Skip to main content

Advertisement

Log in

Dendritic cells as therapeutic targets in neuroinflammation

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

An Erratum to this article was published on 22 April 2016

Abstract

Multiple sclerosis (MS) is the most common chronic inflammatory demyelinating disorder of the central nervous system characterized by infiltration of immune cells and progressive damage to myelin sheaths and neurons. There is still no cure for the disease, but drug regimens can reduce the frequency of relapses and slightly delay progression. Myeloid cells or antigen-presenting cells (APCs) such as dendritic cells (DC), macrophages, and resident microglia, are key players in both mediating immune responses and inducing immune tolerance. Mounting evidence indicates a contribution of these myeloid cells to the pathogenesis of multiple sclerosis and to the effects of treatment, the understanding of which might provide strategies for more potent novel therapeutic interventions. Here, we review recent insights into the role of APCs, with specific focus on DCs in the modulation of neuroinflammation in MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG (2000) Multiple sclerosis. N Engl J Med 343(13):938–952. doi:10.1056/NEJM200009283431307

    Article  CAS  PubMed  Google Scholar 

  2. International Multiple Sclerosis Genetics Consortium; Beecham AH, Patsopoulos NA, Xifara DK, Davis MF, Kemppinen A, Cotsapas C, Shah TS, Spencer C, Booth D, Goris A, Oturai A, Saarela J, Fontaine B, Hemmer B, Martin C, Zipp F, D’Alfonso S, Martinelli-Boneschi F, Taylor B, Harbo HF, Kockum I, Hillert J, Olsson T, Ban M, Oksenberg JR, Hintzen R, Barcellos LF, Wellcome Trust Case Control C, International IBDGC, Agliardi C, Alfredsson L, Alizadeh M, Anderson C, Andrews R, Sondergaard HB, Baker A, Band G, Baranzini SE, Barizzone N, Barrett J, Bellenguez C, Bergamaschi L, Bernardinelli L, Berthele A, Biberacher V, Binder TM, Blackburn H, Bomfim IL, Brambilla P, Broadley S, Brochet B, Brundin L, Buck D, Butzkueven H, Caillier SJ, Camu W, Carpentier W, Cavalla P, Celius EG, Coman I, Comi G, Corrado L, Cosemans L, Cournu-Rebeix I, Cree BA, Cusi D, Damotte V, Defer G, Delgado SR, Deloukas P, di Sapio A, Dilthey AT, Donnelly P, Dubois B, Duddy M, Edkins S, Elovaara I, Esposito F, Evangelou N, Fiddes B, Field J, Franke A, Freeman C, Frohlich IY, Galimberti D, Gieger C, Gourraud PA, Graetz C, Graham A, Grummel V, Guaschino C, Hadjixenofontos A, Hakonarson H, Halfpenny C, Hall G, Hall P, Hamsten A, Harley J, Harrower T, Hawkins C, Hellenthal G, Hillier C, Hobart J, Hoshi M, Hunt SE, Jagodic M, Jelcic I, Jochim A, Kendall B, Kermode A, Kilpatrick T, Koivisto K, Konidari I, Korn T, Kronsbein H, Langford C, Larsson M, Lathrop M, Lebrun-Frenay C, Lechner-Scott J, Lee MH, Leone MA, Leppa V, Liberatore G, Lie BA, Lill CM, Linden M, Link J, Luessi F, Lycke J, Macciardi F, Mannisto S, Manrique CP, Martin R, Martinelli V, Mason D, Mazibrada G, McCabe C, Mero IL, Mescheriakova J, Moutsianas L, Myhr KM, Nagels G, Nicholas R, Nilsson P, Piehl F, Pirinen M, Price SE, Quach H, Reunanen M, Robberecht W, Robertson NP, Rodegher M, Rog D, Salvetti M, Schnetz-Boutaud NC, Sellebjerg F, Selter RC, Schaefer C, Shaunak S, Shen L, Shields S, Siffrin V, Slee M, Sorensen PS, Sorosina M, Sospedra M, Spurkland A, Strange A, Sundqvist E, Thijs V, Thorpe J, Ticca A, Tienari P, van Duijn C, Visser EM, Vucic S, Westerlind H, Wiley JS, Wilkins A, Wilson JF, Winkelmann J, Zajicek J, Zindler E, Haines JL, Pericak-Vance MA, Ivinson AJ, Stewart G, Hafler D, Hauser SL, Compston A, McVean G, De Jager P, Sawcer SJ, McCauley JL (2013) Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat Genet 45(11):1353–1360. doi:10.1038/ng.2770

  3. International Multiple Sclerosis Genetics Consortium; Wellcome Trust Case Control C, Sawcer S, Hellenthal G, Pirinen M, Spencer CC, Patsopoulos NA, Moutsianas L, Dilthey A, Su Z, Freeman C, Hunt SE, Edkins S, Gray E, Booth DR, Potter SC, Goris A, Band G, Oturai AB, Strange A, Saarela J, Bellenguez C, Fontaine B, Gillman M, Hemmer B, Gwilliam R, Zipp F, Jayakumar A, Martin R, Leslie S, Hawkins S, Giannoulatou E, D’Alfonso S, Blackburn H, Martinelli Boneschi F, Liddle J, Harbo HF, Perez ML, Spurkland A, Waller MJ, Mycko MP, Ricketts M, Comabella M, Hammond N, Kockum I, McCann OT, Ban M, Whittaker P, Kemppinen A, Weston P, Hawkins C, Widaa S, Zajicek J, Dronov S, Robertson N, Bumpstead SJ, Barcellos LF, Ravindrarajah R, Abraham R, Alfredsson L, Ardlie K, Aubin C, Baker A, Baker K, Baranzini SE, Bergamaschi L, Bergamaschi R, Bernstein A, Berthele A, Boggild M, Bradfield JP, Brassat D, Broadley SA, Buck D, Butzkueven H, Capra R, Carroll WM, Cavalla P, Celius EG, Cepok S, Chiavacci R, Clerget-Darpoux F, Clysters K, Comi G, Cossburn M, Cournu-Rebeix I, Cox MB, Cozen W, Cree BA, Cross AH, Cusi D, Daly MJ, Davis E, de Bakker PI, Debouverie M, D’Hooghe M B, Dixon K, Dobosi R, Dubois B, Ellinghaus D, Elovaara I, Esposito F, Fontenille C, Foote S, Franke A, Galimberti D, Ghezzi A, Glessner J, Gomez R, Gout O, Graham C, Grant SF, Guerini FR, Hakonarson H, Hall P, Hamsten A, Hartung HP, Heard RN, Heath S, Hobart J, Hoshi M, Infante-Duarte C, Ingram G, Ingram W, Islam T, Jagodic M, Kabesch M, Kermode AG, Kilpatrick TJ, Kim C, Klopp N, Koivisto K, Larsson M, Lathrop M, Lechner-Scott JS, Leone MA, Leppa V, Liljedahl U, Bomfim IL, Lincoln RR, Link J, Liu J, Lorentzen AR, Lupoli S, Macciardi F, Mack T, Marriott M, Martinelli V, Mason D, McCauley JL, Mentch F, Mero IL, Mihalova T, Montalban X, Mottershead J, Myhr KM, Naldi P, Ollier W, Page A, Palotie A, Pelletier J, Piccio L, Pickersgill T, Piehl F, Pobywajlo S, Quach HL, Ramsay PP, Reunanen M, Reynolds R, Rioux JD, Rodegher M, Roesner S, Rubio JP, Ruckert IM, Salvetti M, Salvi E, Santaniello A, Schaefer CA, Schreiber S, Schulze C, Scott RJ, Sellebjerg F, Selmaj KW, Sexton D, Shen L, Simms-Acuna B, Skidmore S, Sleiman PM, Smestad C, Sorensen PS, Sondergaard HB, Stankovich J, Strange RC, Sulonen AM, Sundqvist E, Syvanen AC, Taddeo F, Taylor B, Blackwell JM, Tienari P, Bramon E, Tourbah A, Brown MA, Tronczynska E, Casas JP, Tubridy N, Corvin A, Vickery J, Jankowski J, Villoslada P, Markus HS, Wang K, Mathew CG, Wason J, Palmer CN, Wichmann HE, Plomin R, Willoughby E, Rautanen A, Winkelmann J, Wittig M, Trembath RC, Yaouanq J, Viswanathan AC, Zhang H, Wood NW, Zuvich R, Deloukas P, Langford C, Duncanson A, Oksenberg JR, Pericak-Vance MA, Haines JL, Olsson T, Hillert J, Ivinson AJ, De Jager PL, Peltonen L, Stewart GJ, Hafler DA, Hauser SL, McVean G, Donnelly P, Compston A (2011) Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476(7359):214–219. doi:10.1038/nature10251

  4. Lill CM, Luessi F, Alcina A, Sokolova EA, Ugidos N, de la Hera B, Guillot-Noel L, Malhotra S, Reinthaler E, Schjeide BM, Mescheriakova JY, Mashychev A, Wohlers I, Akkad DA, Aktas O, Alloza I, Antiguedad A, Arroyo R, Astobiza I, Blaschke P, Boyko AN, Buttmann M, Chan A, Dorner T, Epplen JT, Favorova OO, Fedetz M, Fernandez O, Garcia-Martinez A, Gerdes LA, Graetz C, Hartung HP, Hoffjan S, Izquierdo G, Korobko DS, Kroner A, Kubisch C, Kumpfel T, Leyva L, Lohse P, Malkova NA, Montalban X, Popova EV, Rieckmann P, Rozhdestvenskii AS, Schmied C, Smagina IV, Tsareva EY, Winkelmann A, Zettl UK, Binder H, Cournu-Rebeix I, Hintzen R, Zimprich A, Comabella M, Fontaine B, Urcelay E, Vandenbroeck K, Filipenko M, Matesanz F, Zipp F, Bertram L (2015) Genome-wide significant association with seven novel multiple sclerosis risk loci. J Med Genet. doi:10.1136/jmedgenet-2015-103442

    PubMed  Google Scholar 

  5. Levin LI, Munger KL, O’Reilly EJ, Falk KI, Ascherio A (2010) Primary infection with the Epstein-Barr virus and risk of multiple sclerosis. Ann Neurol 67(6):824–830. doi:10.1002/ana.21978

    PubMed  PubMed Central  Google Scholar 

  6. Mokry LE, Ross S, Ahmad OS, Forgetta V, Smith GD, Leong A, Greenwood CM, Thanassoulis G, Richards JB (2015) Vitamin D and risk of multiple sclerosis: a Mendelian randomization study. PLoS Med 12(8):e1001866. doi:10.1371/journal.pmed.1001866

    Article  PubMed  PubMed Central  Google Scholar 

  7. Berer K, Mues M, Koutrolos M, Rasbi ZA, Boziki M, Johner C, Wekerle H, Krishnamoorthy G (2011) Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 479(7374):538–541. doi:10.1038/nature10554

    Article  CAS  PubMed  Google Scholar 

  8. Haghikia A, Jorg S, Duscha A, Berg J, Manzel A, Waschbisch A, Hammer A, Lee DH, May C, Wilck N, Balogh A, Ostermann AI, Schebb NH, Akkad DA, Grohme DA, Kleinewietfeld M, Kempa S, Thone J, Demir S, Muller DN, Gold R, Linker RA (2015) Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity 43(4):817–829. doi:10.1016/j.immuni.2015.09.007

    Article  CAS  PubMed  Google Scholar 

  9. Liblau RS, Gonzalez-Dunia D, Wiendl H, Zipp F (2013) Neurons as targets for T cells in the nervous system. Trends Neurosci 36(6):315–324. doi:10.1016/j.tins.2013.01.008

    Article  CAS  PubMed  Google Scholar 

  10. Henderson AP, Barnett MH, Parratt JD, Prineas JW (2009) Multiple sclerosis: distribution of inflammatory cells in newly forming lesions. Ann Neurol 66(6):739–753. doi:10.1002/ana.21800

    Article  PubMed  Google Scholar 

  11. Siffrin V, Brandt AU, Herz J, Zipp F (2007) New insights into adaptive immunity in chronic neuroinflammation. Adv Immunol 96:1–40. doi:10.1016/S0065-2776(07)96001-0

    Article  CAS  PubMed  Google Scholar 

  12. Luessi F, Kuhlmann T, Zipp F (2014) Remyelinating strategies in multiple sclerosis. Expert Rev Neurother 14(11):1315–1334. doi:10.1586/14737175.2014.969241

    Article  CAS  PubMed  Google Scholar 

  13. Luessi F, Siffrin V, Zipp F (2012) Neurodegeneration in multiple sclerosis: novel treatment strategies. Expert Rev Neurother 12(9):1061–1076. doi:10.1586/ern.12.59 (quiz 1077)

    Article  CAS  PubMed  Google Scholar 

  14. Steinman RM (2012) Decisions about dendritic cells: past, present, and future. Annu Rev Immunol 30:1–22. doi:10.1146/annurev-immunol-100311-102839

    Article  CAS  PubMed  Google Scholar 

  15. Thery C, Amigorena S (2001) The cell biology of antigen presentation in dendritic cells. Curr Opin Immunol 13(1):45–51

    Article  CAS  PubMed  Google Scholar 

  16. Steinman RM, Nussenzweig MC (2002) Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci USA 99(1):351–358. doi:10.1073/pnas.231606698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Prodinger C, Bunse J, Kruger M, Schiefenhovel F, Brandt C, Laman JD, Greter M, Immig K, Heppner F, Becher B, Bechmann I (2011) CD11c-expressing cells reside in the juxtavascular parenchyma and extend processes into the glia limitans of the mouse nervous system. Acta Neuropathol 121(4):445–458. doi:10.1007/s00401-010-0774-y

    Article  CAS  PubMed  Google Scholar 

  18. Hanly A, Petito CK (1998) HLA-DR-positive dendritic cells of the normal human choroid plexus: a potential reservoir of HIV in the central nervous system. Hum Pathol 29(1):88–93

