Skip to main content
Log in

Neural map formation and sensory coding in the vomeronasal system

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Sensory systems enable us to encode a clear representation of our environment in the nervous system by spatially organizing sensory stimuli being received. The organization of neural circuitry to form a map of sensory activation is critical for the interpretation of these sensory stimuli. In rodents, social communication relies strongly on the detection of chemosignals by the vomeronasal system, which regulates a wide array of behaviours, including mate recognition, reproduction, and aggression. The binding of these chemosignals to receptors on vomeronasal sensory neurons leads to activation of second-order neurons within glomeruli of the accessory olfactory bulb. Here, vomeronasal receptor activation by a stimulus is organized into maps of glomerular activation that represent phenotypic qualities of the stimuli detected. Genetic, electrophysiological and imaging studies have shed light on the principles underlying cell connectivity and sensory map formation in the vomeronasal system, and have revealed important differences in sensory coding between the vomeronasal and main olfactory system. In this review, we summarize the key factors and mechanisms that dictate circuit formation and sensory coding logic in the vomeronasal system, emphasizing differences with the main olfactory system. Furthermore, we discuss how detection of chemosignals by the vomeronasal system regulates social behaviour in mice, specifically aggression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Boehm U, Zou Z, Buck LB (2005) Feedback loops link odor and pheromone signaling with reproduction. Cell 123(4):683–695

    Article  CAS  PubMed  Google Scholar 

  2. Keller M, Douhard Q, Baum MJ, Bakker J (2006) Destruction of the main olfactory epithelium reduces female sexual behavior and olfactory investigation in female mice. Chem Senses 31(4):315–323

    Article  PubMed Central  PubMed  Google Scholar 

  3. Spehr M, Kelliher KR, Li X-H, Boehm T, Leinders-Zufall T, Zufall F (2006) Essential role of the main olfactory system in social recognition of major histocompatibility complex peptide ligands. J Neurosci 26(7):1961–1970

    Article  CAS  PubMed  Google Scholar 

  4. Yoon H, Enquist L, Dulac C (2005) Olfactory inputs to hypothalamic neurons controlling reproduction and fertility. Cell 123(4):669–682

    Article  CAS  PubMed  Google Scholar 

  5. Zhang S-Z, Block E, Katz LC (2005) Encoding social signals in the mouse main olfactory bulb. Nature 434(7032):470–477

    Article  PubMed  CAS  Google Scholar 

  6. Keller M, Baum MJ, Brock O, Brennan PA, Bakker J (2009) The main and the accessory olfactory systems interact in the control of mate recognition and sexual behavior. Behav Brain Res 200(2):268–276

    Article  PubMed  Google Scholar 

  7. Stowers L, Cameron P, Keller JA (2013) Ominous odors: olfactory control of instinctive fear and aggression in mice. Curr Opin Neurobiol 23(3):339–345

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Matsuo T, Hattori T, Asaba A, Inoue N, Kanomata N, Kikusui T, Kobayakawa R, Kobayakawa K (2015) Genetic dissection of pheromone processing reveals main olfactory system-mediated social behaviors in mice. Proc Natl Acad Sci 112(3):E311–E320

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65(1):175–187

    Article  CAS  PubMed  Google Scholar 

  10. Mombaerts P, Wang F, Dulac C, Chao SK, Nemes A, Mendelsohn M, Edmondson J, Axel R (1996) Visualizing an olfactory sensory map. Cell 87(4):675–686

    Article  CAS  PubMed  Google Scholar 

  11. Chess A, Simon I, Cedar H, Axel R (1994) Allelic inactivation regulates olfactory receptor gene expression. Cell 78(5):823–834

    Article  CAS  PubMed  Google Scholar 

  12. Malnic B, Hirono J, Sato T, Buck LB (1999) Combinatorial receptor codes for odors. Cell 96(5):713–723

    Article  CAS  PubMed  Google Scholar 

  13. Block E, Jang S, Matsunami H, Sekharan S, Dethier B, Ertem MZ, Gundala S, Pan Y, Li S, Li Z (2015) Implausibility of the vibrational theory of olfaction. Proc Natl Acad Sci 112(21):E2766–E2774

