Skip to main content

Advertisement

Log in

Necroptosis-independent signaling by the RIP kinases in inflammation

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Recent advances have identified a signaling cascade involving receptor interacting protein kinase 1 (RIPK1), RIPK3 and the pseudokinase mixed lineage kinase domain-like (MLKL) that is crucial for induction of necroptosis, a non-apoptotic form of cell death. RIPK1–RIPK3–MLKL-mediated necroptosis has been attributed to cause many inflammatory diseases through the release of cellular damage-associated molecular patterns (DAMPs). In addition to necroptosis, emerging evidence suggests that these necroptosis signal adaptors can also facilitate inflammation independent of cell death. In particular, the RIP kinases can drive NF-κB and inflammasome activation independent of cell death. In this review, we will discuss recent discoveries that led to this realization and present arguments why cell death-independent signaling by the RIP kinases may have a more important role in inflammation than necroptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Stanger BZ, Leder P, Lee TH, Kim E, Seed B (1995) RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell 81(4):513–523

    Article  CAS  PubMed  Google Scholar 

  2. Hsu H, Huang J, Shu HB, Baichwal V, Goeddel DV (1996) TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 4(4):387–396

    Article  CAS  PubMed  Google Scholar 

  3. Ting AT, Pimentel-Muinos FX, Seed B (1996) RIP mediates tumor necrosis factor receptor 1 activation of NF-kappaB but not Fas/APO-1-initiated apoptosis. EMBO J 15(22):6189–6196

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kelliher MA, Grimm S, Ishida Y, Kuo F, Stanger BZ, Leder P (1998) The death domain kinase RIP mediates the TNF-induced NF-kappaB signal. Immunity 8(3):297–303

    Article  CAS  PubMed  Google Scholar 

  5. Wong WW, Gentle IE, Nachbur U, Anderton H, Vaux DL, Silke J (2010) RIPK1 is not essential for TNFR1-induced activation of NF-kappaB. Cell Death Differ 17(3):482–487. doi:10.1038/cdd.2009.178

    Article  CAS  PubMed  Google Scholar 

  6. Takahashi N, Vereecke L, Bertrand MJ, Duprez L, Berger SB, Divert T, Goncalves A, Sze M, Gilbert B, Kourula S, Goossens V, Lefebvre S, Gunther C, Becker C, Bertin J, Gough PJ, Declercq W, van Loo G, Vandenabeele P (2014) RIPK1 ensures intestinal homeostasis by protecting the epithelium against apoptosis. Nature 513(7516):95–99. doi:10.1038/nature13706

    Article  CAS  PubMed  Google Scholar 

  7. Dannappel M, Vlantis K, Kumari S, Polykratis A, Kim C, Wachsmuth L, Eftychi C, Lin J, Corona T, Hermance N, Zelic M, Kirsch P, Basic M, Bleich A, Kelliher M, Pasparakis M (2014) RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature 513(7516):90–94. doi:10.1038/nature13608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McQuade T, Cho Y, Chan FK (2013) Positive and negative phosphorylation regulates RIP1- and RIP3-induced programmed necrosis. Biochem J 456(3):409–415. doi:10.1042/BJ20130860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sen R, Smale ST (2010) Selectivity of the NF-{kappa}B response. Cold Spring Harb Perspect Biol 2(4):a000257. doi:10.1101/cshperspect.a000257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Schmukle AC, Walczak H (2012) No one can whistle a symphony alone—how different ubiquitin linkages cooperate to orchestrate NF-kappaB activity. J Cell Sci 125(Pt 3):549–559. doi:10.1242/jcs.091793

    Article  CAS  PubMed  Google Scholar 

  11. Berger SB, Kasparcova V, Hoffman S, Swift B, Dare L, Schaeffer M, Capriotti C, Cook M, Finger J, Hughes-Earle A, Harris PA, Kaiser WJ, Mocarski ES, Bertin J, Gough PJ (2014) Cutting Edge: RIP1 kinase activity is dispensable for normal development but is a key regulator of inflammation in SHARPIN-deficient mice. J Immunol 192(12):5476–5480. doi:10.4049/jimmunol.1400499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Polykratis A, Hermance N, Zelic M, Roderick J, Kim C, Van TM, Lee TH, Chan FK, Pasparakis M, Kelliher MA (2014) Cutting edge: RIPK1 Kinase inactive mice are viable and protected from TNF-induced necroptosis in vivo. J Immunol 193(4):1539–1543. doi:10.4049/jimmunol.1400590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Newton K, Dugger DL, Wickliffe KE, Kapoor N, de Almagro MC, Vucic D, Komuves L, Ferrando RE, French DM, Webster J, Roose-Girma M, Warming S, Dixit VM (2014) Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis. Science 343(6177):1357–1360. doi:10.1126/science.1249361