    Article  CAS  PubMed  Google Scholar 

  19. Serot JM, Foliguet B, Bene MC, Faure GC (1997) Ultrastructural and immunohistological evidence for dendritic-like cells within human choroid plexus epithelium. Neuroreport 8(8):1995–1998

    Article  CAS  PubMed  Google Scholar 

  20. Pashenkov M, Huang YM, Kostulas V, Haglund M, Soderstrom M, Link H (2001) Two subsets of dendritic cells are present in human cerebrospinal fluid. Brain 124(Pt 3):480–492

    Article  CAS  PubMed  Google Scholar 

  21. Serafini B, Columba-Cabezas S, Di Rosa F, Aloisi F (2000) Intracerebral recruitment and maturation of dendritic cells in the onset and progression of experimental autoimmune encephalomyelitis. Am J Pathol 157(6):1991–2002. doi:10.1016/S0002-9440(10)64838-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Matyszak MK, Perry VH (1996) The potential role of dendritic cells in immune-mediated inflammatory diseases in the central nervous system. Neuroscience 74(2):599–608

    Article  CAS  PubMed  Google Scholar 

  23. Greter M, Heppner FL, Lemos MP, Odermatt BM, Goebels N, Laufer T, Noelle RJ, Becher B (2005) Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat Med 11(3):328–334. doi:10.1038/nm1197

    Article  CAS  PubMed  Google Scholar 

  24. Goldmann T, Wieghofer P, Muller PF, Wolf Y, Varol D, Yona S, Brendecke SM, Kierdorf K, Staszewski O, Datta M, Luedde T, Heikenwalder M, Jung S, Prinz M (2013) A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nat Neurosci 16(11):1618–1626. doi:10.1038/nn.3531

    Article  CAS  PubMed  Google Scholar 

  25. Rawji KS, Yong VW (2013) The benefits and detriments of macrophages/microglia in models of multiple sclerosis. Clin Dev Immunol 2013:948976. doi:10.1155/2013/948976

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Abourbeh G, Theze B, Maroy R, Dubois A, Brulon V, Fontyn Y, Dolle F, Tavitian B, Boisgard R (2012) Imaging microglial/macrophage activation in spinal cords of experimental autoimmune encephalomyelitis rats by positron emission tomography using the mitochondrial 18 kDa translocator protein radioligand [(1)(8)F]DPA-714. J Neurosci 32(17):5728–5736. doi:10.1523/JNEUROSCI.2900-11.2012

    Article  CAS  PubMed  Google Scholar 

  27. Yogev N, Frommer F, Lukas D, Kautz-Neu K, Karram K, Ielo D, von Stebut E, Probst HC, van den Broek M, Riethmacher D, Birnberg T, Blank T, Reizis B, Korn T, Wiendl H, Jung S, Prinz M, Kurschus FC, Waisman A (2012) Dendritic cells ameliorate autoimmunity in the CNS by controlling the homeostasis of PD-1 receptor(+) regulatory T cells. Immunity 37(2):264–275. doi:10.1016/j.immuni.2012.05.025

    Article  CAS  PubMed  Google Scholar 

  28. Darrasse-Jeze G, Deroubaix S, Mouquet H, Victora GD, Eisenreich T, Yao KH, Masilamani RF, Dustin ML, Rudensky A, Liu K, Nussenzweig MC (2009) Feedback control of regulatory T cell homeostasis by dendritic cells in vivo. J Exp Med 206(9):1853–1862. doi:10.1084/jem.20090746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kretschmer K, Apostolou I, Hawiger D, Khazaie K, Nussenzweig MC, von Boehmer H (2005) Inducing and expanding regulatory T cell populations by foreign antigen. Nat Immunol 6(12):1219–1227. doi:10.1038/ni1265

    Article  CAS  PubMed  Google Scholar 

  30. Yamazaki S, Dudziak D, Heidkamp GF, Fiorese C, Bonito AJ, Inaba K, Nussenzweig MC, Steinman RM (2008) CD8+ CD205+ splenic dendritic cells are specialized to induce Foxp3+ regulatory T cells. J Immunol 181(10):6923–6933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mildner A, Jung S (2014) Development and function of dendritic cell subsets. Immunity 40(5):642–656. doi:10.1016/j.immuni.2014.04.016

    Article  CAS  PubMed  Google Scholar 

  32. Gregori S (2011) Dendritic cells in networks of immunological tolerance. Tissue Antigens 77(2):89–99. doi:10.1111/j.1399-0039.2010.01615.x

    Article  CAS  PubMed  Google Scholar 

  33. Mittag D, Proietto AI, Loudovaris T, Mannering SI, Vremec D, Shortman K, Wu L, Harrison LC (2011) Human dendritic cell subsets from spleen and blood are similar in phenotype and function but modified by donor health status. J Immunol 186(11):6207–6217. doi:10.4049/jimmunol.1002632

    Article  CAS  PubMed  Google Scholar 

  34. Miller JC, Brown BD, Shay T, Gautier EL, Jojic V, Cohain A, Pandey G, Leboeuf M, Elpek KG, Helft J, Hashimoto D, Chow A, Price J, Greter M, Bogunovic M, Bellemare-Pelletier A, Frenette PS, Randolph GJ, Turley SJ, Merad M, Immunological Genome C (2012) Deciphering the transcriptional network of the dendritic cell lineage. Nat Immunol 13(9):888–899. doi:10.1038/ni.2370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu K, Waskow C, Liu X, Yao K, Hoh J, Nussenzweig M (2007) Origin of dendritic cells in peripheral lymphoid organs of mice. Nat Immunol 8(6):578–583. doi:10.1038/ni1462

    Article  CAS  PubMed  Google Scholar 

  36. Breton G, Lee J, Zhou YJ, Schreiber JJ, Keler T, Puhr S, Anandasabapathy N, Schlesinger S, Caskey M, Liu K, Nussenzweig MC (2015) Circulating precursors of human CD1c+ and CD141+ dendritic cells. J Exp Med 212(3):401–413. doi:10.1084/jem.20141441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Meredith MM, Liu K, Darrasse-Jeze G, Kamphorst AO, Schreiber HA, Guermonprez P, Idoyaga J, Cheong C, Yao KH, Niec RE, Nussenzweig MC (2012) Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. J Exp Med 209(6):1153–1165. doi:10.1084/jem.20112675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Satpathy AT, Kc W, Albring JC, Edelson BT, Kretzer NM, Bhattacharya D, Murphy TL, Murphy KM (2012) Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages. J Exp Med 209(6):1135–1152. doi:10.1084/jem.20120030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Maldonado-Lopez R, De Smedt T, Michel P, Godfroid J, Pajak B, Heirman C, Thielemans K, Leo O, Urbain J, Moser M (1999) CD8alpha+ and CD8alpha subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J Exp Med 189(3):587–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Proietto AI, O’Keeffe M, Gartlan K, Wright MD, Shortman K, Wu L, Lahoud MH (2004) Differential production of inflammatory chemokines by murine dendritic cell subsets. Immunobiology 209(1–2):163–172. doi:10.1016/j.imbio.2004.03.002

    Article  CAS  PubMed  Google Scholar 

  41. Dutertre CA, Wang LF, Ginhoux F (2014) Aligning bona fide dendritic cell populations across species. Cell Immunol 291(1–2):3–10. doi:10.1016/j.cellimm.2014.08.006

    Article  CAS  PubMed  Google Scholar 

  42. Shortman K, Heath WR (2010) The CD8+ dendritic cell subset. Immunol Rev 234(1):18–31. doi:10.1111/j.0105-2896.2009.00870.x

    Article  CAS  PubMed  Google Scholar 

  43. MacDonald KP, Munster DJ, Clark GJ, Dzionek A, Schmitz J, Hart DN (2002) Characterization of human blood dendritic cell subsets. Blood 100(13):4512–4520. doi:10.1182/blood-2001-11-0097

    Article  CAS  PubMed  Google Scholar 

  44. Dzionek A, Fuchs A, Schmidt P, Cremer S, Zysk M, Miltenyi S, Buck DW, Schmitz J (2000) BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J Immunol 165(11):6037–6046

    Article  CAS  PubMed  Google Scholar 

  45. Watchmaker PB, Lahl K, Lee M, Baumjohann D, Morton J, Kim SJ, Zeng R, Dent A, Ansel KM, Diamond B, Hadeiba H, Butcher EC (2014) Comparative transcriptional and functional profiling defines conserved programs of intestinal DC differentiation in humans and mice. Nat Immunol 15(1):98–108. doi:10.1038/ni.2768

    Article  CAS  PubMed  Google Scholar 

  46. Haniffa M, Shin A, Bigley V, McGovern N, Teo P, See P, Wasan PS, Wang XN, Malinarich F, Malleret B, Larbi A, Tan P, Zhao H, Poidinger M, Pagan S, Cookson S, Dickinson R, Dimmick I, Jarrett RF, Renia L, Tam J, Song C, Connolly J, Chan JK, Gehring A, Bertoletti A, Collin M, Ginhoux F (2012) Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity 37(1):60–73. doi:10.1016/j.immuni.2012.04.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Piccioli D, Tavarini S, Borgogni E, Steri V, Nuti S, Sammicheli C, Bardelli M, Montagna D, Locatelli F, Wack A (2007) Functional specialization of human circulating CD16 and CD1c myeloid dendritic-cell subsets. Blood 109(12):5371–5379. doi:10.1182/blood-2006-08-038422

    Article  CAS  PubMed  Google Scholar 

  48. Benlahrech A, Duraisingham S, King D, Verhagen L, Rozis G, Amjadi P, Ford T, Kelleher P, Patterson S (2015) Human blood CD1c dendritic cells stimulate IL-12-independent IFN-gamma responses and have a strikingly low inflammatory profile. J Leukoc Biol. doi:10.1189/jlb.1A0114-058RR

    PubMed  Google Scholar 

  49. Jongbloed SL, Kassianos AJ, McDonald KJ, Clark GJ, Ju X, Angel CE, Chen CJ, Dunbar PR, Wadley RB, Jeet V, Vulink AJ, Hart DN, Radford KJ (2010) Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J Exp Med 207(6):1247–1260. doi:10.1084/jem.20092140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bachem A, Guttler S, Hartung E, Ebstein F, Schaefer M, Tannert A, Salama A, Movassaghi K, Opitz C, Mages HW, Henn V, Kloetzel PM, Gurka S, Kroczek RA (2010) Superior antigen cross-presentation and XCR1 expression define human CD11c+ CD141+ cells as homologues of mouse CD8+ dendritic cells. J Exp Med 207(6):1273–1281. doi:10.1084/jem.20100348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Robbins SH, Walzer T, Dembele D, Thibault C, Defays A, Bessou G, Xu H, Vivier E, Sellars M, Pierre P, Sharp FR, Chan S, Kastner P, Dalod M (2008) Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling. Genome Biol 9(1):R17. doi:10.1186/gb-2008-9-1-r17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Grouard G, Rissoan MC, Filgueira L, Durand I, Banchereau J, Liu YJ (1997) The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand. J Exp Med 185(6):1101–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Olweus J, BitMansour A, Warnke R, Thompson PA, Carballido J, Picker LJ, Lund-Johansen F (1997) Dendritic cell ontogeny: a human dendritic cell lineage of myeloid origin. Proc Natl Acad Sci USA 94(23):12551–12556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Strobl H, Scheinecker C, Riedl E, Csmarits B, Bello-Fernandez C, Pickl WF, Majdic O, Knapp W (1998) Identification of CD68+ lin- peripheral blood cells with dendritic precursor characteristics. J Immunol 161(2):740–748

    CAS  PubMed  Google Scholar 

  55. Reizis B, Bunin A, Ghosh HS, Lewis KL, Sisirak V (2011) Plasmacytoid dendritic cells: recent progress and open questions. Annu Rev Immunol 29:163–183. doi:10.1146/annurev-immunol-031210-101345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Colonna M, Krug A, Cella M (2002) Interferon-producing cells: on the front line in immune responses against pathogens. Curr Opin Immunol 14(3):373–379

    Article  CAS  PubMed  Google Scholar 

  57. Facchetti F, de Wolf-Peeters C, Mason DY, Pulford K, van den Oord JJ, Desmet VJ (1988) Plasmacytoid T cells. Immunohistochemical evidence for their monocyte/macrophage origin. Am J Pathol 133(1):15–21

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Cella M, Facchetti F, Lanzavecchia A, Colonna M (2000) Plasmacytoid dendritic cells activated by influenza virus and CD40L drive a potent TH1 polarization. Nat Immunol 1(4):305–310. doi:10.1038/79747

    Article  CAS  PubMed  Google Scholar 

  59. Janke M, Witsch EJ, Mages HW, Hutloff A, Kroczek RA (2006) Eminent role of ICOS costimulation for T cells interacting with plasmacytoid dendritic cells. Immunology 118(3):353–360. doi:10.1111/j.1365-2567.2006.02379.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Michell-Robinson MA, Touil H, Healy LM, Owen DR, Durafourt BA, Bar-Or A, Antel JP, Moore CS (2015) Roles of microglia in brain development, tissue maintenance and repair. Brain 138(Pt 5):1138–1159. doi:10.1093/brain/awv066

    Article  PubMed  Google Scholar 

  61. Yamasaki R, Lu H, Butovsky O, Ohno N, Rietsch AM, Cialic R, Wu PM, Doykan CE, Lin J, Cotleur AC, Kidd G, Zorlu MM, Sun N, Hu W, Liu L, Lee JC, Taylor SE, Uehlein L, Dixon D, Gu J, Floruta CM, Zhu M, Charo IF, Weiner HL, Ransohoff RM (2014) Differential roles of microglia and monocytes in the inflamed central nervous system. J Exp Med 211(8):1533–1549. doi:10.1084/jem.20132477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Heppner FL, Greter M, Marino D, Falsig J, Raivich G, Hovelmeyer N, Waisman A, Rulicke T, Prinz M, Priller J, Becher B, Aguzzi A (2005) Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med 11(2):146–152. doi:10.1038/nm1177