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Haga S, Hattori T, Sato T, Sato K, Matsuda S, Kobayakawa R, Sakano H, Yoshihara Y, Kikusui T, Touhara K (2010) The male mouse pheromone ESP1 enhances female sexual receptive behaviour through a specific vomeronasal receptor. Nature 466(7302):118–122

    Article  CAS  PubMed  Google Scholar 

  15. Leinders-Zufall T, Lane AP, Puche AC, Ma W, Novotny MV, Shipley MT, Zufall F (2000) Ultrasensitive pheromone detection by mammalian vomeronasal neurons. Nature 405(6788):792–796

    Article  CAS  PubMed  Google Scholar 

  16. Nodari F, Hsu F-F, Fu X, Holekamp TF, Kao L-F, Turk J, Holy TE (2008) Sulfated steroids as natural ligands of mouse pheromone-sensing neurons. J Neurosci 28(25):6407–6418

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Dulac C (2000) Sensory coding of pheromone signals in mammals. Curr Opin Neurobiol 10(4):511–518

    Article  CAS  PubMed  Google Scholar 

  18. Halpern M (1987) The organization and function of the vomeronasal system. Annu Rev Neurosci 10(1):325–362

    Article  CAS  PubMed  Google Scholar 

  19. Dulac C, Axel R (1995) A novel family of genes encoding putative pheromone receptors in mammals. Cell 83(2):195–206

    Article  CAS  PubMed  Google Scholar 

  20. Martini S, Silvotti L, Shirazi A, Ryba NJ, Tirindelli R (2001) Co-expression of putative pheromone receptors in the sensory neurons of the vomeronasal organ. J Neurosci 21(3):843–848

    CAS  PubMed  Google Scholar 

  21. Silvotti L, Moiani A, Gatti R, Tirindelli R (2007) Combinatorial co-expression of pheromone receptors, V2Rs. J Neurochem 103(5):1753–1763

    Article  CAS  PubMed  Google Scholar 

  22. Yang H, Shi P, Y-p Zhang, Zhang J (2005) Composition and evolution of the V2r vomeronasal receptor gene repertoire in mice and rats. Genomics 86(3):306–315

    Article  CAS  PubMed  Google Scholar 

  23. Young JM, Trask BJ (2007) V2R gene families degenerated in primates, dog and cow, but expanded in opossum. Trends Genet 23(5):212–215

    Article  CAS  PubMed  Google Scholar 

  24. Young JM, Massa HF, Hsu L, Trask BJ (2010) Extreme variability among mammalian V1R gene families. Genome Res 20(1):10–18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Walz A, Rodriguez I, Mombaerts P (2002) Aberrant sensory innervation of the olfactory bulb in neuropilin-2 mutant mice. J Neurosci 22(10):4025–4035

    CAS  PubMed  Google Scholar 

  26. Herrada G, Dulac C (1997) A novel family of putative pheromone receptors in mammals with a topographically organized and sexually dimorphic distribution. Cell 90(4):763–773

    Article  CAS  PubMed  Google Scholar 

  27. Ryba NJ, Tirindelli R (1997) A new multigene family of putative pheromone receptors. Neuron 19(2):371–379

    Article  CAS  PubMed  Google Scholar 

  28. Pantages E, Dulac C (2000) A novel family of candidate pheromone receptors in mammals. Neuron 28(3):835–845

    Article  CAS  PubMed  Google Scholar 

  29. Matsunami H, Buck LB (1997) A multigene family encoding a diverse array of putative pheromone receptors in mammals. Cell 90(4):775–784

    Article  CAS  PubMed  Google Scholar 

  30. Berghard A, Buck LB (1996) Sensory transduction in vomeronasal neurons: evidence for G alpha o, G alpha i2, and adenylyl cyclase II as major components of a pheromone signaling cascade. J Neurosci 16(3):909–918

    CAS  PubMed  Google Scholar 

  31. Berghard A, Buck LB, Liman ER (1996) Evidence for distinct signaling mechanisms in two mammalian olfactory sense organs. Proc Natl Acad Sci 93(6):2365–2369

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Liberles SD, Horowitz LF, Kuang D, Contos JJ, Wilson KL, Siltberg-Liberles J, Liberles DA, Buck LB (2009) Formyl peptide receptors are candidate chemosensory receptors in the vomeronasal organ. Proc Natl Acad Sci 106(24):9842–9847