    Article  CAS  PubMed  Google Scholar 

  14. Kaiser WJ, Daley-Bauer LP, Thapa RJ, Mandal P, Berger SB, Huang C, Sundararajan A, Guo H, Roback L, Speck SH, Bertin J, Gough PJ, Balachandran S, Mocarski ES (2014) RIP1 suppresses innate immune necrotic as well as apoptotic cell death during mammalian parturition. Proc Natl Acad Sci USA 111(21):7753–7758. doi:10.1073/pnas.1401857111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dillon CP, Weinlich R, Rodriguez DA, Cripps JG, Quarato G, Gurung P, Verbist KC, Brewer TL, Llambi F, Gong YN, Janke LJ, Kelliher MA, Kanneganti TD, Green DR (2014) RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3. Cell 157(5):1189–1202. doi:10.1016/j.cell.2014.04.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rickard JA, O’Donnell JA, Evans JM, Lalaoui N, Poh AR, Rogers T, Vince JE, Lawlor KE, Ninnis RL, Anderton H, Hall C, Spall SK, Phesse TJ, Abud HE, Cengia LH, Corbin J, Mifsud S, Di Rago L, Metcalf D, Ernst M, Dewson G, Roberts AW, Alexander WS, Murphy JM, Ekert PG, Masters SL, Vaux DL, Croker BA, Gerlic M, Silke J (2014) RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis. Cell 157(5):1175–1188. doi:10.1016/j.cell.2014.04.019

    Article  CAS  PubMed  Google Scholar 

  17. Dowling JP, Nair A, Zhang J (2015) A novel function of RIP1 in postnatal development and immune homeostasis by protecting against RIP3-dependent necroptosis and FADD-mediated apoptosis. Front Cell Dev Biol 3:12. doi:10.3389/fcell.2015.00012

    Article  PubMed  PubMed Central  Google Scholar 

  18. Beg AA, Sha WC, Bronson RT, Ghosh S, Baltimore D (1995) Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kappa B. Nature 376(6536):167–170

    Article  CAS  PubMed  Google Scholar 

  19. Burkly L, Hession C, Ogata L, Reilly C, Marconi LA, Olson D, Tizard R, Cate R, Lo D (1995) Expression of relB is required for the development of thymic medulla and dendritic cells. Nature 373(6514):531–536. doi:10.1038/373531a0

    Article  CAS  PubMed  Google Scholar 

  20. Roderick JE, Hermance N, Zelic M, Simmons MJ, Polykratis A, Pasparakis M, Kelliher MA (2014) Hematopoietic RIPK1 deficiency results in bone marrow failure caused by apoptosis and RIPK3-mediated necroptosis. Proc Natl Acad Sci USA 111(40):14436–14441. doi:10.1073/pnas.1409389111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moriwaki K, Bertin J, Gough PJ, Chan FK (2015) A RIPK3-caspase 8 complex mediates atypical pro-IL-1beta processing. J Immunol 194(4):1938–1944. doi:10.4049/jimmunol.1402167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang H, Zhou X, McQuade T, Li J, Chan FK, Zhang J (2011) Functional complementation between FADD and RIP1 in embryos and lymphocytes. Nature 471(7338):373–376. doi:10.1038/nature09878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Meylan E, Burns K, Hofmann K, Blancheteau V, Martinon F, Kelliher M, Tschopp J (2004) RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat Immunol 5(5):503–507

    Article  CAS  PubMed  Google Scholar 

  24. Sun X, Lee J, Navas T, Baldwin DT, Stewart TA, Dixit VM (1999) RIP3, a novel apoptosis-inducing kinase. J Biol Chem 274(24):16871–16875