    Article  CAS  PubMed  Google Scholar 

  63. Codarri L, Gyulveszi G, Tosevski V, Hesske L, Fontana A, Magnenat L, Suter T, Becher B (2011) RORgammat drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat Immunol 12(6):560–567. doi:10.1038/ni.2027

    Article  CAS  PubMed  Google Scholar 

  64. Croxford AL, Lanzinger M, Hartmann FJ, Schreiner B, Mair F, Pelczar P, Clausen BE, Jung S, Greter M, Becher B (2015) The cytokine GM-CSF drives the inflammatory signature of CCR2(+) monocytes and licenses autoimmunity. Immunity 43(3):502–514. doi:10.1016/j.immuni.2015.08.010

    Article  CAS  PubMed  Google Scholar 

  65. Chiu IM, Morimoto ET, Goodarzi H, Liao JT, O’Keeffe S, Phatnani HP, Muratet M, Carroll MC, Levy S, Tavazoie S, Myers RM, Maniatis T (2013) A neurodegeneration-specific gene-expression signature of acutely isolated microglia from an amyotrophic lateral sclerosis mouse model. Cell Rep 4(2):385–401. doi:10.1016/j.celrep.2013.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, Koeglsperger T, Dake B, Wu PM, Doykan CE, Fanek Z, Liu L, Chen Z, Rothstein JD, Ransohoff RM, Gygi SP, Antel JP, Weiner HL (2014) Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat Neurosci 17(1):131–143. doi:10.1038/nn.3599

    Article  CAS  PubMed  Google Scholar 

  67. Gautier EL, Shay T, Miller J, Greter M, Jakubzick C, Ivanov S, Helft J, Chow A, Elpek KG, Gordonov S, Mazloom AR, Ma’ayan A, Chua WJ, Hansen TH, Turley SJ, Merad M, Randolph GJ, Immunological Genome Consortium (2012) Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol 13(11):1118–1128. doi:10.1038/ni.2419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Weber MS, Prod’homme T, Youssef S, Dunn SE, Rundle CD, Lee L, Patarroyo JC, Stuve O, Sobel RA, Steinman L, Zamvil SS (2007) Type II monocytes modulate T cell-mediated central nervous system autoimmune disease. Nat Med 13(8):935–943. doi:10.1038/nm1620

    Article  CAS  PubMed  Google Scholar 

  69. Guilliams M, Ginhoux F, Jakubzick C, Naik SH, Onai N, Schraml BU, Segura E, Tussiwand R, Yona S (2014) Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol 14(8):571–578. doi:10.1038/nri3712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Geissmann F, Gordon S, Hume DA, Mowat AM, Randolph GJ (2010) Unravelling mononuclear phagocyte heterogeneity. Nat Rev Immunol 10(6):453–460. doi:10.1038/nri2784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Franco R, Fernandez-Suarez D (2015) Alternatively activated microglia and macrophages in the central nervous system. Prog Neurobiol 131:65–86. doi:10.1016/j.pneurobio.2015.05.003

    Article  CAS  PubMed  Google Scholar 

  72. Xing Y, Hogquist KA (2012) T-cell tolerance: central and peripheral. Cold Spring Harb Perspect Biol 4(6). doi:10.1101/cshperspect.a006957

  73. Anderson MS, Venanzi ES, Klein L, Chen Z, Berzins SP, Turley SJ, von Boehmer H, Bronson R, Dierich A, Benoist C, Mathis D (2002) Projection of an immunological self shadow within the thymus by the aire protein. Science 298(5597):1395–1401. doi:10.1126/science.1075958

    Article  CAS  PubMed  Google Scholar 

  74. Aschenbrenner K, D’Cruz LM, Vollmann EH, Hinterberger M, Emmerich J, Swee LK, Rolink A, Klein L (2007) Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells. Nat Immunol 8(4):351–358. doi:10.1038/ni1444

    Article  CAS  PubMed  Google Scholar 

  75. Lei Y, Ripen AM, Ishimaru N, Ohigashi I, Nagasawa T, Jeker LT, Bosl MR, Hollander GA, Hayashi Y, Malefyt Rde W, Nitta T, Takahama Y (2011) Aire-dependent production of XCL1 mediates medullary accumulation of thymic dendritic cells and contributes to regulatory T cell development. J Exp Med 208(2):383–394. doi:10.1084/jem.20102327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Proietto AI, van Dommelen S, Zhou P, Rizzitelli A, D’Amico A, Steptoe RJ, Naik SH, Lahoud MH, Liu Y, Zheng P, Shortman K, Wu L (2008) Dendritic cells in the thymus contribute to T-regulatory cell induction. Proc Natl Acad Sci USA 105(50):19869–19874. doi:10.1073/pnas.0810268105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Koble C, Kyewski B (2009) The thymic medulla: a unique microenvironment for intercellular self-antigen transfer. J Exp Med 206(7):1505–1513. doi:10.1084/jem.20082449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gallegos AM, Bevan MJ (2004) Central tolerance to tissue-specific antigens mediated by direct and indirect antigen presentation. J Exp Med 200(8):1039–1049. doi:10.1084/jem.20041457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Watanabe N, Wang YH, Lee HK, Ito T, Wang YH, Cao W, Liu YJ (2005) Hassall’s corpuscles instruct dendritic cells to induce CD4+ CD25+ regulatory T cells in human thymus. Nature 436(7054):1181–1185. doi:10.1038/nature03886

    Article  CAS  PubMed  Google Scholar 

  80. Birnberg T, Bar-On L, Sapoznikov A, Caton ML, Cervantes-Barragan L, Makia D, Krauthgamer R, Brenner O, Ludewig B, Brockschnieder D, Riethmacher D, Reizis B, Jung S (2008) Lack of conventional dendritic cells is compatible with normal development and T cell homeostasis, but causes myeloid proliferative syndrome. Immunity 29(6):986–997. doi:10.1016/j.immuni.2008.10.012

    Article  CAS  PubMed  Google Scholar 

  81. Cedile O, Lobner M, Toft-Hansen H, Frank I, Wlodarczyk A, Irla M, Owens T (2014) Thymic CCL2 influences induction of T-cell tolerance. J Autoimmun 55:73–85. doi:10.1016/j.jaut.2014.07.004

    Article  CAS  PubMed  Google Scholar 

  82. Walker LS, Abbas AK (2002) The enemy within: keeping self-reactive T cells at bay in the periphery. Nat Rev Immunol 2(1):11–19. doi:10.1038/nri701

    Article  CAS  PubMed  Google Scholar 

  83. Hawiger D, Masilamani RF, Bettelli E, Kuchroo VK, Nussenzweig MC (2004) Immunological unresponsiveness characterized by increased expression of CD5 on peripheral T cells induced by dendritic cells in vivo. Immunity 20(6):695–705. doi:10.1016/j.immuni.2004.05.002

    Article  CAS  PubMed  Google Scholar 

  84. Probst HC, McCoy K, Okazaki T, Honjo T, van den Broek M (2005) Resting dendritic cells induce peripheral CD8+ T cell tolerance through PD-1 and CTLA-4. Nat Immunol 6(3):280–286. doi:10.1038/ni1165

    Article  CAS  PubMed  Google Scholar 

  85. Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, Hall J, Sun CM, Belkaid Y, Powrie F (2007) A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med 204(8):1757–1764. doi:10.1084/jem.20070590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mucida D, Park Y, Kim G, Turovskaya O, Scott I, Kronenberg M, Cheroutre H (2007) Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317(5835):256–260. doi:10.1126/science.1145697

    Article  CAS  PubMed  Google Scholar 

  87. Awasthi A, Carrier Y, Peron JP, Bettelli E, Kamanaka M, Flavell RA, Kuchroo VK, Oukka M, Weiner HL (2007) A dominant function for interleukin 27 in generating interleukin 10-producing anti-inflammatory T cells. Nat Immunol 8(12):1380–1389. doi:10.1038/ni1541

    Article  CAS  PubMed  Google Scholar 

  88. Bar-On L, Birnberg T, Kim KW, Jung S (2011) Dendritic cell-restricted CD80/86 deficiency results in peripheral regulatory T-cell reduction but is not associated with lymphocyte hyperactivation. Eur J Immunol 41(2):291–298. doi:10.1002/eji.201041169

    Article  CAS  PubMed  Google Scholar 

  89. Vitali C, Mingozzi F, Broggi A, Barresi S, Zolezzi F, Bayry J, Raimondi G, Zanoni I, Granucci F (2012) Migratory, and not lymphoid-resident, dendritic cells maintain peripheral self-tolerance and prevent autoimmunity via induction of iTreg cells. Blood 120(6):1237–1245. doi:10.1182/blood-2011-09-379776

    Article  CAS  PubMed  Google Scholar 

  90. Ohnmacht C, Pullner A, King SB, Drexler I, Meier S, Brocker T, Voehringer D (2009) Constitutive ablation of dendritic cells breaks self-tolerance of CD4 T cells and results in spontaneous fatal autoimmunity. J Exp Med 206(3):549–559. doi:10.1084/jem.20082394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Galea I, Bechmann I, Perry VH (2007) What is immune privilege (not)? Trends Immunol 28(1):12–18. doi:10.1016/j.it.2006.11.004

    Article  CAS  PubMed  Google Scholar 

  92. McMenamin PG (1999) Distribution and phenotype of dendritic cells and resident tissue macrophages in the dura mater, leptomeninges, and choroid plexus of the rat brain as demonstrated in wholemount preparations. J Comp Neurol 405(4):553–562

    Article  CAS  PubMed  Google Scholar 

  93. Serot JM, Bene MC, Foliguet B, Faure GC (2000) Monocyte-derived IL-10-secreting dendritic cells in choroid plexus epithelium. J Neuroimmunol 105(2):115–119

    Article  CAS  PubMed  Google Scholar 

  94. de Graaf MT, Smitt PA, Luitwieler RL, van Velzen C, van den Broek PD, Kraan J, Gratama JW (2011) Central memory CD4+ T cells dominate the normal cerebrospinal fluid. Cytometry B Clin Cytom 80(1):43–50. doi:10.1002/cyto.b.20542

    Article  PubMed  Google Scholar 

  95. Bailey SL, Schreiner B, McMahon EJ, Miller SD (2007) CNS myeloid DCs presenting endogenous myelin peptides ‘preferentially’ polarize CD4+ T(H)-17 cells in relapsing EAE. Nat Immunol 8(2):172–180. doi:10.1038/ni1430

    Article  CAS  PubMed  Google Scholar 

  96. Goverman J (2009) Autoimmune T cell responses in the central nervous system. Nat Rev Immunol 9(6):393–407. doi:10.1038/nri2550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS, Harris TH, Kipnis J (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523(7560):337–341. doi:10.1038/nature14432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bailey SL, Carpentier PA, McMahon EJ, Begolka WS, Miller SD (2006) Innate and adaptive immune responses of the central nervous system. Crit Rev Immunol 26(2):149–188

    Article  CAS  PubMed  Google Scholar 

  99. Fabry Z, Schreiber HA, Harris MG, Sandor M (2008) Sensing the microenvironment of the central nervous system: immune cells in the central nervous system and their pharmacological manipulation. Curr Opin Pharmacol 8(4):496–507. doi:10.1016/j.coph.2008.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fischer HG, Reichmann G (2001) Brain dendritic cells and macrophages/microglia in central nervous system inflammation. J Immunol 166(4):2717–2726

    Article  CAS  PubMed  Google Scholar 

  101. Curtin JF, King GD, Barcia C, Liu C, Hubert FX, Guillonneau C, Josien R, Anegon I, Lowenstein PR, Castro MG (2006) Fms-like tyrosine kinase 3 ligand recruits plasmacytoid dendritic cells to the brain. J Immunol 176(6):3566–3577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zozulya AL, Reinke E, Baiu DC, Karman J, Sandor M, Fabry Z (2007) Dendritic cell transmigration through brain microvessel endothelium is regulated by MIP-1alpha chemokine and matrix metalloproteinases. J Immunol 178(1):520–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Izikson L, Klein RS, Charo IF, Weiner HL, Luster AD (2000) Resistance to experimental autoimmune encephalomyelitis in mice lacking the CC chemokine receptor (CCR)2. J Exp Med 192(7):1075–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Pashenkov M, Teleshova N, Kouwenhoven M, Kostulas V, Huang YM, Soderstrom M, Link H (2002) Elevated expression of CCR5 by myeloid (CD11c+) blood dendritic cells in multiple sclerosis and acute optic neuritis. Clin Exp Immunol 127(3):519–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Trebst C, Sorensen TL, Kivisakk P, Cathcart MK, Hesselgesser J, Horuk R, Sellebjerg F, Lassmann H, Ransohoff RM (2001) CCR1+/CCR5+ mononuclear phagocytes accumulate in the central nervous system of patients with multiple sclerosis. Am J Pathol 159(5):1701–1710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kivisakk P, Mahad DJ, Callahan MK, Sikora K, Trebst C, Tucky B, Wujek J, Ravid R, Staugaitis SM, Lassmann H, Ransohoff RM (2004) Expression of CCR7 in multiple sclerosis: implications for CNS immunity. Ann Neurol 55(5):627–638. doi:10.1002/ana.20049

    Article  CAS  PubMed  Google Scholar 

  107. Simmons SB, Pierson ER, Lee SY, Goverman JM (2013) Modeling the heterogeneity of multiple sclerosis in animals. Trends Immunol 34(8):410–422. doi:10.1016/j.it.2013.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. O’Connor RA, Prendergast CT, Sabatos CA, Lau CW, Leech MD, Wraith DC, Anderton SM (2008) Cutting edge: Th1 cells facilitate the entry of Th17 cells to the central nervous system during experimental autoimmune encephalomyelitis. J Immunol 181(6):3750–3754

    Article  PubMed  PubMed Central  Google Scholar 

  109. Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M, Giuliani F, Arbour N, Becher B, Prat A (2007) Human TH17 lymphocytes promote blood–brain barrier disruption and central nervous system inflammation. Nat Med 13(10):1173–1175. doi:10.1038/nm1651

