Skip to main content

Advertisement

Log in

TUFM downregulation induces epithelial–mesenchymal transition and invasion in lung cancer cells via a mechanism involving AMPK-GSK3β signaling

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Mitochondrial dysfunction and epithelial-to-mesenchymal transition (EMT) play important roles in cancer development and metastasis. However, very little is known about the connection between mitochondrial dysfunction and EMT. Tu translation elongation factor, mitochondrial (TUFM), a key factor in the translational expression of mitochondrial DNA, plays an important role in the control of mitochondrial function. Here, we show that TUFM is downregulated in human cancer tissues. TUFM expression level was positively correlated with that of E-cadherin and decreased significantly during the progression of human lung cancer. TUFM knockdown induced EMT, reduced mitochondrial respiratory chain activity, and increased glycolytic function and the production of reactive oxygen species (ROS). Mechanistically, TUFM knockdown activated AMPK and phosphorylated GSK3β and increased the nuclear accumulation of β-catenin, leading to the induction of EMT and increased migration and metastasis of A549 lung cancer cells. Although TUFM knockdown also induced EMT of MCF7 breast cancer cells, the underlying mechanism appeared somewhat different from that in lung cancer cells. Our work identifies TUFM as a novel regulator of EMT and suggests a molecular link between mitochondrial dysfunction and EMT induction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

EMT:

Epithelial-to-mesenchymal transition

TUFM:

Tu translation elongation factor, mitochondrial

GLUT1:

Glucose transporter 1

GLUT4:

Glucose transporter 4

LDHA:

Lactate dehydrogenase A

ECAR:

Extracellular acidification rate

2-DG:

2-Deoxyglucose

AMPK:

AMP-activated protein kinase

GSK3β:

Glycogen synthase kinase 3β

ACC:

Acetyl-CoA carboxylase

AXIN2:

Axis inhibition protein 2

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

CTCs:

Circulating tumor cells

References

  1. Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283(5407):1482–1488

    Article  CAS  PubMed  Google Scholar 

  2. Ohsawa S, Sato Y, Enomoto M, Nakamura M, Betsumiya A, Igaki T (2012) Mitochondrial defect drives non-autonomous tumour progression through Hippo signalling in Drosophila. Nature 490(7421):547–551. doi:10.1038/nature11452

    Article  CAS  PubMed  Google Scholar 

  3. Modica-Napolitano JS, Singh KK (2004) Mitochondrial dysfunction in cancer. Mitochondrion 4(5–6):755–762

    Article  CAS  PubMed  Google Scholar 

  4. Brandon M, Baldi P, Wallace DC (2006) Mitochondrial mutations in cancer. Oncogene 25(34):4647–4662

    Article  CAS  PubMed  Google Scholar 

  5. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial–mesenchymal transitions in development and disease. Cell 139(5):871–890. doi:10.1016/j.cell.2009.11.007

    Article  CAS  PubMed  Google Scholar 

  6. Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol 15(3):178–196. doi:10.1038/nrm3758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lu X, Kang Y (2010) Hypoxia and hypoxia-inducible factors: master regulators of metastasis. Clin Cancer Res 16(24):5928–5935. doi:10.1158/1078-0432.CCR-10-1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Giannoni E, Parri M, Chiarugi P (2012) EMT and oxidative stress: a bidirectional interplay affecting tumor malignancy. Antioxid Redox Signal 16(11):1248–1263. doi:10.1089/ars.2011.4280

    Article  CAS  PubMed  Google Scholar 

  9. Guha M, Srinivasan S, Ruthel G, Kashina AK, Carstens RP, Mendoza A et al (2014) Mitochondrial retrograde signaling induces epithelial–mesenchymal transition and generates breast cancer stem cells. Oncogene 33(45):5238–5250. doi:10.1038/onc.2013.467

    Article  CAS  PubMed  Google Scholar 

  10. Favre C, Zhdanov A, Leahy M, Papkovsky D, O’Connor R (2010) Mitochondrial pyrimidine nucleotide carrier (PNC1) regulates mitochondrial biogenesis and the invasive phenotype of cancer cells. Oncogene 29(27):3964–3976. doi:10.1038/onc.2010.146

    Article  CAS  PubMed  Google Scholar 

  11. Yoon YS, Lee JH, Hwang SC, Choi KS, Yoon G (2005) TGFβ1 induces prolonged mitochondrial ROS generation through decreased complex IV activity with senescent arrest in Mv1Lu cells. Oncogene 24(11):1895–1903

    Article  CAS  PubMed  Google Scholar 

  12. Lee SY, Jeon HM, Ju MK, Kim CH, Yoon G, Han SI et al (2012) Wnt/Snail signaling regulates cytochrome C oxidase and glucose metabolism. Cancer Res 72(14):3607–3617. doi:10.1158/0008-5472

    Article  CAS  PubMed  Google Scholar 

  13. Yuan Y, Chen Y, Zhang P, Huang S, Zhu C, Ding G et al (2012) Mitochondrial dysfunction accounts for aldosterone-induced epithelial-to-mesenchymal transition of renal proximal tubular epithelial cells. Free Radic Biol Med 53(1):30–43. doi:10.1016/j.freeradbiomed.2012.03.015