    Article  CAS  PubMed  Google Scholar 

  25. Rebsamen M, Heinz LX, Meylan E, Michallet MC, Schroder K, Hofmann K, Vazquez J, Benedict CA, Tschopp J (2009) DAI/ZBP1 recruits RIP1 and RIP3 through RIP homotypic interaction motifs to activate NF-kappaB. EMBO Rep 10(8):916–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kaiser WJ, Upton JW, Mocarski ES (2008) Receptor-interacting protein homotypic interaction motif-dependent control of NF-kappa B activation via the DNA-dependent activator of IFN regulatory factors. J Immunol 181(9):6427–6434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pazdernik NJ, Donner DB, Goebl MG, Harrington MA (1999) Mouse receptor interacting protein 3 does not contain a caspase-recruiting or a death domain but induces apoptosis and activates NF-kappaB. Mol Cell Biol 19(10):6500–6508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yu PW, Huang BC, Shen M, Quast J, Chan E, Xu X, Nolan GP, Payan DG, Luo Y (1999) Identification of RIP3, a RIP-like kinase that activates apoptosis and NFkappaB. Curr Biol 9(10):539–542

    Article  CAS  PubMed  Google Scholar 

  29. Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M, Chan FK (2009) Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137(6):1112–1123. doi:10.1016/j.cell.2009.05.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Newton K, Sun X, Dixit VM (2004) Kinase RIP3 is dispensable for normal NF-kappa Bs, signaling by the B-cell and T-cell receptors, tumor necrosis factor receptor 1, and Toll-like receptors 2 and 4. Mol Cell Biol 24(4):1464–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Allam R, Lawlor KE, Yu EC, Mildenhall AL, Moujalled DM, Lewis RS, Ke F, Mason KD, White MJ, Stacey KJ, Strasser A, O’Reilly LA, Alexander W, Kile BT, Vaux DL, Vince JE (2014) Mitochondrial apoptosis is dispensable for NLRP3 inflammasome activation but non-apoptotic caspase-8 is required for inflammasome priming. EMBO Rep 15(9):982–990. doi:10.15252/embr.201438463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. McComb S, Cessford E, Alturki NA, Joseph J, Shutinoski B, Startek JB, Gamero AM, Mossman KL, Sad S (2014) Type-I interferon signaling through ISGF3 complex is required for sustained Rip3 activation and necroptosis in macrophages. Proc Natl Acad Sci USA 111(31):E3206–E3213. doi:10.1073/pnas.1407068111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Moriwaki K, Balaji S, McQuade T, Malhotra N, Kang J, Chan FK (2014) The necroptosis adaptor RIPK3 promotes injury-induced cytokine expression and tissue repair. Immunity 41(4):567–578. doi:10.1016/j.immuni.2014.09.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yoon S, Bogdanov K, Kovalenko A, Wallach D (2015) Necroptosis is preceded by nuclear translocation of the signaling proteins that induce it. Cell Death Differ. doi:10.1038/cdd.2015.92

    PubMed Central  Google Scholar 

  35. Yin B, Xu Y, Wei RL, He F, Luo BY, Wang JY (2015) Inhibition of receptor-interacting protein 3 upregulation and nuclear translocation involved in Necrostatin-1 protection against hippocampal neuronal programmed necrosis induced by ischemia/reperfusion injury. Brain Res 1609:63–71. doi:10.1016/j.brainres.2015.03.024

    Article  CAS  PubMed  Google Scholar 

  36. Yang Y, Ma J, Chen Y, Wu M (2004) Nucleocytoplasmic shuttling of receptor-interacting protein 3 (RIP3): identification of novel nuclear export and import signals in RIP3. J Biol Chem 279(37):38820–38829. doi:10.1074/jbc.M401663200

    Article  CAS  PubMed  Google Scholar 

  37. Li M, Feng S, Wu M (2008) Multiple roles for nuclear localization signal (NLS, aa 442-472) of receptor interacting protein 3 (RIP3). Biochem Biophys Res Commun 372(4):850–855. doi:10.1016/j.bbrc.2008.05.144