    Article  CAS  PubMed  Google Scholar 

  110. Kroenke MA, Carlson TJ, Andjelkovic AV, Segal BM (2008) IL-12- and IL-23-modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition. J Exp Med 205(7):1535–1541. doi:10.1084/jem.20080159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. El-Behi M, Ciric B, Dai H, Yan Y, Cullimore M, Safavi F, Zhang GX, Dittel BN, Rostami A (2011) The encephalitogenicity of T(H)17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF. Nat Immunol 12(6):568–575. doi:10.1038/ni.2031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Markowicz S, Engleman EG (1990) Granulocyte-macrophage colony-stimulating factor promotes differentiation and survival of human peripheral blood dendritic cells in vitro. J Clin Invest 85(3):955–961. doi:10.1172/JCI114525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Noster R, Riedel R, Mashreghi MF, Radbruch H, Harms L, Haftmann C, Chang HD, Radbruch A, Zielinski CE (2014) IL-17 and GM-CSF expression are antagonistically regulated by human T helper cells. Sci Transl Med 6(241):241ra280. doi:10.1126/scitranslmed.3008706

    Article  CAS  Google Scholar 

  114. Hartmann FJ, Khademi M, Aram J, Ammann S, Kockum I, Constantinescu C, Gran B, Piehl F, Olsson T, Codarri L, Becher B (2014) Multiple sclerosis-associated IL2RA polymorphism controls GM-CSF production in human TH cells. Nat Commun 5:5056. doi:10.1038/ncomms6056

    Article  CAS  PubMed  Google Scholar 

  115. Diebold SS (2008) Determination of T-cell fate by dendritic cells. Immunol Cell Biol 86(5):389–397. doi:10.1038/icb.2008.26

    Article  CAS  PubMed  Google Scholar 

  116. Paterka M, Siffrin V, Voss JO, Werr J, Hoppmann N, Gollan R, Belikan P, Bruttger J, Birkenstock J, Esplugues E, Yogev N, Flavell RA, Bopp T, Zipp F (2016) Gatekeeper role of brain antigen-presenting CD11c+ cells in neuroinflammation. EMBO J 35:89–101

    Article  CAS  PubMed  Google Scholar 

  117. Bailey-Bucktrout SL, Caulkins SC, Goings G, Fischer JA, Dzionek A, Miller SD (2008) Cutting edge: central nervous system plasmacytoid dendritic cells regulate the severity of relapsing experimental autoimmune encephalomyelitis. J Immunol 180(10):6457–6461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Miller SD, McMahon EJ, Schreiner B, Bailey SL (2007) Antigen presentation in the CNS by myeloid dendritic cells drives progression of relapsing experimental autoimmune encephalomyelitis. Ann N Y Acad Sci 1103:179–191. doi:10.1196/annals.1394.023

    Article  CAS  PubMed  Google Scholar 

  119. Tsai VW, Mohammad MG, Tolhurst O, Breit SN, Sawchenko PE, Brown DA (2011) CCAAT/enhancer binding protein-delta expression by dendritic cells regulates CNS autoimmune inflammatory disease. J Neurosci 31(48):17612–17621. doi:10.1523/JNEUROSCI.3449-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. McGeachy MJ, Stephens LA, Anderton SM (2005) Natural recovery and protection from autoimmune encephalomyelitis: contribution of CD4+ CD25+ regulatory cells within the central nervous system. J Immunol 175(5):3025–3032

    Article  CAS  PubMed  Google Scholar 

  121. Hirata S, Matsuyoshi H, Fukuma D, Kurisaki A, Uemura Y, Nishimura Y, Senju S (2007) Involvement of regulatory T cells in the experimental autoimmune encephalomyelitis-preventive effect of dendritic cells expressing myelin oligodendrocyte glycoprotein plus TRAIL. J Immunol 178(2):918–925

    Article  CAS  PubMed  Google Scholar 

  122. Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A, Littman DR (2000) Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 20(11):4106–4114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ransohoff RM, Cardona AE (2010) The myeloid cells of the central nervous system parenchyma. Nature 468(7321):253–262. doi:10.1038/nature09615

    Article  CAS  PubMed  Google Scholar 

  124. Serafini B, Rosicarelli B, Magliozzi R, Stigliano E, Capello E, Mancardi GL, Aloisi F (2006) Dendritic cells in multiple sclerosis lesions: maturation stage, myelin uptake, and interaction with proliferating T cells. J Neuropathol Exp Neurol 65(2):124–141. doi:10.1097/01.jnen.0000199572.96472.1c

    CAS  PubMed  Google Scholar 

  125. Lande R, Gafa V, Serafini B, Giacomini E, Visconti A, Remoli ME, Severa M, Parmentier M, Ristori G, Salvetti M, Aloisi F, Coccia EM (2008) Plasmacytoid dendritic cells in multiple sclerosis: intracerebral recruitment and impaired maturation in response to interferon-beta. J Neuropathol Exp Neurol 67(5):388–401. doi:10.1097/NEN.0b013e31816fc975

    Article  CAS  PubMed  Google Scholar 

  126. Longhini AL, von Glehn F, Brandao CO, de Paula RF, Pradella F, Moraes AS, Farias AS, Oliveira EC, Quispe-Cabanillas JG, Abreu CH, Damasceno A, Damasceno BP, Balashov KE, Santos LM (2011) Plasmacytoid dendritic cells are increased in cerebrospinal fluid of untreated patients during multiple sclerosis relapse. J Neuroinflammation 8(1):2. doi:10.1186/1742-2094-8-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Karni A, Abraham M, Monsonego A, Cai G, Freeman GJ, Hafler D, Khoury SJ, Weiner HL (2006) Innate immunity in multiple sclerosis: myeloid dendritic cells in secondary progressive multiple sclerosis are activated and drive a proinflammatory immune response. J Immunol 177(6):4196–4202

    Article  CAS  PubMed  Google Scholar 

  128. Vaknin-Dembinsky A, Balashov K, Weiner HL (2006) IL-23 is increased in dendritic cells in multiple sclerosis and down-regulation of IL-23 by antisense oligos increases dendritic cell IL-10 production. J Immunol 176(12):7768–7774

    Article  CAS  PubMed  Google Scholar 

  129. Vaknin-Dembinsky A, Murugaiyan G, Hafler DA, Astier AL, Weiner HL (2008) Increased IL-23 secretion and altered chemokine production by dendritic cells upon CD46 activation in patients with multiple sclerosis. J Neuroimmunol 195(1–2):140–145. doi:10.1016/j.jneuroim.2008.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lopez C, Comabella M, Al-zayat H, Tintore M, Montalban X (2006) Altered maturation of circulating dendritic cells in primary progressive MS patients. J Neuroimmunol 175(1–2):183–191. doi:10.1016/j.jneuroim.2006.03.010

    Article  CAS  PubMed  Google Scholar 

  131. Garcia-Vallejo JJ, Ilarregui JM, Kalay H, Chamorro S, Koning N, Unger WW, Ambrosini M, Montserrat V, Fernandes RJ, Bruijns SC, van Weering JR, Paauw NJ, O’Toole T, van Horssen J, van der Valk P, Nazmi K, Bolscher JG, Bajramovic J, Dijkstra CD, t Hart BA, van Kooyk Y (2014) CNS myelin induces regulatory functions of DC-SIGN-expressing, antigen-presenting cells via cognate interaction with MOG. J Exp Med 211(7):1465–1483. doi:10.1084/jem.20122192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Boven LA, Montagne L, Nottet HS, De Groot CJ (2000) Macrophage inflammatory protein-1alpha (MIP-1alpha), MIP-1beta, and RANTES mRNA semiquantification and protein expression in active demyelinating multiple sclerosis (MS) lesions. Clin Exp Immunol 122(2):257–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Barcellos LF, Schito AM, Rimmler JB, Vittinghoff E, Shih A, Lincoln R, Callier S, Elkins MK, Goodkin DE, Haines JL, Pericak-Vance MA, Hauser SL, Oksenberg JR (2000) CC-chemokine receptor 5 polymorphism and age of onset in familial multiple sclerosis. Multiple Sclerosis Genetics Group. Immunogenetics 51(4–5):281–288

    Article  CAS  PubMed  Google Scholar 

  134. Gade-Andavolu R, Comings DE, MacMurray J, Rostamkhani M, Cheng LS, Tourtellotte WW, Cone LA (2004) Association of CCR5 delta32 deletion with early death in multiple sclerosis. Genet in Med 6(3):126-131. doi:10.1097/01.GIM.0000127274.45301.54

    Article  CAS  Google Scholar 

  135. Stasiolek M, Bayas A, Kruse N, Wieczarkowiecz A, Toyka KV, Gold R, Selmaj K (2006) Impaired maturation and altered regulatory function of plasmacytoid dendritic cells in multiple sclerosis. Brain 129(Pt 5):1293–1305. doi:10.1093/brain/awl043

    Article  PubMed  Google Scholar 

  136. Schwab N, Zozulya AL, Kieseier BC, Toyka KV, Wiendl H (2010) An imbalance of two functionally and phenotypically different subsets of plasmacytoid dendritic cells characterizes the dysfunctional immune regulation in multiple sclerosis. J Immunol 184(9):5368–5374. doi:10.4049/jimmunol.0903662

    Article  CAS  PubMed  Google Scholar 

  137. Aung LL, Fitzgerald-Bocarsly P, Dhib-Jalbut S, Balashov K (2010) Plasmacytoid dendritic cells in multiple sclerosis: chemokine and chemokine receptor modulation by interferon-beta. J Neuroimmunol 226(1–2):158–164. doi:10.1016/j.jneuroim.2010.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hirotani M, Niino M, Fukazawa T, Yaguchi H, Nakamura M, Kikuchi S, Sasaki H (2012) Decreased interferon-alpha production in response to CpG DNA dysregulates cytokine responses in patients with multiple sclerosis. Clin Immunol 143(2):145–151. doi:10.1016/j.clim.2012.01.009

    Article  CAS  PubMed  Google Scholar 

  139. Axtell RC, de Jong BA, Boniface K, van der Voort LF, Bhat R, De Sarno P, Naves R, Han M, Zhong F, Castellanos JG, Mair R, Christakos A, Kolkowitz I, Katz L, Killestein J, Polman CH, de Waal Malefyt R, Steinman L, Raman C (2010) T helper type 1 and 17 cells determine efficacy of interferon-beta in multiple sclerosis and experimental encephalomyelitis. Nat Med 16(4):406–412. doi:10.1038/nm.2110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kieseier BC, Hartung HP (2007) Interferon-beta and neuroprotection in multiple sclerosis—facts, hopes and phantasies. Exp Neurol 203(1):1–4. doi:10.1016/j.expneurol.2006.09.007

    Article  CAS  PubMed  Google Scholar 

  141. Yong VW (2002) Differential mechanisms of action of interferon-beta and glatiramer aetate in MS. Neurology 59(6):802–808

    Article  CAS  PubMed  Google Scholar 

  142. Trinschek B, Luessi F, Gross CC, Wiendl H, Jonuleit H (2015) Interferon-beta therapy of multiple sclerosis patients improves the responsiveness of T cells for immune suppression by regulatory T cells. Int J Mol Sci 16(7):16330–16346. doi:10.3390/ijms160716330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Nagai T, Devergne O, van Seventer GA, van Seventer JM (2007) Interferon-beta mediates opposing effects on interferon-gamma-dependent Interleukin-12 p70 secretion by human monocyte-derived dendritic cells. Scand J Immunol 65(2):107–117. doi:10.1111/j.1365-3083.2006.01880.x

    Article  CAS  PubMed  Google Scholar 

  144. Zhang X, Jin J, Tang Y, Speer D, Sujkowska D, Markovic-Plese S (2009) IFN-beta1a inhibits the secretion of Th17-polarizing cytokines in human dendritic cells via TLR7 up-regulation. J Immunol 182(6):3928–3936. doi:10.4049/jimmunol.0802226

    Article  CAS  PubMed  Google Scholar 

  145. Schreiner B, Mitsdoerffer M, Kieseier BC, Chen L, Hartung HP, Weller M, Wiendl H (2004) Interferon-beta enhances monocyte and dendritic cell expression of B7-H1 (PD-L1), a strong inhibitor of autologous T-cell activation: relevance for the immune modulatory effect in multiple sclerosis. J Neuroimmunol 155(1–2):172–182. doi:10.1016/j.jneuroim.2004.06.013

    Article  CAS  PubMed  Google Scholar 

  146. Chen M, Chen G, Deng S, Liu X, Hutton GJ, Hong J (2012) IFN-beta induces the proliferation of CD4+ CD25+ Foxp3+ regulatory T cells through upregulation of GITRL on dendritic cells in the treatment of multiple sclerosis. J Neuroimmunol 242(1–2):39–46. doi:10.1016/j.jneuroim.2011.10.014

    Article  CAS  PubMed  Google Scholar 

  147. Comabella M, Lunemann JD, Rio J, Sanchez A, Lopez C, Julia E, Fernandez M, Nonell L, Camina-Tato M, Deisenhammer F, Caballero E, Tortola MT, Prinz M, Montalban X, Martin R (2009) A type I interferon signature in monocytes is associated with poor response to interferon-beta in multiple sclerosis. Brain 132(Pt 12):3353–3365. doi:10.1093/brain/awp228