    Article  CAS  PubMed  Google Scholar 

  14. Christian BE, Spremulli LL (2012) Mechanism of protein biosynthesis in mammalian mitochondria. Biochim Biophys Acta. Biochim Biophys Acta 1819(9–10):1035–1054. doi:10.1016/j.bbagrm.2011.11.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang KH, Tian HY, Gao X, Lei WW, Hu Y, Wang DM et al (2009) Ferritin heavy chain-mediated iron homeostasis and subsequent increased reactive oxygen species production are essential for epithelial–mesenchymal transition. Cancer Res 69(13):5340–5348. doi:10.1158/0008-5472.CAN-09-0112

    Article  CAS  PubMed  Google Scholar 

  16. Hu Y, He K, Wang D, Yuan X, Liu Y, Ji H et al (2013) TMEPAI regulates EMT in lung cancer cells by modulating the ROS and IRS-1 signaling pathways. Carcinogenesis 34(8):1764–1772. doi:10.1093/carcin/bgt132

    Article  CAS  PubMed  Google Scholar 

  17. Shi J, Wang DM, Wang CM, Hu Y, Liu AH, Zhang YL et al (2009) Insulin receptor substrate-1 suppresses transforming growth factor-β1-mediated epithelial–mesenchymal transition. Cancer Res 69(18):7180–7187. doi:10.1158/0008-5472.CAN-08-4470

    Article  CAS  PubMed  Google Scholar 

  18. Tiscornia G, Singer O, Verma IM (2006) Production and purification of lentiviral vectors. Nat Protoc 1(1):241–245

    Article  CAS  PubMed  Google Scholar 

  19. Wang Z, Fan M, Candas D, Zhang TQ, Qin L, Eldridge A et al (2014) Cyclin B1/Cdk1 coordinates mitochondrial respiration for cell-cycle G2/M progression. Dev Cell 29(2):217–232. doi:10.1016/j.devcel.2014.03.012

    Article  PubMed  PubMed Central  Google Scholar 

  20. Skrtic M, Sriskanthadevan S, Jhas B, Gebbia M, Wang X, Wang Z et al (2011) Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell 20(5):674–688. doi:10.1016/j.ccr.2011.10.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li N, Ragheb K, Lawler G, Sturgis J, Rajwa B, Melendez JA et al (2003) Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem 278(10):8516–8525

    Article  CAS  PubMed  Google Scholar 

  22. Park WH, Han YW, Kim SH, Kim SZ (2007) An ROS generator, antimycin A, inhibits the growth of HeLa cells via apoptosis. J Cell Biochem 102(1):98–109

    Article  CAS  PubMed  Google Scholar 

  23. Qu J, Miao H, Ma Y, Guo F, Deng J, Wei X et al (2014) Loss of Abhd5 promotes colorectal tumor development and progression by inducing aerobic glycolysis and epithelial–mesenchymal transition. Cell Rep 9(5):1798–1811. doi:10.1016/j.celrep.2014.11.016

    Article  Google Scholar 

  24. Kahn BB, Alquier T, Carling D, Hardie DG (2005) AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 1(1):15–25

    Article  CAS  PubMed  Google Scholar 

  25. Hardie DG, Salt IP, Hawley SA, Davies SP (1999) AMP-activated protein kinase: an ultrasensitive system for monitoring cellular energy charge. Biochem J 338(Pt3):717–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang X, Pan X, Song J (2010) AMP-activated protein kinase is required for induction of apoptosis and epithelial-to-mesenchymal transition. Cell Signal 22(11):1790–1797. doi:10.1016/j.cellsig.2010.07.008

    Article  CAS  PubMed  Google Scholar 

  27. Landis J, Shaw LM (2014) Insulin receptor substrate 2-mediated phosphatidylinositol 3-kinase signaling selectively inhibits glycogen synthase kinase 3β to regulate aerobic glycolysis. J Biol Chem 289(26):18603–18613. doi:10.1074/jbc.M114.564070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gonzalez DM, Medici D (2014) Signaling mechanisms of the epithelial–mesenchymal transition. Sci Signal 7(344):re8. doi:10.1126/scisignal.2005189

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kim K, Lu Z, Hay ED (2002) Direct evidence for a role of β-catenin/LEF-1 signaling pathway in induction of EMT. Cell Biol Int 26(5):463–476

    Article  CAS  PubMed  Google Scholar 

  30. Moro L, Arbini AA, Yao JL, di Sant’Agnese PA, Marra E, Greco M (2009) Mitochondrial DNA depletion in prostate epithelial cells promotes anoikis resistance and invasion through activation of PI3 K/Akt2. Cell Death Differ 16(4):571–583. doi:10.1038/cdd.2008.178

