopy. PLoS ONE 9:e115512. doi:10.1371/journal.pone.0115512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  282. Jungmann R, Steinhauer C, Scheible M, Kuzyk A, Tinnefeld P, Simmel FC (2010) Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. Nano Lett 10:4756–4761. doi:10.1021/nl103427w

    Article  CAS  PubMed  Google Scholar 

  283. Jungmann R, Avendaño MS, Woehrstein JB, Dai M, Shih WM, Yin P (2014) Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. Nat Methods 11:313–318. doi:10.1038/nmeth.2835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Tam J, Cordier GA, Borbely JS, Sandoval Álvarez Á, Lakadamyali M (2014) Cross-talk-free multi-color STORM imaging using a single fluorophore. PLoS ONE 9:e101772. doi:10.1371/journal.pone.0101772

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  285. Zhang Z, Kenny SJ, Hauser M, Li W, Xu K (2015) Ultrahigh-throughput resolved super-resolution microscopy. Nat Methods. doi:10.1038/nmeth.3528

    Google Scholar 

  286. Meyer D, Bonhoeffer T, Scheuss V (2014) Balance and stability of synaptic structures during synaptic plasticity. Neuron 82:430–443. doi:10.1016/j.neuron.2014.02.031

    Article  CAS  PubMed  Google Scholar 

  287. Xu K, Babcock HP, Zhuang X (2012) Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton. Nat Methods 9:185–188. doi:10.1038/nmeth.1841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Galland R, Grenci G, Aravind A, Viasnoff V, Studer V, Sibarita J-B (2015) 3D high- and super-resolution imaging using single-objective SPIM. Nat Methods 12:641–644. doi:10.1038/nmeth.3402

    Article  CAS  PubMed  Google Scholar 

  289. Dani A, Huang B, Bergan J, Dulac C, Zhuang X (2010) Superresolution imaging of chemical synapses in the brain. Neuron 68:843–856. doi:10.1016/j.neuron.2010.11.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Vangindertael J, Beets I, Rocha S, Dedecker P, Schoofs L, Vanhoorelbeeke K, Hofkens J, Mizuno H (2015) Super-resolution mapping of glutamate receptors in C. elegans by confocal correlated PALM. Sci Rep 5:13532. doi:10.1038/srep13532

    Article  PubMed  PubMed Central  Google Scholar 

  291. Urban NT, Willig KI, Hell SW, Nägerl UV (2011) STED nanoscopy of actin dynamics in synapses deep inside living brain slices. Biophys J 101:1277–1284. doi:10.1016/j.bpj.2011.07.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Hofmann M, Eggeling C, Jakobs S, Hell SW (2005) Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc Natl Acad Sci USA 102:17565–17569. doi:10.1073/pnas.0506010102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Testa I, Urban NT, Jakobs S, Eggeling C, Willig KI, Hell SW (2012) Nanoscopy of living brain slices with low light levels. Neuron 75:992–1000. doi:10.1016/j.neuron.2012.07.028

    Article  CAS  PubMed  Google Scholar 

  294. Kner P, Chhun BB, Griffis ER, Winoto L, Gustafsson MGL (2009) Super-resolution video microscopy of live cells by structured illumination. Nat Methods 6:339–342. doi:10.1038/nmeth.1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Shao L, Kner P, Rego EH, Gustafsson MGL (2011) Super-resolution 3D microscopy of live whole cells using structured illumination. Nat Methods 8:1044–1046. doi:10.1038/nmeth.1734

    Article  CAS  PubMed  Google Scholar 

  296. Ahrens MB, Orger MB, Robson DN, Li JM, Keller PJ (2013) Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat Methods 10:413–420. doi:10.1038/nmeth.2434