    Article  CAS  PubMed  Google Scholar 

  148. Neuhaus O, Farina C, Yassouridis A, Wiendl H, Then Bergh F, Dose T, Wekerle H, Hohlfeld R (2000) Multiple sclerosis: comparison of copolymer-1- reactive T cell lines from treated and untreated subjects reveals cytokine shift from T helper 1 to T helper 2 cells. Proc Natl Acad Sci USA 97(13):7452–7457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Arnon R, Aharoni R (2004) Mechanism of action of glatiramer acetate in multiple sclerosis and its potential for the development of new applications. Proc Natl Acad Sci USA 101(Suppl 2):14593–14598. doi:10.1073/pnas.0404887101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Aharoni R, Teitelbaum D, Sela M, Arnon R (1997) Copolymer 1 induces T cells of the T helper type 2 that crossreact with myelin basic protein and suppress experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 94(20):10821–10826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Aharoni R, Teitelbaum D, Arnon R, Sela M (1999) Copolymer 1 acts against the immunodominant epitope 82–100 of myelin basic protein by T cell receptor antagonism in addition to major histocompatibility complex blocking. Proc Natl Acad Sci USA 96(2):634–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Hussien Y, Sanna A, Soderstrom M, Link H, Huang YM (2001) Glatiramer acetate and IFN-beta act on dendritic cells in multiple sclerosis. J Neuroimmunol 121(1–2):102–110

    Article  CAS  PubMed  Google Scholar 

  153. Vieira PL, Heystek HC, Wormmeester J, Wierenga EA, Kapsenberg ML (2003) Glatiramer acetate (copolymer-1, copaxone) promotes Th2 cell development and increased IL-10 production through modulation of dendritic cells. J Immunol 170(9):4483–4488

    Article  CAS  PubMed  Google Scholar 

  154. Begum-Haque S, Christy M, Wang Y, Kasper E, Ochoa-Reparaz J, Smith JY, Haque A, Kasper LH (2013) Glatiramer acetate biases dendritic cells towards an anti-inflammatory phenotype by modulating OPN, IL-17, and RORgammat responses and by increasing IL-10 production in experimental allergic encephalomyelitis. J Neuroimmunol 254(1–2):117–124. doi:10.1016/j.jneuroim.2012.10.003

    Article  CAS  PubMed  Google Scholar 

  155. Sellebjerg F, Hesse D, Limborg S, Lund H, Sondergaard HB, Krakauer M, Sorensen PS (2013) Dendritic cell, monocyte and T cell activation and response to glatiramer acetate in multiple sclerosis. Mult Scler 19(2):179–187. doi:10.1177/1352458512450353

    Article  CAS  PubMed  Google Scholar 

  156. Rice GP, Hartung HP, Calabresi PA (2005) Anti-alpha4 integrin therapy for multiple sclerosis: mechanisms and rationale. Neurology 64(8):1336–1342. doi:10.1212/01.WNL.0000158329.30470.D0

    Article  CAS  PubMed  Google Scholar 

  157. del Pilar Martin M, Cravens PD, Winger R, Frohman EM, Racke MK, Eagar TN, Zamvil SS, Weber MS, Hemmer B, Karandikar NJ, Kleinschmidt-DeMasters BK, Stuve O (2008) Decrease in the numbers of dendritic cells and CD4+ T cells in cerebral perivascular spaces due to natalizumab. Arch Neurol 65(12):1596–1603. doi:10.1001/archneur.65.12.noc80051

    Article  Google Scholar 

  158. de Andres C, Teijeiro R, Alonso B, Sanchez-Madrid F, Martinez ML, Guzman de Villoria J, Fernandez-Cruz E, Sanchez-Ramon S (2012) Long-term decrease in VLA-4 expression and functional impairment of dendritic cells during natalizumab therapy in patients with multiple sclerosis. PLoS One 7(4):e34103. doi:10.1371/journal.pone.0034103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Rosen H, Goetzl EJ (2005) Sphingosine 1-phosphate and its receptors: an autocrine and paracrine network. Nat Rev Immunol 5(7):560–570. doi:10.1038/nri1650

    Article  CAS  PubMed  Google Scholar 

  160. Muller H, Hofer S, Kaneider N, Neuwirt H, Mosheimer B, Mayer G, Konwalinka G, Heufler C, Tiefenthaler M (2005) The immunomodulator FTY720 interferes with effector functions of human monocyte-derived dendritic cells. Eur J Immunol 35(2):533–545. doi:10.1002/eji.200425556

    Article  PubMed  CAS  Google Scholar 

  161. Idzko M, Panther E, Corinti S, Morelli A, Ferrari D, Herouy Y, Dichmann S, Mockenhaupt M, Gebicke-Haerter P, Di Virgilio F, Girolomoni G, Norgauer J (2002) Sphingosine 1-phosphate induces chemotaxis of immature and modulates cytokine-release in mature human dendritic cells for emergence of Th2 immune responses. FASEB J 16(6):625–627

    CAS  PubMed  Google Scholar 

  162. Lan YY, De Creus A, Colvin BL, Abe M, Brinkmann V, Coates PT, Thomson AW (2005) The sphingosine-1-phosphate receptor agonist FTY720 modulates dendritic cell trafficking in vivo. Am J Transplant 5(11):2649–2659. doi:10.1111/j.1600-6143.2005.01085.x

    Article  CAS  PubMed  Google Scholar 

  163. Luessi F, Kraus S, Trinschek B, Lerch S, Ploen R, Paterka M, Roberg T, Poisa-Beiro L, Klotz L, Wiendl H, Bopp T, Jonuleit H, Jolivel V, Zipp F, Witsch E (2015) FTY720 (fingolimod) treatment tips the balance towards less immunogenic antigen-presenting cells in patients with multiple sclerosis. Mult Scler. doi:10.1177/1352458515574895

    Google Scholar 

  164. Moreau T, Coles A, Wing M, Thorpe J, Miller D, Moseley I, Issacs J, Hale G, Clayton D, Scolding N, Waldmann H, Compston A (1996) CAMPATH-IH in multiple sclerosis. Mult Scler 1(6):357–365

    CAS  PubMed  Google Scholar 

  165. Kirsch BM, Haidinger M, Zeyda M, Bohmig GA, Tombinsky J, Muhlbacher F, Watschinger B, Horl WH, Saemann MD (2006) Alemtuzumab (Campath-1H) induction therapy and dendritic cells: impact on peripheral dendritic cell repertoire in renal allograft recipients. Transpl Immunol 16(3–4):254–257. doi:10.1016/j.trim.2006.09.003

    Article  CAS  PubMed  Google Scholar 

  166. Buggins AG, Mufti GJ, Salisbury J, Codd J, Westwood N, Arno M, Fishlock K, Pagliuca A, Devereux S (2002) Peripheral blood but not tissue dendritic cells express CD52 and are depleted by treatment with alemtuzumab. Blood 100(5):1715–1720

    CAS  PubMed  Google Scholar 

  167. Rao SP, Sancho J, Campos-Rivera J, Boutin PM, Severy PB, Weeden T, Shankara S, Roberts BL, Kaplan JM (2012) Human peripheral blood mononuclear cells exhibit heterogeneous CD52 expression levels and show differential sensitivity to alemtuzumab mediated cytolysis. PLoS One 7(6):e39416. doi:10.1371/journal.pone.0039416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Scannevin RH, Chollate S, Jung MY, Shackett M, Patel H, Bista P, Zeng W, Ryan S, Yamamoto M, Lukashev M, Rhodes KJ (2012) Fumarates promote cytoprotection of central nervous system cells against oxidative stress via the nuclear factor (erythroid-derived 2)-like 2 pathway. J Pharmacol Exp Ther 341(1):274–284. doi:10.1124/jpet.111.190132

    Article  CAS  PubMed  Google Scholar 

  169. Albrecht P, Bouchachia I, Goebels N, Henke N, Hofstetter HH, Issberner A, Kovacs Z, Lewerenz J, Lisak D, Maher P, Mausberg AK, Quasthoff K, Zimmermann C, Hartung HP, Methner A (2012) Effects of dimethyl fumarate on neuroprotection and immunomodulation. J Neuroinflamm 9:163. doi:10.1186/1742-2094-9-163

    Article  CAS  Google Scholar 

  170. Peng H, Guerau-de-Arellano M, Mehta VB, Yang Y, Huss DJ, Papenfuss TL, Lovett-Racke AE, Racke MK (2012) Dimethyl fumarate inhibits dendritic cell maturation via nuclear factor kappaB (NF-kappaB) and extracellular signal-regulated kinase 1 and 2 (ERK1/2) and mitogen stress-activated kinase 1 (MSK1) signaling. J Biol Chem 287(33):28017–28026. doi:10.1074/jbc.M112.383380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Ghoreschi K, Bruck J, Kellerer C, Deng C, Peng H, Rothfuss O, Hussain RZ, Gocke AR, Respa A, Glocova I, Valtcheva N, Alexander E, Feil S, Feil R, Schulze-Osthoff K, Rupec RA, Lovett-Racke AE, Dringen R, Racke MK, Rocken M (2011) Fumarates improve psoriasis and multiple sclerosis by inducing type II dendritic cells. J Exp Med 208(11):2291–2303. doi:10.1084/jem.20100977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Osiri M, Shea B, Robinson V, Suarez-Almazor M, Strand V, Tugwell P, Wells G (2003) Leflunomide for the treatment of rheumatoid arthritis: a systematic review and metaanalysis. J Rheumatol 30(6):1182–1190

    CAS  PubMed  Google Scholar 

  173. Greene S, Watanabe K, Braatz-Trulson J, Lou L (1995) Inhibition of dihydroorotate dehydrogenase by the immunosuppressive agent leflunomide. Biochem Pharmacol 50(6):861–867

    Article  CAS  PubMed  Google Scholar 

  174. Xu X, Blinder L, Shen J, Gong H, Finnegan A, Williams JW, Chong AS (1997) In vivo mechanism by which leflunomide controls lymphoproliferative and autoimmune disease in MRL/MpJ-lpr/lpr mice. J Immunol 159(1):167–174

    CAS  PubMed  Google Scholar 

  175. Merrill JE, Hanak S, Pu SF, Liang J, Dang C, Iglesias-Bregna D, Harvey B, Zhu B, McMonagle-Strucko K (2009) Teriflunomide reduces behavioral, electrophysiological, and histopathological deficits in the Dark Agouti rat model of experimental autoimmune encephalomyelitis. J Neurol 256(1):89–103. doi:10.1007/s00415-009-0075-3

    Article  CAS  PubMed  Google Scholar 

  176. Dimitrova P, Skapenko A, Herrmann ML, Schleyerbach R, Kalden JR, Schulze-Koops H (2002) Restriction of de novo pyrimidine biosynthesis inhibits Th1 cell activation and promotes Th2 cell differentiation. J Immunol 169(6):3392–3399

    Article  CAS  PubMed  Google Scholar 

  177. Li L, Liu J, Delohery T, Zhang D, Arendt C, Jones C (2013) The effects of teriflunomide on lymphocyte subpopulations in human peripheral blood mononuclear cells in vitro. J Neuroimmunol 265(1–2):82–90. doi:10.1016/j.jneuroim.2013.10.003

    Article  CAS  PubMed  Google Scholar 

  178. Li L, Liu J, Zhang D, Jones C (2012) Teriflunomide treatment of human monocyte-derived dendritic cells in vitro does not impair their maturation or ability to induce allogeneic T -cell responses. Mult Scler J 18(4 suppl):436–437. doi:10.1177/1352458512459021

    Google Scholar 

  179. Katja T, Sehr T, Hainke U, Schultheiss T, Ziemssen T (2013) Immunomodulatory treatment strategies differently affect dendritic cells in multiple sclerosis patients. Neurology 80(S11):006

    Google Scholar 

  180. Fleischer V, Salmen A, Kollar S, Weyer V, Siffrin V, Chan A, Zipp F, Luessi F (2014) Cardiotoxicity of mitoxantrone treatment in a german cohort of 639 multiple sclerosis patients. J Clin Neurol 10(4):289–295. doi:10.3988/jcn.2014.10.4.289

    Article  PubMed  PubMed Central  Google Scholar 

  181. Neuhaus O, Wiendl H, Kieseier BC, Archelos JJ, Hemmer B, Stuve O, Hartung HP (2005) Multiple sclerosis: mitoxantrone promotes differential effects on immunocompetent cells in vitro. J Neuroimmunol 168(1–2):128–137. doi:10.1016/j.jneuroim.2005.01.024

    Article  CAS  PubMed  Google Scholar 

  182. van de Ven R, Reurs AW, Wijnands PG, van Wetering S, Kruisbeek AM, Hooijberg E, Scheffer GL, Scheper RJ, de Gruijl TD (2012) Exposure of CD34+ precursors to cytostatic anthraquinone-derivatives induces rapid dendritic cell differentiation: implications for cancer immunotherapy. Cancer Immunol Immunother 61(2):181–191. doi:10.1007/s00262-011-1039-x

    Article  CAS  PubMed  Google Scholar 

  183. Bjork P, Bjork A, Vogl T, Stenstrom M, Liberg D, Olsson A, Roth J, Ivars F, Leanderson T (2009) Identification of human S100A9 as a novel target for treatment of autoimmune disease via binding to quinoline-3-carboxamides. PLoS Biol 7(4):e97. doi:10.1371/journal.pbio.1000097

    Article  PubMed  CAS  Google Scholar 

  184. Jolivel V, Luessi F, Masri J, Kraus SH, Hubo M, Poisa-Beiro L, Klebow S, Paterka M, Yogev N, Tumani H, Furlan R, Siffrin V, Jonuleit H, Zipp F, Waisman A (2013) Modulation of dendritic cell properties by laquinimod as a mechanism for modulating multiple sclerosis. Brain 136(Pt 4):1048–1066. doi:10.1093/brain/awt023

    Article  PubMed  Google Scholar 

  185. Toubi E, Nussbaum S, Staun-Ram E, Snir A, Melamed D, Hayardeny L, Miller A (2012) Laquinimod modulates B cells and their regulatory effects on T cells in multiple sclerosis. J Neuroimmunol 251(1–2):45–54. doi:10.1016/j.jneuroim.2012.07.003