    Article  CAS  PubMed  Google Scholar 

  38. Li D, Xu T, Cao Y, Wang H, Li L, Chen S, Wang X, Shen Z (2015) A cytosolic heat shock protein 90 and cochaperone CDC37 complex is required for RIP3 activation during necroptosis. Proc Natl Acad Sci USA 112(16):5017–5022. doi:10.1073/pnas.1505244112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Park SY, Shim JH, Chae JI, Cho YS (2015) Heat shock protein 90 inhibitor regulates necroptotic cell death via down-regulation of receptor interacting proteins. Pharmazie 70(3):193–198

    CAS  PubMed  Google Scholar 

  40. Lee KH, Jang AH, Yoo CG (2015) 17-Allylamino-17-Demethoxygeldanamycin and the Enhancement of PS-341-Induced Lung Cancer Cell Death by Blocking the NF-kappaB and PI3K/Akt Pathways. Am J Respir Cell Mol Biol 53(3):412–421. doi:10.1165/rcmb.2014-0186OC

    Article  CAS  PubMed  Google Scholar 

  41. Trepel J, Mollapour M, Giaccone G, Neckers L (2010) Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 10(8):537–549. doi:10.1038/nrc2887

    Article  CAS  PubMed  Google Scholar 

  42. Rathinam VA, Vanaja SK, Fitzgerald KA (2012) Regulation of inflammasome signaling. Nat Immunol 13(4):333–342. doi:10.1038/ni.2237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lamkanfi M, Dixit VM (2014) Mechanisms and functions of inflammasomes. Cell 157(5):1013–1022. doi:10.1016/j.cell.2014.04.007

    Article  CAS  PubMed  Google Scholar 

  44. He Y, Franchi L, Nunez G (2013) TLR agonists stimulate Nlrp3-dependent IL-1beta production independently of the purinergic P2X7 receptor in dendritic cells and in vivo. J Immunol 190(1):334–339. doi:10.4049/jimmunol.1202737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Feoktistova M, Geserick P, Kellert B, Dimitrova DP, Langlais C, Hupe M, Cain K, MacFarlane M, Hacker G, Leverkus M (2011) cIAPs block Ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol Cell 43(3):449–463. doi:10.1016/j.molcel.2011.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tenev T, Bianchi K, Darding M, Broemer M, Langlais C, Wallberg F, Zachariou A, Lopez J, MacFarlane M, Cain K, Meier P (2011) The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol Cell 43(3):432–448. doi:10.1016/j.molcel.2011.06.006

    Article  CAS  PubMed  Google Scholar 

  47. Maelfait J, Vercammen E, Janssens S, Schotte P, Haegman M, Magez S, Beyaert R (2008) Stimulation of Toll-like receptor 3 and 4 induces interleukin-1beta maturation by caspase-8. J Exp Med 205(9):1967–1973. doi:10.1084/jem.20071632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yabal M, Muller N, Adler H, Knies N, Gross CJ, Damgaard RB, Kanegane H, Ringelhan M, Kaufmann T, Heikenwalder M, Strasser A, Gross O, Ruland J, Peschel C, Gyrd-Hansen M, Jost PJ (2014) XIAP restricts TNF- and RIP3-dependent cell death and inflammasome activation. Cell reports 7(6):1796–1808. doi:10.1016/j.celrep.2014.05.008

    Article  CAS  PubMed  Google Scholar 

  49. Vince JE, Wong WW, Gentle I, Lawlor KE, Allam R, O’Reilly L, Mason K, Gross O, Ma S, Guarda G, Anderton H, Castillo R, Hacker G, Silke J, Tschopp J (2012) Inhibitor of apoptosis proteins limit RIP3 kinase-dependent interleukin-1 activation. Immunity 36(2):215–227. doi:10.1016/j.immuni.2012.01.012

    Article  CAS  PubMed  Google Scholar 

  50. Lawlor KE, Khan N, Mildenhall A, Gerlic M, Croker BA, D’Cruz AA, Hall C, Kaur Spall S, Anderton H, Masters SL, Rashidi M, Wicks IP, Alexander WS, Mitsuuchi Y, Benetatos CA, Condon SM, Wong WW, Silke J, Vaux DL, Vince JE (2015) RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL. Nat Commun 6:6282. doi:10.1038/ncomms7282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kang S, Fernandes-Alnemri T, Rogers C, Mayes L, Wang Y, Dillon C, Roback L, Kaiser W, Oberst A, Sagara J, Fitzgerald KA, Green DR, Zhang J, Mocarski ES, Alnemri ES (2015) Caspase-8 scaffolding function and MLKL regulate NLRP3 inflammasome activation downstream of TLR3. Nat Commun 6:7515. doi:10.1038/ncomms8515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang X, Jiang W, Yan Y, Gong T, Han J, Tian Z, Zhou R (2014) RNA viruses promote activation of the NLRP3 inflammasome through a RIP1-RIP3-DRP1 signaling pathway. Nat Immunol 15(12):1126–1133. doi:10.1038/ni.3015