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Rivière S, Challet L, Fluegge D, Spehr M, Rodriguez I (2009) Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors. Nature 459(7246):574–577

    Article  PubMed  CAS  Google Scholar 

  34. Jia C, Goldman G, Halpern M (1997) Development of vomeronasal receptor neuron subclasses and establishment of topographic projections to the accessory olfactory bulb. Dev Brain Res 102(2):209–216

    Article  CAS  Google Scholar 

  35. Wekesa KS, Anholt RR (1999) Differential expression of G proteins in the mouse olfactory system. Brain Res 837(1):117–126

    Article  CAS  PubMed  Google Scholar 

  36. Winans SS, Scalia F (1970) Amygdaloid nucleus: new afferent input from the vomeronasal organ. Science 170(3955):330–332

    Article  CAS  PubMed  Google Scholar 

  37. Scalia F, Winans SS (1975) The differential projections of the olfactory bulb and accessory olfactory bulb in mammals. J Comp Neurol 161(1):31–55

    Article  CAS  PubMed  Google Scholar 

  38. de Olmos J, Hardy H, Heimer L (1978) The afferent connections of the main and the accessory olfactory bulb formations in the rat: an experimental HRP-study. J Comp Neurol 181(2):213–244

    Article  PubMed  Google Scholar 

  39. Kang N, Janes A, Baum MJ, Cherry JA (2006) Sex difference in Fos induced by male urine in medial amygdala-projecting accessory olfactory bulb mitral cells of mice. Neurosci Lett 398(1):59–62

    Article  CAS  PubMed  Google Scholar 

  40. Licht G, Meredith M (1987) Convergence of main and accessory olfactory pathways onto single neurons in the hamster amygdala. Exp Brain Res 69(1):7–18

    Article  CAS  PubMed  Google Scholar 

  41. Von Campenhausen H, Mori K (2000) Convergence of segregated pheromonal pathways from the accessory olfactory bulb to the cortex in the mouse. Eur J Neurosci 12(1):33–46

    Article  Google Scholar 

  42. Meisami E, Bhatnagar KP (1998) Structure and diversity in mammalian accessory olfactory bulb. Microsc Res Tech 43(6):476–499

    Article  CAS  PubMed  Google Scholar 

  43. Salazar I, Brennan PA (2001) Retrograde labelling of mitral/tufted cells in the mouse accessory olfactory bulb following local injections of the lipophilic tracer DiI into the vomeronasal amygdala. Brain Res 896(1):198–203

    Article  CAS  PubMed  Google Scholar 

  44. Petrovich GD, Canteras NS, Swanson LW (2001) Combinatorial amygdalar inputs to hippocampal domains and hypothalamic behavior systems. Brain Res Rev 38(1):247–289

    Article  CAS  PubMed  Google Scholar 

  45. Kevetter GA, Winans SS (1981) Connections of the corticomedial amygdala in the golden hamster. I. Efferents of the “vomeronasal amygdala”. J Comp Neurol 197(1):81–98

    Article  CAS  PubMed  Google Scholar 

  46. Kevetter GA, Winans SS (1981) Connections of the corticomedial amygdala in the golden hamster. II. Efferents of the “olfactory amygdala”. J Comp Neurol 197(1):99–111

    Article  CAS  PubMed  Google Scholar 

  47. Vassar R, Chao SK, Sitcheran R, Vosshall LB, Axel R (1994) Topographic organization of sensory projections to the olfactory bulb. Cell 79(6):981–991

    Article  CAS  PubMed  Google Scholar 

  48. Ressler KJ, Sullivan SL, Buck LB (1994) Information coding in the olfactory system: evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell 79(7):1245–1255

    Article  CAS  PubMed  Google Scholar 

  49. Luo M, Katz LC (2004) Encoding pheromonal signals in the mammalian vomeronasal system. Curr Opin Neurobiol 14(4):428–434

    Article  CAS  PubMed  Google Scholar 

  50. Belluscio L, Koentges G, Axel R, Dulac C (1999) A map of pheromone receptor activation in the mammalian brain. Cell 97(2):209–220

    Article  CAS  PubMed  Google Scholar 

  51. Rodriguez I, Feinstein P, Mombaerts P (1999) Variable patterns of axonal projections of sensory neurons in the mouse vomeronasal system. Cell 97(2):199–208