    Article  CAS  PubMed  Google Scholar 

  186. Mishra MK, Wang J, Keough MB, Fan Y, Silva C, Sloka S, Hayardeny L, Bruck W, Yong VW (2014) Laquinimod reduces neuroaxonal injury through inhibiting microglial activation. Ann Clin Transl Neurol 1(6):409–422. doi:10.1002/acn3.67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Thone J, Ellrichmann G, Seubert S, Peruga I, Lee DH, Conrad R, Hayardeny L, Comi G, Wiese S, Linker RA, Gold R (2012) Modulation of autoimmune demyelination by laquinimod via induction of brain-derived neurotrophic factor. Am J Pathol 180(1):267–274. doi:10.1016/j.ajpath.2011.09.037

    Article  PubMed  CAS  Google Scholar 

  188. Ruffini F, Rossi S, Bergamaschi A, Brambilla E, Finardi A, Motta C, Studer V, Barbieri F, De Chiara V, Hayardeny L, Comi G, Centonze D, Martino G (2013) Laquinimod prevents inflammation-induced synaptic alterations occurring in experimental autoimmune encephalomyelitis. Mult Scler 19(8):1084–1094. doi:10.1177/1352458512469698

    Article  CAS  PubMed  Google Scholar 

  189. Stasiolek M, Linker RA, Hayardeny L, Bar Ilan O, Gold R (2015) Immune parameters of patients treated with laquinimod, a novel oral therapy for the treatment of multiple sclerosis: results from a double-blind placebo-controlled study. Immun Inflamm Dis 3(2):45–55. doi:10.1002/iid3.42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Schulze-Topphoff U, Shetty A, Varrin-Doyer M, Molnarfi N, Sagan SA, Sobel RA, Nelson PA, Zamvil SS (2012) Laquinimod, a quinoline-3-carboxamide, induces type II myeloid cells that modulate central nervous system autoimmunity. PLoS One 7(3):e33797. doi:10.1371/journal.pone.0033797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. von Budingen HC, Bar-Or A, Zamvil SS (2011) B cells in multiple sclerosis: connecting the dots. Curr Opin Immunol 23(6):713–720. doi:10.1016/j.coi.2011.09.003

    Article  CAS  Google Scholar 

  192. Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J, Fox RJ, Bar-Or A, Panzara M, Sarkar N, Agarwal S, Langer-Gould A, Smith CH, Group HT (2008) B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 358(7):676–688. doi:10.1056/NEJMoa0706383

    Article  CAS  PubMed  Google Scholar 

  193. Hauser SL, Comi GC, Hartung H-P, Selmaj K, Traboulsee AB-O, Arnold DL, Klingelschmitt G, Kakarieka A, Lublin F, Garren H, Kappos L, OPERA I and II Clinical Investigators (2015) ECTRIMS 2015 (Barcelona): Efficacy and safety of ocrelizumab in relapsing multiple sclerosis—results of the interferon-beta-1a-controlled, doubleblind, Phase III OPERA I and II studies. Mult Scler 23(S11):61–62. doi:10.1177/1352458515602640

    Google Scholar 

  194. Montalban X, Hemmer B, Rammohan K, Giovannoni G, de Seze J, Bar-Or A, Arnold DL, Sauter A, Kakarieka A, Masterman D, Chin P, Garren H, Wolinsky J, OC Investigators (2015) ECTRIMS 2015 (Barcelona): efficacy and safety of ocrelizumab in primary progressive multiple sclerosis—results of the placebo-controlled, double-blind, phase III ORATORIO study. Mult Scler 23(S11):780. doi:10.1177/1352458515604791

    Google Scholar 

  195. Lehmann-Horn K, Kronsbein HC, Weber MS (2013) Targeting B cells in the treatment of multiple sclerosis: recent advances and remaining challenges. Ther Adv Neurol Disord 6(3):161–173. doi:10.1177/1756285612474333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Barr TA, Shen P, Brown S, Lampropoulou V, Roch T, Lawrie S, Fan B, O’Connor RA, Anderton SM, Bar-Or A, Fillatreau S, Gray D (2012) B cell depletion therapy ameliorates autoimmune disease through ablation of IL-6-producing B cells. J Exp Med 209(5):1001–1010. doi:10.1084/jem.20111675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Li R, Rezk A, Miyazaki Y, Hilgenberg E, Touil H, Shen P, Moore CS, Michel L, Althekair F, Rajasekharan S, Gommerman JL, Prat A, Fillatreau S, Bar-Or A, BciMST Canadian (2015) Proinflammatory GM-CSF-producing B cells in multiple sclerosis and B cell depletion therapy. Sci Transl Med 7(310):310ra166. doi:10.1126/scitranslmed.aab4176

    Article  PubMed  Google Scholar 

  198. Gold R, Giovannoni G, Selmaj K, Havrdova E, Montalban X, Radue EW, Stefoski D, Robinson R, Riester K, Rana J, Elkins J, O’Neill G, Ss Investigators (2013) Daclizumab high-yield process in relapsing-remitting multiple sclerosis (SELECT): a randomised, double-blind, placebo-controlled trial. Lancet 381(9884):2167–2175. doi:10.1016/S0140-6736(12)62190-4

    Article  CAS  PubMed  Google Scholar 

  199. Wynn D, Kaufman M, Montalban X, Vollmer T, Simon J, Elkins J, O’Neill G, Neyer L, Sheridan J, Wang C, Fong A, Rose JW, CHOICE Investigators (2010) Daclizumab in active relapsing multiple sclerosis (CHOICE study): a phase 2, randomised, double-blind, placebo-controlled, add-on trial with interferon beta. Lancet Neurol 9(4):381–390. doi:10.1016/S1474-4422(10)70033-8

    Article  CAS  PubMed  Google Scholar 

  200. Bielekova B, Catalfamo M, Reichert-Scrivner S, Packer A, Cerna M, Waldmann TA, McFarland H, Henkart PA, Martin R (2006) Regulatory CD56(bright) natural killer cells mediate immunomodulatory effects of IL-2Ralpha-targeted therapy (daclizumab) in multiple sclerosis. Proc Natl Acad Sci USA 103(15):5941–5946. doi:10.1073/pnas.0601335103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Perry JS, Han S, Xu Q, Herman ML, Kennedy LB, Csako G, Bielekova B (2012) Inhibition of LTi cell development by CD25 blockade is associated with decreased intrathecal inflammation in multiple sclerosis. Sci Transl Med 4(145):145ra106. doi:10.1126/scitranslmed.3004140

    Article  PubMed  CAS  Google Scholar 

  202. Wuest SC, Edwan JH, Martin JF, Han S, Perry JS, Cartagena CM, Matsuura E, Maric D, Waldmann TA, Bielekova B (2011) A role for interleukin-2 trans-presentation in dendritic cell-mediated T cell activation in humans, as revealed by daclizumab therapy. Nat Med 17(5):604–609. doi:10.1038/nm.2365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Mnasria K, Lagaraine C, Velge-Roussel F, Oueslati R, Lebranchu Y, Baron C (2008) Anti-CD25 antibodies affect cytokine synthesis pattern of human dendritic cells and decrease their ability to prime allogeneic CD4+ T cells. J Leukoc Biol 84(2):460–467. doi:10.1189/jlb.1007712

    Article  CAS  PubMed  Google Scholar 

  204. Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27:519–550. doi:10.1146/annurev.immunol.021908.132612

    Article  CAS  PubMed  Google Scholar 

  205. Bernatsky S, Renoux C, Suissa S (2010) Demyelinating events in rheumatoid arthritis after drug exposures. Ann Rheum Dis 69(9):1691–1693. doi:10.1136/ard.2009.111500

    Article  CAS  PubMed  Google Scholar 

  206. Badovinac V, Mostarica-Stojkovic M, Dinarello CA, Stosic-Grujicic S (1998) Interleukin-1 receptor antagonist suppresses experimental autoimmune encephalomyelitis (EAE) in rats by influencing the activation and proliferation of encephalitogenic cells. J Neuroimmunol 85(1):87–95

    Article  CAS  PubMed  Google Scholar 

  207. Martin D, Near SL (1995) Protective effect of the interleukin-1 receptor antagonist (IL-1ra) on experimental allergic encephalomyelitis in rats. J Neuroimmunol 61(2):241–245

    Article  CAS  PubMed  Google Scholar 

  208. Tanaka T, Narazaki M, Kishimoto T (2011) Anti-interleukin-6 receptor antibody, tocilizumab, for the treatment of autoimmune diseases. FEBS Lett 585(23):3699–3709. doi:10.1016/j.febslet.2011.03.023

    Article  CAS  PubMed  Google Scholar 

  209. Behrens F, Tak PP, Ostergaard M, Stoilov R, Wiland P, Huizinga TW, Berenfus VY, Vladeva S, Rech J, Rubbert-Roth A, Korkosz M, Rekalov D, Zupanets IA, Ejbjerg BJ, Geiseler J, Fresenius J, Korolkiewicz RP, Schottelius AJ, Burkhardt H (2015) MOR103, a human monoclonal antibody to granulocyte-macrophage colony-stimulating factor, in the treatment of patients with moderate rheumatoid arthritis: results of a phase Ib/IIa randomised, double-blind, placebo-controlled, dose-escalation trial. Ann Rheum Dis 74(6):1058–1064. doi:10.1136/annrheumdis-2013-204816

    Article  PubMed  Google Scholar 

  210. Constantinescu CS, Asher A, Fryze W, Kozubski W, Wagner F, Aram J, Tanasescu R, Korolkiewicz RP, Dirnberger-Hertweck M, Steidl S, Libretto SE, Sprenger T, Radue EW (2015) Randomized phase 1b trial of MOR103, a human antibody to GM-CSF, in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm 2(4):e117. doi:10.1212/nxi.0000000000000117

    Article  PubMed  PubMed Central  Google Scholar 

  211. Salomon B, Bluestone JA (2001) Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu Rev Immunol 19:225–252. doi:10.1146/annurev.immunol.19.1.225

    Article  CAS  PubMed  Google Scholar 

  212. Bluestone JA, St Clair EW, Turka LA (2006) CTLA4Ig: bridging the basic immunology with clinical application. Immunity 24(3):233–238. doi:10.1016/j.immuni.2006.03.001

    Article  CAS  PubMed  Google Scholar 

  213. Weiner HL, Mackin GA, Matsui M, Orav EJ, Khoury SJ, Dawson DM, Hafler DA (1993) Double-blind pilot trial of oral tolerization with myelin antigens in multiple sclerosis. Science 259(5099):1321–1324

    Article  CAS  PubMed  Google Scholar 

  214. Meyer AL, Benson JM, Gienapp IE, Cox KL, Whitacre CC (1996) Suppression of murine chronic relapsing experimental autoimmune encephalomyelitis by the oral administration of myelin basic protein. J Immunol 157(9):4230–4238

    CAS  PubMed  Google Scholar 

  215. Nicholson LB, Greer JM, Sobel RA, Lees MB, Kuchroo VK (1995) An altered peptide ligand mediates immune deviation and prevents autoimmune encephalomyelitis. Immunity 3(4):397–405

    Article  CAS  PubMed  Google Scholar 

  216. Anderton SM, Manickasingham SP, Burkhart C, Luckcuck TA, Holland SJ, Lamont AG, Wraith DC (1998) Fine specificity of the myelin-reactive T cell repertoire: implications for TCR antagonism in autoimmunity. J Immunol 161(7):3357–3364

    CAS  PubMed  Google Scholar 

  217. Critchfield JM, Racke MK, Zuniga-Pflucker JC, Cannella B, Raine CS, Goverman J, Lenardo MJ (1994) T cell deletion in high antigen dose therapy of autoimmune encephalomyelitis. Science 263(5150):1139–1143

    Article  CAS  PubMed  Google Scholar 

  218. Elliott EA, McFarland HI, Nye SH, Cofiell R, Wilson TM, Wilkins JA, Squinto SP, Matis LA, Mueller JP (1996) Treatment of experimental encephalomyelitis with a novel chimeric fusion protein of myelin basic protein and proteolipid protein. J Clin Invest 98(7):1602–1612. doi:10.1172/jci118954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. McFarland HI, Lobito AA, Johnson MM, Palardy GR, Yee CS, Jordan EK, Frank JA, Tresser N, Genain CP, Mueller JP, Matis LA, Lenardo MJ (2001) Effective antigen-specific immunotherapy in the marmoset model of multiple sclerosis. J Immunol 166(3):2116–2121

    Article  CAS  PubMed  Google Scholar 

  220. Lopez-Diego RS, Weiner HL (2008) Novel therapeutic strategies for multiple sclerosis—a multifaceted adversary. Nat Rev Drug Discov 7(11):909–925. doi:10.1038/nrd2358

    Article  CAS  PubMed  Google Scholar 

  221. Warren KG, Catz I, Ferenczi LZ, Krantz MJ (2006) Intravenous synthetic peptide MBP8298 delayed disease progression in an HLA Class II-defined cohort of patients with progressive multiple sclerosis: results of a 24-month double-blind placebo-controlled clinical trial and 5 years of follow-up treatment. Eur J Neurol 13(8):887–895. doi:10.1111/j.1468-1331.2006.01533.x

    Article  CAS  PubMed  Google Scholar 

  222. Bar-Or A, Vollmer T, Antel J, Arnold DL, Bodner CA, Campagnolo D, Gianettoni J, Jalili F, Kachuck N, Lapierre Y, Niino M, Oger J, Price M, Rhodes S, Robinson WH, Shi FD, Utz PJ, Valone F, Weiner L, Steinman L, Garren H (2007) Induction of antigen-specific tolerance in multiple sclerosis after immunization with DNA encoding myelin basic protein in a randomized, placebo-controlled phase 1/2 trial. Arch Neurol 64(10):1407–1415. doi:10.1001/archneur.64.10.nct70002

    Article  PubMed  Google Scholar 

  223. Papadopoulou A, von Felten S, Traud S, Rahman A, Quan J, King R, Garren H, Steinman L, Cutter G, Kappos L, Radue EW (2012) Evolution of MS lesions to black holes under DNA vaccine treatment. J Neurol 259(7):1375–1382. doi:10.1007/s00415-011-6361-x