    Article  CAS  PubMed  Google Scholar 

  31. Kamarajugadda S, Stemboroski Cai Q, Simpson NE, Nayak S, Tan M et al (2012) Glucose oxidation modulates anoikis and tumor metastasis. Mol Cell Biol 32(10):1893–1907. doi:10.1128/MCB.06248-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Burstyn-Cohen T, Kalcheim C (2002) Association between the cell cycle and neural crest delamination through specific regulation of G1/S transition. Dev Cell 3(3):383–395

    Article  CAS  PubMed  Google Scholar 

  33. Yang Y, Pan X, Lei W, Wang J, Song J (2006) Transforming growth factor-β1 induces epithelial-to-mesenchymal transition and apoptosis via a cell cycle-dependent mechanism. Oncogene 25(55):7235–7244

    Article  CAS  PubMed  Google Scholar 

  34. Vega S, Morales AV, Ocana OH, Valdes F, Fabregat I, Nieto MA (2004) Snail blocks the cell cycle and confers resistance to cell death. Genes Dev 18(10):1131–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Urasaki Y, Heath L, Xu CW (2012) Coupling of glucose deprivation with impaired histone H2B monoubiquitination in tumors. PLoS ONE 7(5):e36775. doi:10.1371/journal.pone.0036775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hirayama A, Kami K, Sugimoto M, Sugawara M, Toki N, Onozuka H et al (2009) Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res 69(11):4918–4925. doi:10.1158/0008-5472.CAN-08-4806

    Article  CAS  PubMed  Google Scholar 

  37. Birsoy K, Possemato R, Lorbeer FK, Bayraktar EC, Thiru P, Yucel B et al (2014) Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. Nature 508(7494):108–112. doi:10.1038/nature13110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gomes AP, Price NL, Ling AJ, Moslehi JJ, Montgomery MK, Rajman L et al (2013) Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155(7):1624–1638. doi:10.1016/j.cell.2013.11.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Johnson KR, Zheng QY, Bykhovskaya Y, Spirina O, Fischel-Ghodsian N (2001) A nuclear-mitochondrial DNA interaction affecting hearing impairment in mice. Nat Genet 27(2):191–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Roubertoux PL, Sluyter F, Carlier M, Marcet B, Maarouf-Veray F, Cherif C et al (2003) Mitochondrial DNA modifies cognition in interaction with the nuclear genome and age in mice. Nat Genet 35(1):65–69

    Article  CAS  PubMed  Google Scholar 

  41. Jeon SM, Chandel NS, Hay N (2012) AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 485(7400):661–665. doi:10.1038/nature11066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang W, Zheng Y, Xia Y, Ji H, Chen X, Guo F, Lyssiotis CA, Aldape K, Cantley LC, Lu Z (2012) ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat Cell Biol 14(12):1295–1304. doi:10.1038/ncb2629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shin SM, Cho IJ, Kim SG (2009) Resveratrol protects mitochondria against oxidative stress through AMP-activated protein kinase-mediated glycogen synthase kinase-3β inhibition downstream of poly(ADP-ribose)polymerase-LKB1 pathway. Mol Pharmacol 76(4):884–895. doi:10.1124/mol.109.058479

    Article  CAS  PubMed  Google Scholar 

  44. Choi SH, Kim YW, Kim SG (2010) AMPK-mediated GSK3β inhibition by isoliquiritigenin contributes to protecting mitochondria against iron-catalyzed oxidative stress. Biochem Pharmacol 79(9):1352–1362. doi:10.1016/j.bcp.2009.12.011

    Article  CAS  PubMed  Google Scholar 

  45. BE Fitzwalter, Thorburn A (2015) Recent insights into cell death and autophagy. FEBS J. Sep 14. doi: 10.1111/febs.13515 (Epub ahead of print)

  46. Cicchini M, Karantza V, Xia B (2015) Molecular pathways: autophagy in cancer—a matter of timing and context. Clin Cancer Res 21(3):498–504. doi:10.1158/1078-0432.CCR-13-2438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liang J, Xu ZX, Ding Z, Lu Y, Yu Q, Werle KD et al (2015) Myristoylation confers noncanonical AMPK functions in autophagy selectivity and mitochondrial surveillance. Nat Commun 6:7926. doi:10.1038/ncomms8926

    Article  CAS  PubMed  Google Scholar 

  48. Li J, Yang B, Zhou Q, Wu Y, Shang D, Guo Y et al (2013) Autophagy promotes hepatocellular carcinoma cell invasion through activation of epithelial–mesenchymal transition. Carcinogenesis 34(6):1343–1351. doi:10.1093/carcin/bgt063

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. Yunneng Tang, Guangwen Shu, and other members of the laboratory for their critical comments and insightful discussions. This work was supported by the National Science Foundation of China (81472603) and the Chinese Ministry of Science and Technology (2011CB966200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Song.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Kai He and Xiaojie Guo have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 9587 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, K., Guo, X., Liu, Y. et al. TUFM downregulation induces epithelial–mesenchymal transition and invasion in lung cancer cells via a mechanism involving AMPK-GSK3β signaling. Cell. Mol. Life Sci. 73, 2105–2121 (2016). https://doi.org/10.1007/s00018-015-2122-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-2122-9

Keywords

Navigation