    Article  CAS  PubMed  Google Scholar 

  52. Wagner S, Gresser AL, Torello AT, Dulac C (2006) A multireceptor genetic approach uncovers an ordered integration of VNO sensory inputs in the accessory olfactory bulb. Neuron 50(5):697–709

    Article  CAS  PubMed  Google Scholar 

  53. Yonekura J, Yokoi M (2008) Conditional genetic labeling of mitral cells of the mouse accessory olfactory bulb to visualize the organization of their apical dendritic tufts. Mol Cell Neurosci 37(4):708–718

    Article  CAS  PubMed  Google Scholar 

  54. Larriva-Sahd J (2008) The accessory olfactory bulb in the adult rat: a cytological study of its cell types, neuropil, neuronal modules, and interactions with the main olfactory system. J Comp Neurol 510(3):309–350

    Article  PubMed  Google Scholar 

  55. Takami S, Graziadei PP (1991) Light microscopic Golgi study of mitral/tufted cells in the accessory olfactory bulb of the adult rat. J Comp Neurol 311(1):65–83

    Article  CAS  PubMed  Google Scholar 

  56. Del Punta K, Puche A, Adams NC, Rodriguez I, Mombaerts P (2002) A divergent pattern of sensory axonal projections is rendered convergent by second-order neurons in the accessory olfactory bulb. Neuron 35(6):1057–1066

    Article  PubMed  Google Scholar 

  57. Meeks JP, Arnson HA, Holy TE (2010) Representation and transformation of sensory information in the mouse accessory olfactory system. Nat Neurosci 13(6):723–730

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Imai T, Yamazaki T, Kobayakawa R, Kobayakawa K, Abe T, Suzuki M, Sakano H (2009) Pre-target axon sorting establishes the neural map topography. Science 325(5940):585–590

    Article  CAS  PubMed  Google Scholar 

  59. Miller AM, Maurer LR, Zou D-J, Firestein S, Greer CA (2010) Axon fasciculation in the developing olfactory nerve. Neural Dev 5(1):1–17

    Article  Google Scholar 

  60. Cloutier J-F, Sahay A, Chang EC, Tessier-Lavigne M, Dulac C, Kolodkin AL, Ginty DD (2004) Differential requirements for semaphorin 3F and Slit-1 in axonal targeting, fasciculation, and segregation of olfactory sensory neuron projections. J Neurosci 24(41):9087–9096

    Article  CAS  PubMed  Google Scholar 

  61. Prince JE, Brignall AC, Cutforth T, Shen K, Cloutier J-F (2013) Kirrel3 is required for the coalescence of vomeronasal sensory neuron axons into glomeruli and for male-male aggression. Development 140(11):2398–2408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Cloutier J-F, Giger RJ, Koentges G, Dulac C, Kolodkin AL, Ginty DD (2002) Neuropilin-2 mediates axonal fasciculation, zonal segregation, but not axonal convergence, of primary accessory olfactory neurons. Neuron 33(6):877–892

    Article  CAS  PubMed  Google Scholar 

  63. Degano AL, Pasterkamp RJ, Ronnett GV (2009) MeCP2 deficiency disrupts axonal guidance, fasciculation, and targeting by altering Semaphorin 3F function. Mol Cell Neurosci 42(3):243–254

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Takatoh J, Kudoh H, Kondo S, Hanaoka K (2008) Loss of short dystrophin isoform Dp71 in olfactory ensheathing cells causes vomeronasal nerve defasciculation in mouse olfactory system. Exp Neurol 213(1):36–47

    Article  CAS  PubMed  Google Scholar 

  65. Jongbloets BC, Pasterkamp RJ (2014) Semaphorin signalling during development. Development 141(17):3292–3297

    Article  CAS  PubMed  Google Scholar 

  66. Nakamura F, Kalb RG, Strittmatter SM (2000) Molecular basis of semaphorin-mediated axon guidance. J Neurobiol 44(2):219–229