    Article  CAS  PubMed  Google Scholar 

  53. Kang TB, Yang SH, Toth B, Kovalenko A, Wallach D (2013) Caspase-8 blocks kinase RIPK3-mediated activation of the NLRP3 inflammasome. Immunity 38(1):27–40. doi:10.1016/j.immuni.2012.09.015

    Article  CAS  PubMed  Google Scholar 

  54. Young JA, He TH, Reizis B, Winoto A (2013) Commensal microbiota are required for systemic inflammation triggered by necrotic dendritic cells. Cell Rep 3(6):1932–1944. doi:10.1016/j.celrep.2013.04.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gurung P, Anand PK, Malireddi RK, Vande Walle L, Van Opdenbosch N, Dillon CP, Weinlich R, Green DR, Lamkanfi M, Kanneganti TD (2014) FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. J Immunol 192(4):1835–1846. doi:10.4049/jimmunol.1302839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mandal P, Berger SB, Pillay S, Moriwaki K, Huang C, Guo H, Lich JD, Finger J, Kasparcova V, Votta B, Ouellette M, King BW, Wisnoski D, Lakdawala AS, DeMartino MP, Casillas LN, Haile PA, Sehon CA, Marquis RW, Upton J, Daley-Bauer LP, Roback L, Ramia N, Dovey CM, Carette JE, Chan FK, Bertin J, Gough PJ, Mocarski ES, Kaiser WJ (2014) RIP3 Induces Apoptosis Independent of Pronecrotic Kinase Activity. Mol Cell 56(4):481–495. doi:10.1016/j.molcel.2014.10.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J (2010) Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 11(2):136–140. doi:10.1038/ni.1831

    Article  CAS  PubMed  Google Scholar 

  58. Sun X, Yin J, Starovasnik MA, Fairbrother WJ, Dixit VM (2002) Identification of a novel homotypic interaction motif required for the phosphorylation of receptor-interacting protein (RIP) by RIP3. J Biol Chem 277(11):9505–9511. doi:10.1074/jbc.M109488200

    Article  CAS  PubMed  Google Scholar 

  59. Guo H, Omoto S, Harris PA, Finger JN, Bertin J, Gough PJ, Kaiser WJ, Mocarski ES (2015) Herpes simplex virus suppresses necroptosis in human cells. Cell Host Microbe 17(2):243–251. doi:10.1016/j.chom.2015.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Huang Z, Wu SQ, Liang Y, Zhou X, Chen W, Li L, Wu J, Zhuang Q, Chen C, Li J, Zhong CQ, Xia W, Zhou R, Zheng C, Han J (2015) RIP1/RIP3 binding to HSV-1 ICP6 initiates necroptosis to restrict virus propagation in mice. Cell Host Microbe 17(2):229–242. doi:10.1016/j.chom.2015.01.002

    Article  CAS  PubMed  Google Scholar 

  61. Wang X, Li Y, Liu S, Yu X, Li L, Shi C, He W, Li J, Xu L, Hu Z, Yu L, Yang Z, Chen Q, Ge L, Zhang Z, Zhou B, Jiang X, Chen S, He S (2014) Direct activation of RIP3/MLKL-dependent necrosis by herpes simplex virus 1 (HSV-1) protein ICP6 triggers host antiviral defense. Proc Natl Acad Sci USA 111(43):15438–15443. doi:10.1073/pnas.1412767111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kleino A, Silverman N (2014) The Drosophila IMD pathway in the activation of the humoral immune response. Dev Comp Immunol 42(1):25–35. doi:10.1016/j.dci.2013.05.014