    Article  CAS  PubMed  Google Scholar 

  224. Menges M, Rossner S, Voigtlander C, Schindler H, Kukutsch NA, Bogdan C, Erb K, Schuler G, Lutz MB (2002) Repetitive injections of dendritic cells matured with tumor necrosis factor alpha induce antigen-specific protection of mice from autoimmunity. J Exp Med 195(1):15–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Tacken PJ, de Vries IJ, Gijzen K, Joosten B, Wu D, Rother RP, Faas SJ, Punt CJ, Torensma R, Adema GJ, Figdor CG (2005) Effective induction of naive and recall T-cell responses by targeting antigen to human dendritic cells via a humanized anti-DC-SIGN antibody. Blood 106(4):1278–1285. doi:10.1182/blood-2005-01-0318

    Article  CAS  PubMed  Google Scholar 

  226. Dudziak D, Kamphorst AO, Heidkamp GF, Buchholz VR, Trumpfheller C, Yamazaki S, Cheong C, Liu K, Lee HW, Park CG, Steinman RM, Nussenzweig MC (2007) Differential antigen processing by dendritic cell subsets in vivo. Science 315(5808):107–111. doi:10.1126/science.1136080

    Article  CAS  PubMed  Google Scholar 

  227. Meyer-Wentrup F, Benitez-Ribas D, Tacken PJ, Punt CJ, Figdor CG, de Vries IJ, Adema GJ (2008) Targeting DCIR on human plasmacytoid dendritic cells results in antigen presentation and inhibits IFN-alpha production. Blood 111(8):4245–4253. doi:10.1182/blood-2007-03-081398

    Article  CAS  PubMed  Google Scholar 

  228. Sancho D, Mourao-Sa D, Joffre OP, Schulz O, Rogers NC, Pennington DJ, Carlyle JR, Reis e Sousa C (2008) Tumor therapy in mice via antigen targeting to a novel. DC-restricted C-type lectin. J Clin Invest 118(6):2098–2110. doi:10.1172/jci34584

    CAS  PubMed  Google Scholar 

  229. Kaden SA, Kurig S, Vasters K, Hofmann K, Zaenker KS, Schmitz J, Winkels G (2009) Enhanced dendritic cell-induced immune responses mediated by the novel C-type lectin receptor mDCAR1. J Immunol 183(8):5069–5078. doi:10.4049/jimmunol.0900908

    Article  CAS  PubMed  Google Scholar 

  230. Ben-Nun A, Wekerle H, Cohen IR (1981) The rapid isolation of clonable antigen-specific T lymphocyte lines capable of mediating autoimmune encephalomyelitis. Eur J Immunol 11(3):195–199. doi:10.1002/eji.1830110307

    Article  CAS  PubMed  Google Scholar 

  231. Dzionek A, Sohma Y, Nagafune J, Cella M, Colonna M, Facchetti F, Gunther G, Johnston I, Lanzavecchia A, Nagasaka T, Okada T, Vermi W, Winkels G, Yamamoto T, Zysk M, Yamaguchi Y, Schmitz J (2001) BDCA-2, a novel plasmacytoid dendritic cell-specific type II C-type lectin, mediates antigen capture and is a potent inhibitor of interferon alpha/beta induction. J Exp Med 194(12):1823–1834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Mukhopadhaya A, Hanafusa T, Jarchum I, Chen YG, Iwai Y, Serreze DV, Steinman RM, Tarbell KV, DiLorenzo TP (2008) Selective delivery of beta cell antigen to dendritic cells in vivo leads to deletion and tolerance of autoreactive CD8+ T cells in NOD mice. Proc Natl Acad Sci U S A 105(17):6374–6379. doi:10.1073/pnas.0802644105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Hawiger D, Inaba K, Dorsett Y, Guo M, Mahnke K, Rivera M, Ravetch JV, Steinman RM, Nussenzweig MC (2001) Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J Exp Med 194(6):769–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Mahnke K, Qian Y, Knop J, Enk AH (2003) Induction of CD4+/CD25+ regulatory T cells by targeting of antigens to immature dendritic cells. Blood 101(12):4862–4869. doi:10.1182/blood-2002-10-3229

    Article  CAS  PubMed  Google Scholar 

  235. Tarbell KV, Petit L, Zuo X, Toy P, Luo X, Mqadmi A, Yang H, Suthanthiran M, Mojsov S, Steinman RM (2007) Dendritic cell-expanded, islet-specific CD4+ CD25+ CD62L+ regulatory T cells restore normoglycemia in diabetic NOD mice. J Exp Med 204(1):191–201. doi:10.1084/jem.20061631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Raiotach-Regue D, Grau-Lopez L, Naranjo-Gomez M, Ramo-Tello C, Pujol-Borrell R, Martinez-Caceres E, Borras FE (2012) Stable antigen-specific T-cell hyporesponsiveness induced by tolerogenic dendritic cells from multiple sclerosis patients. Eur J Immunol 42(3):771–782. doi:10.1002/eji.201141835

    Article  PubMed  CAS  Google Scholar 

  237. Filippi M, Rovaris M, Inglese M, Barkhof F, De Stefano N, Smith S, Comi G (2004) Interferon beta-1a for brain tissue loss in patients at presentation with syndromes suggestive of multiple sclerosis: a randomised, double-blind, placebo-controlled trial. Lancet 364(9444):1489–1496. doi:10.1016/S0140-6736(04)17271-1

    Article  CAS  PubMed  Google Scholar 

  238. Jacobs L, Rudick R, Simon J (2000) Extended observations on MS patients treated with IM interferon-beta1a (Avonex): implications for modern MS trials and therapeutics. J Neuroimmunol 107(2):167–173

    Article  CAS  PubMed  Google Scholar 

  239. Jacobs LD, Cookfair DL, Rudick RA, Herndon RM, Richert JR, Salazar AM, Fischer JS, Goodkin DE, Granger CV, Simon JH, Alam JJ, Bartoszak DM, Bourdette DN, Braiman J, Brownscheidle CM, Coats ME, Cohan SL, Dougherty DS, Kinkel RP, Mass MK, Munschauer FE 3rd, Priore RL, Pullicino PM, Scherokman BJ, Whitham RH et al (1996) Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG). Ann Neurol 39(3):285–294. doi:10.1002/ana.410390304

    Article  CAS  PubMed  Google Scholar 

  240. Kappos L, Freedman MS, Polman CH, Edan G, Hartung HP, Miller DH, Montalban X, Barkhof F, Radu EW, Bauer L, Dahms S, Lanius V, Pohl C, Sandbrink R, Group BS (2007) Effect of early versus delayed interferon beta-1b treatment on disability after a first clinical event suggestive of multiple sclerosis: a 3-year follow-up analysis of the BENEFIT study. Lancet 370(9585):389–397. doi:10.1016/S0140-6736(07)61194-5

    Article  CAS  PubMed  Google Scholar 

  241. Yen JH, Kong W, Ganea D (2010) IFN-beta inhibits dendritic cell migration through STAT-1-mediated transcriptional suppression of CCR7 and matrix metalloproteinase 9. J Immunol 184(7):3478–3486. doi:10.4049/jimmunol.0902542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Severa M, Rizzo F, Giacomini E, Annibali V, Gafa V, Romano S, Buscarinu MC, Fornasiero A, Salvetti M, Coccia EM (2015) IFN-beta therapy regulates TLR7-mediated response in plasmacytoid dendritic cells of multiple sclerosis patients influencing an anti-inflammatory status. J Interferon Cytokine Res 35(9):668–681. doi:10.1089/jir.2014.0207

    Article  CAS  PubMed  Google Scholar 

  243. Comi G, Filippi M, Wolinsky JS (2001) European/Canadian multicenter, double-blind, randomized, placebo-controlled study of the effects of glatiramer acetate on magnetic resonance imaging–measured disease activity and burden in patients with relapsing multiple sclerosis. European/Canadian Glatiramer Acetate Study Group. Ann Neurol 49(3):290–297

    Article  CAS  PubMed  Google Scholar 

  244. Filippi M, Rovaris M, Rocca MA, Sormani MP, Wolinsky JS, Comi G, European/Canadian Glatiramer Acetate Study Group (2001) Glatiramer acetate reduces the proportion of new MS lesions evolving into “black holes”. Neurology 57(4):731–733

    Article  CAS  PubMed  Google Scholar 

  245. Johnson KP, Brooks BR, Cohen JA, Ford CC, Goldstein J, Lisak RP, Myers LW, Panitch HS, Rose JW, Schiffer RB (1995) Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group. Neurology 45(7):1268–1276

    Article  CAS  PubMed  Google Scholar 

  246. Khan O, Shen Y, Bao F, Caon C, Tselis A, Latif Z, Zak I (2008) Long-term study of brain 1H-MRS study in multiple sclerosis: effect of glatiramer acetate therapy on axonal metabolic function and feasibility of long-Term H-MRS monitoring in multiple sclerosis. J Neuroimaging 18(3):314–319. doi:10.1111/j.1552-6569.2007.00206.x

    Article  PubMed  Google Scholar 

  247. Polman CH, O’Connor PW, Havrdova E, Hutchinson M, Kappos L, Miller DH, Phillips JT, Lublin FD, Giovannoni G, Wajgt A, Toal M, Lynn F, Panzara MA, Sandrock AW, AFFIRM Investigators (2006) A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 354(9):899–910. doi:10.1056/NEJMoa044397

    Article  CAS  PubMed  Google Scholar 

  248. Kappos L, Radue EW, O’Connor P, Polman C, Hohlfeld R, Calabresi P, Selmaj K, Agoropoulou C, Leyk M, Zhang-Auberson L, Burtin P, Group FS (2010) A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med 362(5):387–401. doi:10.1056/NEJMoa0909494

    Article  CAS  PubMed  Google Scholar 

  249. CAMMS223 Trial Investigators, Coles AJ, Compston DA, Selmaj KW, Lake SL, Moran S, Margolin DH, Norris K, Tandon PK (2008) Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. N Engl J Med 359(17):1786–1801. doi:10.1056/NEJMoa0802670

    Article  Google Scholar 

  250. Coles AJ, Fox E, Vladic A, Gazda SK, Brinar V, Selmaj KW, Skoromets A, Stolyarov I, Bass A, Sullivan H, Margolin DH, Lake SL, Moran S, Palmer J, Smith MS, Compston DA (2012) Alemtuzumab more effective than interferon beta-1a at 5-year follow-up of CAMMS223 clinical trial. Neurology 78(14):1069–1078. doi:10.1212/WNL.0b013e31824e8ee7

    Article  CAS  PubMed  Google Scholar 

  251. Coles AJ, Twyman CL, Arnold DL, Cohen JA, Confavreux C, Fox EJ, Hartung HP, Havrdova E, Selmaj KW, Weiner HL, Miller T, Fisher E, Sandbrink R, Lake SL, Margolin DH, Oyuela P, Panzara MA, Compston DA, CARE-MS II Investigators (2012) Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet 380(9856):1829–1839. doi:10.1016/S0140-6736(12)61768-1

    Article  CAS  PubMed  Google Scholar 

  252. Coles AJ (2010) Alemtuzumab long-term safety and efficacy: five years of the CAMMS223 trial. Mult Scler 16:S134–S135

    Google Scholar 

  253. Fox RJ, Miller DH, Phillips JT, Hutchinson M, Havrdova E, Kita M, Yang M, Raghupathi K, Novas M, Sweetser MT, Viglietta V, Dawson KT, CONFIRM Study Investigators (2012) Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med 367(12):1087–1097. doi:10.1056/NEJMoa1206328

    Article  CAS  PubMed  Google Scholar 

  254. Gold R, Kappos L, Arnold DL, Bar-Or A, Giovannoni G, Selmaj K, Tornatore C, Sweetser MT, Yang M, Sheikh SI, Dawson KT, DEFINE Study Investigators (2012) Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med 367(12):1098–1107. doi:10.1056/NEJMoa1114287

    Article  CAS  PubMed  Google Scholar 

  255. Kappos L, Gold R, Miller DH, Macmanus DG, Havrdova E, Limmroth V, Polman CH, Schmierer K, Yousry TA, Yang M, Eraksoy M, Meluzinova E, Rektor I, Dawson KT, Sandrock AW, O’Neill GN, BGPIS Investigators (2008) Efficacy and safety of oral fumarate in patients with relapsing-remitting multiple sclerosis: a multicentre, randomised, double-blind, placebo-controlled phase IIb study. Lancet 372(9648):1463–1472. doi:10.1016/S0140-6736(08)61619-0

    Article  CAS  PubMed  Google Scholar 

  256. Confavreux C, O’Connor P, Comi G, Freedman MS, Miller AE, Olsson TP, Wolinsky JS, Bagulho T, Delhay JL, Dukovic D, Truffinet P, Kappos L, Group TT (2014) Oral teriflunomide for patients with relapsing multiple sclerosis (TOWER): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol 13(3):247–256. doi:10.1016/S1474-4422(13)70308-9

    Article  CAS  PubMed  Google Scholar 

  257. O’Connor P, Wolinsky JS, Confavreux C, Comi G, Kappos L, Olsson TP, Benzerdjeb H, Truffinet P, Wang L, Miller A, Freedman MS, Group TT (2011) Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N Engl J Med 365(14):1293–1303. doi:10.1056/NEJMoa1014656

    Article  PubMed  Google Scholar 

  258. O’Connor PW, Li D, Freedman MS, Bar-Or A, Rice GP, Confavreux C, Paty DW, Stewart JA, Scheyer R, Teriflunomide Multiple Sclerosis Trial Group, University of British Columbia MSMRIRG (2006) A phase II study of the safety and efficacy of teriflunomide in multiple sclerosis with relapses. Neurology 66(6):894–900. doi:10.1212/01.wnl.0000203121.04509.31

    Article  PubMed  CAS  Google Scholar 

  259. Edan G, Comi G, Le Page E, Leray E, Rocca MA, Filippi M, French-Italian Mitoxantrone Interferon-beta-1b Trial Group (2011) Mitoxantrone prior to interferon beta-1b in aggressive relapsing multiple sclerosis: a 3-year randomised trial. J Neurol Neurosurg Psychiatry 82(12):1344–1350. doi:10.1136/jnnp.2010.229724