    Article  CAS  PubMed  Google Scholar 

  67. Raper JA (2000) Semaphorins and their receptors in vertebrates and invertebrates. Curr Opin Neurobiol 10(1):88–94

    Article  CAS  PubMed  Google Scholar 

  68. He Z, Tessier-Lavigne M (1997) Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. Cell 90(4):739–751

    Article  CAS  PubMed  Google Scholar 

  69. Walz A, Feinstein P, Khan M, Mombaerts P (2007) Axonal wiring of guanylate cyclase-D-expressing olfactory neurons is dependent on neuropilin 2 and semaphorin 3F. Development 134(22):4063–4072

    Article  CAS  PubMed  Google Scholar 

  70. Klein R, Kania A (2014) Ephrin signalling in the developing nervous system. Curr Opin Neurobiol 27:16–24

    Article  CAS  PubMed  Google Scholar 

  71. Drescher U, Kremoser C, Handwerker C, Löschinger J, Noda M, Bonhoeffer F (1995) In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to ligands for Eph receptor tyrosine kinases. Cell 82(3):359–370

    Article  CAS  PubMed  Google Scholar 

  72. Mann F, Ray S, Harris WA, Holt CE (2002) Topographic mapping in dorsoventral axis of the Xenopus retinotectal system depends on signaling through ephrin-B ligands. Neuron 35(3):461–473

    Article  CAS  PubMed  Google Scholar 

  73. Knoll B, Zarbalis K, Wurst W, Drescher U (2001) A role for the EphA family in the topographic targeting of vomeronasal axons. Development 128(6):895–906

    CAS  PubMed  Google Scholar 

  74. Lim Y-S, McLaughlin T, Sung T-C, Santiago A, Lee K-F, O’Leary DD (2008) p75 NTR mediates ephrin-A reverse signaling required for axon repulsion and mapping. Neuron 59(5):746–758

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Bonanomi D, Chivatakarn O, Bai G, Abdesselem H, Lettieri K, Marquardt T, Pierchala BA, Pfaff SL (2012) Ret is a multifunctional coreceptor that integrates diffusible-and contact-axon guidance signals. Cell 148(3):568–582

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Marler KJ, Becker-Barroso E, Martínez A, Llovera M, Wentzel C, Poopalasundaram S, Hindges R, Soriano E, Comella J, Drescher U (2008) A TrkB/EphrinA interaction controls retinal axon branching and synaptogenesis. J Neurosci 28(48):12700–12712

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Knöll B, Schmidt H, Andrews W, Guthrie S, Pini A, Sundaresan V, Drescher U (2003) On the topographic targeting of basal vomeronasal axons through Slit-mediated chemorepulsion. Development 130(21):5073–5082

    Article  PubMed  CAS  Google Scholar 

  78. Marillat V, Cases O, Nguyenf-Ba-Charvet KT, Tessier-Lavigne M, Sotelo C, Chédotal A (2002) Spatiotemporal expression patterns of slit and robo genes in the rat brain. J Comp Neurol 442(2):130–155

    Article  PubMed  Google Scholar 

  79. Prince JE, Cho JH, Dumontier E, Andrews W, Cutforth T, Tessier-Lavigne M, Parnavelas J, Cloutier J-F (2009) Robo-2 controls the segregation of a portion of basal vomeronasal sensory neuron axons to the posterior region of the accessory olfactory bulb. J Neurosci 29(45):14211–14222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Ishii T, Hirota J, Mombaerts P (2003) Combinatorial coexpression of neural and immune multigene families in mouse vomeronasal sensory neurons. Curr Biol 13(5):394–400

    Article  CAS  PubMed  Google Scholar 

  81. Ishii T, Mombaerts P (2008) Expression of nonclassical class I major histocompatibility genes defines a tripartite organization of the mouse vomeronasal system. J Neurosci 28(10):2332–2341

    Article  CAS  PubMed  Google Scholar 

  82. Loconto J, Papes F, Chang E, Stowers L, Jones EP, Takada T, Kumánovics A, Lindahl KF, Dulac C (2003) Functional expression of murine V2R pheromone receptors involves selective association with the M10 and M1 families of MHC class Ib molecules. Cell 112(5):607–618

    Article  CAS  PubMed  Google Scholar 

  83. Hovis KR, Ramnath R, Dahlen JE, Romanova AL, LaRocca G, Bier ME, Urban NN (2012) Activity regulates functional connectivity from the vomeronasal organ to the accessory olfactory bulb. J Neurosci 32(23):7907–7916