    Article  CAS  PubMed  Google Scholar 

  297. Chen B-C, Legant WR, Wang K, Shao L, Milkie DE, Davidson MW, Janetopoulos C, Wu XS, Hammer JA 3rd, Liu Z, English BP, Mimori-Kiyosue Y, Romero DP, Ritter AT, Lippincott-Schwartz J, Fritz-Laylin L, Mullins RD, Mitchell DM, Reymann A-C, Bembenek JN, Bohme R, Grill SW, Wang JT, Seydoux G, Tulu US, Kiehart DP, Betzig E, Reymann A-C, Bohme R, Grill SW, Wang JT, Seydoux G, Tulu US, Kiehart DP, Betzig E (2014) Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science 346(6208):1257998. doi:10.1126/science.1257998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  298. Li D, Shao L, Chen B, Zhang X, Zhang M, Moses B, Milkie DE, Beach JR, Hammer J 3rd, Pasham M, Kirchhausen T, Baird MA, Davidson MW, Xu P, Betzig E (2015) ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science 349(6251):aab3500. doi:10.1126/science.aab3500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  299. Keller PJ, Ahrens MB (2015) Visualizing whole-brain activity and development at the single-cell level using light-sheet microscopy. Neuron 85:462–483. doi:10.1016/j.neuron.2014.12.039

    Article  CAS  PubMed  Google Scholar 

  300. Benson DL, Huntley GW (2012) Synapse adhesion: a dynamic equilibrium conferring stability and flexibility. Curr Opin Neurobiol 22:397–404. doi:10.1016/j.conb.2011.09.011

    Article  CAS  PubMed  Google Scholar 

  301. van Bergeijk P, Adrian M, Hoogenraad CC, Kapitein LC (2015) Optogenetic control of organelle transport and positioning. Nature 518:111–114. doi:10.1038/nature14128

    Article  PubMed  CAS  Google Scholar 

  302. Taslimi A, Vrana JD, Chen D, Borinskaya S, Mayer BJ, Kennedy MJ, Tucker CL (2014) An optimized optogenetic clustering tool for probing protein interaction and function. Nat Commun 5:4925. doi:10.1038/ncomms5925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Yuste R (2015) From the neuron doctrine to neural networks. Nat Rev Neurosci 16:487–497. doi:10.1038/nrn3962

    Article  CAS  PubMed  Google Scholar 

  304. Markram H, Muller E, Ramaswamy S, Reimann MW, Abdellah M, Sanchez CA, Ailamaki A, Alonso-Nanclares L, Antille N, Arsever S, Kahou GAA, Berger TK, Bilgili A, Buncic N, Chalimourda A, Chindemi G, Courcol J-D, Delalondre F, Delattre V, Druckmann S, Dumusc R, Dynes J, Eilemann S, Gal E, Gevaert ME, Ghobril J-P, Gidon A, Graham JW, Gupta A, Haenel V, Hay E, Heinis T, Hernando JB, Hines M, Kanari L, Keller D, Kenyon J, Khazen G, Kim Y, King JG, Kisvarday Z, Kumbhar P, Lasserre S, Le Bé J-V, Magalhães BRC, Merchán-Pérez A, Meystre J, Morrice BR, Muller J, Muñoz-Céspedes A, Muralidhar S, Muthurasa K, Nachbaur D, Newton TH, Nolte M, Ovcharenko A, Palacios J, Pastor L, Perin R, Ranjan R, Riachi I, Rodríguez J-R, Riquelme JL, Rössert C, Sfyrakis K, Shi Y, Shillcock JC, Silberberg G, Silva R, Tauheed F, Telefont M, Toledo-Rodriguez M, Tränkler T, Van Geit W, Díaz JV, Walker R, Wang Y, Zaninetta SM, DeFelipe J, Hill SL, Segev I, Schürmann F (2015) Reconstruction and simulation of neocortical microcircuitry. Cell 163:456–492. doi:10.1016/j.cell.2015.09.029

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Harold D. McGillavry and Dr Laura F. Gumy for helpful comments on the manuscript. We acknowledge financial support from the French Ministry of Research and CNRS, ANR grant Nanomotility, LabEx BRAIN, Conseil Régional Aquitaine, Fondation pour la Recherche Médicale, and from Marie Skłodowska-Curie fellowship to Anaël Chazeau.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grégory Giannone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chazeau, A., Giannone, G. Organization and dynamics of the actin cytoskeleton during dendritic spine morphological remodeling. Cell. Mol. Life Sci. 73, 3053–3073 (2016). https://doi.org/10.1007/s00018-016-2214-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2214-1

Keywords

Navigation