    Article  CAS  PubMed  Google Scholar 

  260. Hartung HP, Gonsette R, Konig N, Kwiecinski H, Guseo A, Morrissey SP, Krapf H, Zwingers T, Mitoxantrone in Multiple Sclerosis Study Group (2002) Mitoxantrone in progressive multiple sclerosis: a placebo-controlled, double-blind, randomised, multicentre trial. Lancet 360(9350):2018–2025. doi:10.1016/S0140-6736(02)12023-X

    Article  PubMed  Google Scholar 

  261. Aharoni R, Saada R, Eilam R, Hayardeny L, Sela M, Arnon R (2012) Oral treatment with laquinimod augments regulatory T-cells and brain-derived neurotrophic factor expression and reduces injury in the CNS of mice with experimental autoimmune encephalomyelitis. J Neuroimmunol 251(1–2):14–24. doi:10.1016/j.jneuroim.2012.06.005

    Article  CAS  PubMed  Google Scholar 

  262. Xu GF, Zhang LS, Li LJ, Yi LC, Zeng PY, Wu CY (2012) The immune effects of rituximab on dendritic cells derived from patients with primary immune thrombocytopenia. Zhonghua Xue Ye Xue Za Zhi 33(3):207–210

    PubMed  Google Scholar 

  263. Palanichamy A, Jahn S, Nickles D, Derstine M, Abounasr A, Hauser SL, Baranzini SE, Leppert D, von Budingen HC (2014) Rituximab efficiently depletes increased CD20-expressing T cells in multiple sclerosis patients. J Immunol 193(2):580–586. doi:10.4049/jimmunol.1400118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Wiendl H, Gross CC (2013) Modulation of IL-2Ralpha with daclizumab for treatment of multiple sclerosis. Nat Rev Neurol 9(7):394–404. doi:10.1038/nrneurol.2013.95

    Article  CAS  PubMed  Google Scholar 

  265. Autissier P, Soulas C, Burdo TH, Williams KC (2010) Immunophenotyping of lymphocyte, monocyte and dendritic cell subsets in normal rhesus macaques by 12-color flow cytometry: clarification on DC heterogeneity. J Immunol Methods 360(1–2):119–128. doi:10.1016/j.jim.2010.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Coates PT, Barratt-Boyes SM, Zhang L, Donnenberg VS, O’Connell PJ, Logar AJ, Duncan FJ, Murphey-Corb M, Donnenberg AD, Morelli AE, Maliszewski CR, Thomson AW (2003) Dendritic cell subsets in blood and lymphoid tissue of rhesus monkeys and their mobilization with Flt3 ligand. Blood 102(7):2513–2521. doi:10.1182/blood-2002-09-2929

    Article  CAS  PubMed  Google Scholar 

  267. Barratt-Boyes SM, Brown KN, Melhem N, Soloff AC, Gleason SM (2006) Understanding and exploiting dendritic cells in human immunodeficiency virus infection using the nonhuman primate model. Immunol Res 36(1–3):265–274. doi:10.1385/IR:36:1:265

    Article  CAS  PubMed  Google Scholar 

  268. Hochrein H, O’Keeffe M, Wagner H (2002) Human and mouse plasmacytoid dendritic cells. Hum Immunol 63(12):1103–1110

    Article  CAS  PubMed  Google Scholar 

  269. Caminschi I, Proietto AI, Ahmet F, Kitsoulis S, Shin Teh J, Lo JC, Rizzitelli A, Wu L, Vremec D, van Dommelen SL, Campbell IK, Maraskovsky E, Braley H, Davey GM, Mottram P, van de Velde N, Jensen K, Lew AM, Wright MD, Heath WR, Shortman K, Lahoud MH (2008) The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement. Blood 112(8):3264–3273. doi:10.1182/blood-2008-05-155176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Poulin LF, Salio M, Griessinger E, Anjos-Afonso F, Craciun L, Chen JL, Keller AM, Joffre O, Zelenay S, Nye E, Le Moine A, Faure F, Donckier V, Sancho D, Cerundolo V, Bonnet D, Reis e Sousa C (2010) Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells. J Exp Med 207(6):1261–1271. doi:10.1084/jem.20092618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Schreibelt G, Klinkenberg LJ, Cruz LJ, Tacken PJ, Tel J, Kreutz M, Adema GJ, Brown GD, Figdor CG, de Vries IJ (2012) The C-type lectin receptor CLEC9A mediates antigen uptake and (cross-)presentation by human blood BDCA3+ myeloid dendritic cells. Blood 119(10):2284–2292. doi:10.1182/blood-2011-08-373944

    Article  CAS  PubMed  Google Scholar 

  272. Yang J, Zhang L, Yu C, Yang XF, Wang H (2014) Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res 2(1):1. doi:10.1186/2050-7771-2-1

    Article  PubMed  PubMed Central  Google Scholar 

  273. Prinz M, Priller J, Sisodia SS, Ransohoff RM (2011) Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nat Neurosci 14(10):1227–1235. doi:10.1038/nn.2923

    Article  CAS  PubMed  Google Scholar 

  274. Chhor V, Le Charpentier T, Lebon S, Ore MV, Celador IL, Josserand J, Degos V, Jacotot E, Hagberg H, Savman K, Mallard C, Gressens P, Fleiss B (2013) Characterization of phenotype markers and neuronotoxic potential of polarised primary microglia in vitro. Brain Behav Immun 32:70–85. doi:10.1016/j.bbi.2013.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Crain JM, Nikodemova M, Watters JJ (2013) Microglia express distinct M1 and M2 phenotypic markers in the postnatal and adult central nervous system in male and female mice. J Neurosci Res 91(9):1143–1151. doi:10.1002/jnr.23242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Prokop S, Heppner FL, Goebel HH, Stenzel W (2011) M2 polarized macrophages and giant cells contribute to myofibrosis in neuromuscular sarcoidosis. Am J Pathol 178(3):1279–1286. doi:10.1016/j.ajpath.2010.11.065

    Article  PubMed  PubMed Central  Google Scholar 

  277. Andersson A, Kokkola R, Wefer J, Erlandsson-Harris H, Harris RA (2004) Differential macrophage expression of IL-12 and IL-23 upon innate immune activation defines rat autoimmune susceptibility. J Leukoc Biol 76(6):1118–1124. doi:10.1189/jlb.0704385

    Article  CAS  PubMed  Google Scholar 

  278. Becher B, Durell BG, Noelle RJ (2003) IL-23 produced by CNS-resident cells controls T cell encephalitogenicity during the effector phase of experimental autoimmune encephalomyelitis. J Clin Invest 112(8):1186–1191. doi:10.1172/JCI19079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. David S, Kroner A (2011) Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 12(7):388–399. doi:10.1038/nrn3053

    Article  CAS  PubMed  Google Scholar 

  280. Kawanokuchi J, Mizuno T, Takeuchi H, Kato H, Wang J, Mitsuma N, Suzumura A (2006) Production of interferon-gamma by microglia. Mult Scler 12(5):558–564

    Article  CAS  PubMed  Google Scholar 

  281. Hide I, Tanaka M, Inoue A, Nakajima K, Kohsaka S, Inoue K, Nakata Y (2000) Extracellular ATP triggers tumor necrosis factor-alpha release from rat microglia. J Neurochem 75(3):965–972

    Article  CAS  PubMed  Google Scholar 

  282. Welser-Alves JV, Milner R (2013) Microglia are the major source of TNF-alpha and TGF-beta1 in postnatal glial cultures; regulation by cytokines, lipopolysaccharide, and vitronectin. Neurochem Int 63(1):47–53. doi:10.1016/j.neuint.2013.04.007

    Article  CAS  PubMed  Google Scholar 

  283. Jaguin M, Houlbert N, Fardel O, Lecureur V (2013) Polarization profiles of human M-CSF-generated macrophages and comparison of M1-markers in classically activated macrophages from GM-CSF and M-CSF origin. Cell Immunol 281(1):51–61. doi:10.1016/j.cellimm.2013.01.010

    Article  CAS  PubMed  Google Scholar 

  284. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958–969. doi:10.1038/nri2448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Kroner A, Greenhalgh AD, Zarruk JG, Passos Dos Santos R, Gaestel M, David S (2014) TNF and increased intracellular iron alter macrophage polarization to a detrimental M1 phenotype in the injured spinal cord. Neuron 83(5):1098–1116. doi:10.1016/j.neuron.2014.07.027

    Article  CAS  PubMed  Google Scholar 

  286. Perego C, Fumagalli S, De Simoni MG (2011) Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. J Neuroinflammation 8:174. doi:10.1186/1742-2094-8-174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Fenn AM, Henry CJ, Huang Y, Dugan A, Godbout JP (2012) Lipopolysaccharide-induced interleukin (IL)-4 receptor-alpha expression and corresponding sensitivity to the M2 promoting effects of IL-4 are impaired in microglia of aged mice. Brain Behav Immun 26(5):766–777. doi:10.1016/j.bbi.2011.10.003

    Article  CAS  PubMed  Google Scholar 

  288. Hanisch UK (2013) Functional diversity of microglia—how heterogeneous are they to begin with? Front Cell Neurosci 7:65. doi:10.3389/fncel.2013.00065

    Article  PubMed  PubMed Central  Google Scholar 

  289. Blain KY, Kwiatkowski W, Zhao Q, La Fleur D, Naik C, Chun TW, Tsareva T, Kanakaraj P, Laird MW, Shah R, George L, Sanyal I, Moore PA, Demeler B, Choe S (2007) Structural and functional characterization of CC chemokine CCL14. Biochemistry 46(35):10008–10015. doi:10.1021/bi700936w

    Article  CAS  PubMed  Google Scholar 

  290. Columba-Cabezas S, Serafini B, Ambrosini E, Sanchez M, Penna G, Adorini L, Aloisi F (2002) Induction of macrophage-derived chemokine/CCL22 expression in experimental autoimmune encephalomyelitis and cultured microglia: implications for disease regulation. J Neuroimmunol 130(1–2):10–21

    Article  CAS  PubMed  Google Scholar 

  291. Hu X, Li P, Guo Y, Wang H, Leak RK, Chen S, Gao Y, Chen J (2012) Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 43(11):3063–3070. doi:10.1161/STROKEAHA.112.659656

    Article  CAS  PubMed  Google Scholar 

  292. Corraliza IM, Soler G, Eichmann K, Modolell M (1995) Arginase induction by suppressors of nitric oxide synthesis (IL-4, IL-10 and PGE2) in murine bone-marrow-derived macrophages. Biochem Biophys Res Commun 206(2):667–673. doi:10.1006/bbrc.1995.1094

    Article  CAS  PubMed  Google Scholar 

  293. Munder M (2009) Arginase: an emerging key player in the mammalian immune system. Br J Pharmacol 158(3):638–651. doi:10.1111/j.1476-5381.2009.00291.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Raes G, De Baetselier P, Noel W, Beschin A, Brombacher F, Hassanzadeh GhG (2002) Differential expression of FIZZ1 and Ym1 in alternatively versus classically activated macrophages. J Leukoc Biol 71(4):597–602

    CAS  PubMed  Google Scholar 

  295. Raes G, Van den Bergh R, De Baetselier P, Ghassabeh GH, Scotton C, Locati M, Mantovani A, Sozzani S (2005) Arginase-1 and Ym1 are markers for murine, but not human, alternatively activated myeloid cells. J Immunol 174(11):6561 (author reply 6561–6562)

    Article  CAS  PubMed  Google Scholar 

  296. Spence S, Fitzsimons A, Boyd CR, Kessler J, Fitzgerald D, Elliott J, Gabhann JN, Smith S, Sica A, Hams E, Saunders SP, Jefferies CA, Fallon PG, McAuley DF, Kissenpfennig A, Johnston JA (2013) Suppressors of cytokine signaling 2 and 3 diametrically control macrophage polarization. Immunity 38(1):66–78. doi:10.1016/j.immuni.2012.09.013

    Article  CAS  PubMed  Google Scholar 

  297. Relloso M, Puig-Kroger A, Pello OM, Rodriguez-Fernandez JL, de la Rosa G, Longo N, Navarro J, Munoz-Fernandez MA, Sanchez-Mateos P, Corbi AL (2002) DC-SIGN (CD209) expression is IL-4 dependent and is negatively regulated by IFN, TGF-beta, and anti-inflammatory agents. J Immunol 168(6):2634–2643

    Article  CAS  PubMed  Google Scholar 

  298. Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguero EG, Wieghofer P, Heinrich A, Riemke P, Holscher C, Muller DN, Luckow B, Brocker T, Debowski K, Fritz G, Opdenakker G, Diefenbach A, Biber K, Heikenwalder M, Geissmann F, Rosenbauer F, Prinz M (2013) Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci 16(3):273–280. doi:10.1038/nn.3318

    Article  CAS  PubMed  Google Scholar 

  299. Bruttger J, Karram K, Wortge S, Regen T, Marini F, Hoppmann N, Klein M, Blank T, Yona S, Wolf Y, Mack M, Pinteaux E, Muller W, Zipp F, Binder H, Bopp T, Prinz M, Jung S, Waisman A (2015) Genetic cell ablation reveals clusters of local self-renewing microglia in the mammalian central nervous system. Immunity 43(1):92–106. doi:10.1016/j.immuni.2015.06.012

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Our group’s original data presented in this review was supported by the German Research Foundation (DFG, SFB-TR 128/B4 to F.Z.), and by the Johannes Gutenberg-University Mainz (JGU, MAIFOR to F.L.). We thank Dr. Darragh O’Neill for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Felix Lüssi or Esther Witsch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lüssi, F., Zipp, F. & Witsch, E. Dendritic cells as therapeutic targets in neuroinflammation. Cell. Mol. Life Sci. 73, 2425–2450 (2016). https://doi.org/10.1007/s00018-016-2170-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2170-9

Keywords

Navigation