    Article  CAS  PubMed  Google Scholar 

  63. Kaneko T, Yano T, Aggarwal K, Lim JH, Ueda K, Oshima Y, Peach C, Erturk-Hasdemir D, Goldman WE, Oh BH, Kurata S, Silverman N (2006) PGRP-LC and PGRP-LE have essential yet distinct functions in the drosophila immune response to monomeric DAP-type peptidoglycan. Nat Immunol 7(7):715–723

    Article  CAS  PubMed  Google Scholar 

  64. Chan FK, Luz NF, Moriwaki K (2015) Programmed necrosis in the cross talk of cell death and inflammation. Ann Rev Immunol 33:79–106. doi:10.1146/annurev-immunol-032414-112248

    Article  CAS  Google Scholar 

  65. Li J, McQuade T, Siemer AB, Napetschnig J, Moriwaki K, Hsiao YS, Damko E, Moquin D, Walz T, McDermott A, Chan FK, Wu H (2012) The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell 150(2):339–350. doi:10.1016/j.cell.2012.06.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Moujalled DM, Cook WD, Okamoto T, Murphy J, Lawlor KE, Vince JE, Vaux DL (2013) TNF can activate RIPK3 and cause programmed necrosis in the absence of RIPK1. Cell Death Dis 4:e465. doi:10.1038/cddis.2012.201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kearney CJ, Cullen SP, Clancy D, Martin SJ (2014) RIPK1 can function as an inhibitor rather than an initiator of RIPK3-dependent necroptosis. FEBS J 281(21):4921–4934. doi:10.1111/febs.13034

    Article  CAS  PubMed  Google Scholar 

  68. Orozco S, Yatim N, Werner MR, Tran H, Gunja SY, Tait SW, Albert ML, Green DR, Oberst A (2014) RIPK1 both positively and negatively regulates RIPK3 oligomerization and necroptosis. Cell Death Differ 21(10):1511–1521. doi:10.1038/cdd.2014.76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Welz PS, Wullaert A, Vlantis K, Kondylis V, Fernandez-Majada V, Ermolaeva M, Kirsch P, Sterner-Kock A, van Loo G, Pasparakis M (2011) FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation. Nature 477(7364):330–334. doi:10.1038/nature10273

    Article  CAS  PubMed  Google Scholar 

  70. Bonnet MC, Preukschat D, Welz PS, van Loo G, Ermolaeva MA, Bloch W, Haase I, Pasparakis M (2011) The adaptor protein FADD protects epidermal keratinocytes from necroptosis in vivo and prevents skin inflammation. Immunity 35(4):572–582. doi:10.1016/j.immuni.2011.08.014

    Article  CAS  PubMed  Google Scholar 

  71. Gunther C, Martini E, Wittkopf N, Amann K, Weigmann B, Neumann H, Waldner MJ, Hedrick SM, Tenzer S, Neurath MF, Becker C (2011) Caspase-8 regulates TNF-alpha-induced epithelial necroptosis and terminal ileitis. Nature 477(7364):335–339. doi:10.1038/nature10400

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Wong WW, Vince JE, Lalaoui N, Lawlor KE, Chau D, Bankovacki A, Anderton H, Metcalf D, O’Reilly L, Jost PJ, Murphy JM, Alexander WS, Strasser A, Vaux DL, Silke J (2014) cIAPs and XIAP regulate myelopoiesis through cytokine production in an RIPK1- and RIPK3-dependent manner. Blood 123(16):2562–2572. doi:10.1182/blood-2013-06-510743

    Article  CAS  PubMed  Google Scholar 

  73. Wallach D, Kovalenko A, Kang TB (2011) ‘Necrosome’-induced inflammation: must cells die for it? Trends in immunology 32(11):505–509. doi:10.1016/j.it.2011.07.004

    Article  CAS  PubMed  Google Scholar 

  74. Upton JW, Chan FK (2014) Staying alive: cell death in antiviral immunity. Mol Cell 54(2):273–280. doi:10.1016/j.molcel.2014.01.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Upton JW, Kaiser WJ, Mocarski ES (2010) Virus inhibition of RIP3-dependent necrosis. Cell Host Microbe 7(4):302–313. doi:10.1016/j.chom.2010.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Upton JW, Kaiser WJ, Mocarski ES (2012) DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe 11(3):290–297. doi:10.1016/j.chom.2012.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chan FK, Shisler J, Bixby JG, Felices M, Zheng L, Appel M, Orenstein J, Moss B, Lenardo MJ (2003) A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses. J Biol Chem 278(51):51613–51621. doi:10.1074/jbc.M305633200

    Article  CAS  PubMed  Google Scholar 

  78. Challa S, Woelfel M, Guildford M, Moquin D, Chan FK (2010) Viral cell death inhibitor MC159 enhances innate immunity against vaccinia virus infection. J Virol 84(20):10467–10476. doi:10.1128/JVI.00983-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. O’Donnell MA, Hase H, Legarda D, Ting AT (2012) NEMO inhibits programmed necrosis in an NFkappaB-independent manner by restraining RIP1. Plos One 7(7):e41238. doi:10.1371/journal.pone.0041238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Petersen SL, Chen TT, Lawrence DA, Marsters SA, Gonzalvez F, Ashkenazi A (2015) TRAF2 is a biologically important necroptosis suppressor. Cell Death Differ. doi:10.1038/cdd.2015.35

    PubMed  Google Scholar 

  81. Lamothe B, Lai Y, Xie M, Schneider MD, Darnay BG (2013) TAK1 is essential for osteoclast differentiation and is an important modulator of cell death by apoptosis and necroptosis. Mol Cell Biol 33(3):582–595. doi:10.1128/MCB.01225-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dondelinger Y, Jouan-Lanhouet S, Divert T, Theatre E, Bertin J, Gough PJ, Giansanti P, Heck AJ, Dejardin E, Vandenabeele P, Bertrand MJ (2015) NF-kappaB-independent role of IKKalpha/IKKbeta in preventing RIPK1 kinase-dependent apoptotic and necroptotic cell death during TNF signaling. Mol Cell. doi:10.1016/j.molcel.2015.07.032

    PubMed  Google Scholar 

  83. Dondelinger Y, Jouan-Lanhouet S, Divert T, Theatre E, Bertin J, Gough PJ, Giansanti P, Heck AJ, Dejardin E, Vandenabeele P, Bertrand MJ (2015) NF-kappaB-independent role of IKKalpha/IKKbeta in preventing RIPK1 kinase-dependent apoptotic and necroptotic cell death during TNF signaling. Mol Cell 60(1):63–76. doi:10.1016/j.molcel.2015.07.032

    Article  CAS  PubMed  Google Scholar 

  84. Kaiser WJ, Upton JW, Long AB, Livingston-Rosanoff D, Daley-Bauer LP, Hakem R, Caspary T, Mocarski ES (2011) RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 471(7338):368–372. doi:10.1038/nature09857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P, Pop C, Hakem R, Salvesen GS, Green DR (2011) Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 471(7338):363–367. doi:10.1038/nature09852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lu JV, Weist BM, van Raam BJ, Marro BS, Nguyen LV, Srinivas P, Bell BD, Luhrs KA, Lane TE, Salvesen GS, Walsh CM (2011) Complementary roles of Fas-associated death domain (FADD) and receptor interacting protein kinase-3 (RIPK3) in T-cell homeostasis and antiviral immunity. Proc Natl Acad Sci USA 108(37):15312–15317. doi:10.1073/pnas.1102779108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ch’en IL, Tsau JS, Molkentin JD, Komatsu M, Hedrick SM (2011) Mechanisms of necroptosis in T cells. J Exp Med 208(4):633–641. doi:10.1084/jem.20110251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Kearney CJ, Cullen SP, Tynan GA, Henry CM, Clancy D, Lavelle EC, Martin SJ (2015) Necroptosis suppresses inflammation via termination of TNF- or LPS-induced cytokine and chemokine production. Cell Death Differ 22(8):1313–1327. doi:10.1038/cdd.2014.222

    Article  CAS  PubMed  Google Scholar 

  89. Danial NN, Gramm CF, Scorrano L, Zhang CY, Krauss S, Ranger AM, Datta SR, Greenberg ME, Licklider LJ, Lowell BB, Gygi SP, Korsmeyer SJ (2003) BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature 424(6951):952–956. doi:10.1038/nature01825

    Article  CAS  PubMed  Google Scholar 

  90. Pinton P, Rizzuto R (2006) Bcl-2 and Ca2+ homeostasis in the endoplasmic reticulum. Cell Death Differ 13(8):1409–1418. doi:10.1038/sj.cdd.4401960

    Article  CAS  PubMed  Google Scholar 

  91. Levine B, Sinha S, Kroemer G (2008) Bcl-2 family members: dual regulators of apoptosis and autophagy. Autophagy 4(5):600–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Degterev A, Maki JL, Yuan J (2013) Activity and specificity of necrostatin-1, small-molecule inhibitor of RIP1 kinase. Cell Death Differ 20(2):366. doi:10.1038/cdd.2012.133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sun L, Wang H, Wang Z, He S, Chen S, Liao D, Wang L, Yan J, Liu W, Lei X, Wang X (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148(1–2):213–227. doi:10.1016/j.cell.2011.11.031

    Article  CAS  PubMed  Google Scholar 

  94. Chen W, Zhou Z, Li L, Zhong CQ, Zheng X, Wu X, Zhang Y, Ma H, Huang D, Li W, Xia Z, Han J (2013) Diverse sequence determinants control human and mouse receptor interacting protein 3 (RIP3) and mixed lineage kinase domain-like (MLKL) interaction in necroptotic signaling. J Biol Chem 288(23):16247–16261. doi:10.1074/jbc.M112.435545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Rodriguez DA, Weinlich R, Brown S, Guy C, Fitzgerald P, Dillon CP, Oberst A, Quarato G, Low J, Cripps JG, Chen T, Green DR (2015) Characterization of RIPK3-mediated phosphorylation of the activation loop of MLKL during necroptosis. Cell Death Differ. doi:10.1038/cdd.2015.70

    Google Scholar 

  96. Wang H, Sun L, Su L, Rizo J, Liu L, Wang LF, Wang FS, Wang X (2014) Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell 54(1):133–146. doi:10.1016/j.molcel.2014.03.003

    Article  CAS  PubMed  Google Scholar 

  97. Meng L, Jin W, Wang X (2015) RIP3-mediated necrotic cell death accelerates systematic inflammation and mortality. Proc Natl Acad Sci USA 112(35):11007–11012. doi:10.1073/pnas.1514730112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X, Abbott D, Cuny GD, Yuan C, Wagner G, Hedrick SM, Gerber SA, Lugovskoy A, Yuan J (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4(5):313–321

    Article  CAS  PubMed  Google Scholar 

  99. Kaiser WJ, Sridharan H, Huang C, Mandal P, Upton JW, Gough PJ, Sehon CA, Marquis RW, Bertin J, Mocarski ES (2013) Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J Biol Chem 288(43):31268–31279. doi:10.1074/jbc.M113.462341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fauster A, Rebsamen M, Huber KV, Bigenzahn JW, Stukalov A, Lardeau CH, Scorzoni S, Bruckner M, Gridling M, Parapatics K, Colinge J, Bennett KL, Kubicek S, Krautwald S, Linkermann A, Superti-Furga G (2015) A cellular screen identifies ponatinib and pazopanib as inhibitors of necroptosis. Cell Death Dis 6:e1767. doi:10.1038/cddis.2015.130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Najjar M, Suebsuwong C, Ray SS, Thapa RJ, Maki JL, Nogusa S, Shah S, Saleh D, Gough PJ, Bertin J, Yuan J, Balachandran S, Cuny GD, Degterev A (2015) Structure guided design of potent and selective ponatinib-based hybrid inhibitors for RIPK1. Cell Rep 10(11):1850–1860. doi:10.1016/j.celrep.2015.02.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chen X, Li W, Ren J, Huang D, He WT, Song Y, Yang C, Li W, Zheng X, Chen P, Han J (2014) Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Res 24(1):105–121. doi:10.1038/cr.2013.171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is supported by NIH grant AI119030. F. K. M. C. is supported by a Senior Research Award from the Crohn’s & Colitis Foundation of America. K. M. was supported by fellowships from the Uehara Memorial Foundation and the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis Ka-Ming Chan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moriwaki, K., Chan, F.KM. Necroptosis-independent signaling by the RIP kinases in inflammation. Cell. Mol. Life Sci. 73, 2325–2334 (2016). https://doi.org/10.1007/s00018-016-2203-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2203-4

Keywords

Navigation