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Serizawa S, Miyamichi K, Takeuchi H, Yamagishi Y, Suzuki M, Sakano H (2006) A neuronal identity code for the odorant receptor-specific and activity-dependent axon sorting. Cell 127(5):1057–1069

    Article  CAS  PubMed  Google Scholar 

  85. Kaneko-Goto T, S-i Yoshihara, Miyazaki H, Yoshihara Y (2008) BIG-2 mediates olfactory axon convergence to target glomeruli. Neuron 57(6):834–846

    Article  CAS  PubMed  Google Scholar 

  86. Turaga D, Holy TE (2012) Organization of vomeronasal sensory coding revealed by fast volumetric calcium imaging. J Neurosci 32(5):1612–1621

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Chamero P, Marton TF, Logan DW, Flanagan K, Cruz JR, Saghatelian A, Cravatt BF, Stowers L (2007) Identification of protein pheromones that promote aggressive behaviour. Nature 450(7171):899–902

    Article  CAS  PubMed  Google Scholar 

  88. Chamero P, Katsoulidou V, Hendrix P, Bufe B, Roberts R, Matsunami H, Abramowitz J, Birnbaumer L, Zufall F, Leinders-Zufall T (2011) G protein Gαo is essential for vomeronasal function and aggressive behavior in mice. Proc Natl Acad Sci 108(31):12898–12903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Papes F, Logan DW, Stowers L (2010) The vomeronasal organ mediates interspecies defensive behaviors through detection of protein pheromone homologs. Cell 141(4):692–703

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Kaur AW, Ackels T, Kuo T-H, Cichy A, Dey S, Hays C, Kateri M, Logan DW, Marton TF, Spehr M (2014) Murine pheromone proteins constitute a context-dependent combinatorial code governing multiple social behaviors. Cell 157(3):676–688

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Leinders-Zufall T, Brennan P, Widmayer P, Maul-Pavicic A, Jäger M, Li X-H, Breer H, Zufall F, Boehm T (2004) MHC class I peptides as chemosensory signals in the vomeronasal organ. Science 306(5698):1033–1037

    Article  CAS  PubMed  Google Scholar 

  92. Kimoto H, Haga S, Sato K, Touhara K (2005) Sex-specific peptides from exocrine glands stimulate mouse vomeronasal sensory neurons. Nature 437(7060):898–901

    Article  CAS  PubMed  Google Scholar 

  93. Ferrero DM, Moeller LM, Osakada T, Horio N, Li Q, Roy DS, Cichy A, Spehr M, Touhara K, Liberles SD (2013) A juvenile mouse pheromone inhibits sexual behaviour through the vomeronasal system. Nature 502(7471):368–371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Bufe B, Schumann T, Zufall F (2012) Formyl peptide receptors from immune and vomeronasal system exhibit distinct agonist properties. J Biol Chem 287(40):33644–33655

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Bufe B, Schumann T, Kappl R, Bogeski I, Kummerow C, Podgórska M, Smola S, Hoth M, Zufall F (2015) Recognition of bacterial signal peptides by mammalian formyl peptide receptors: a new mechanism for sensing pathogens. J Biol Chem M114:626747

    Google Scholar 

  96. Leinders-Zufall T, Ishii T, Chamero P, Hendrix P, Oboti L, Schmid A, Kircher S, Pyrski M, Akiyoshi S, Khan M (2014) A family of nonclassical class I MHC genes contributes to ultrasensitive chemodetection by mouse vomeronasal sensory neurons. J Neurosci 34(15):5121–5133

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  97. Holekamp TF, Turaga D, Holy TE (2008) Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy. Neuron 57(5):661–672

    Article  CAS  PubMed  Google Scholar 

  98. Isogai Y, Si S, Pont-Lezica L, Tan T, Kapoor V, Murthy VN, Dulac C (2011) Molecular organization of vomeronasal chemoreception. Nature 478(7368):241–245

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Holy TE, Dulac C, Meister M (2000) Responses of vomeronasal neurons to natural stimuli. Science 289(5484):1569–1572

    Article  CAS  PubMed  Google Scholar 

  100. Leinders-Zufall T, Ishii T, Mombaerts P, Zufall F, Boehm T (2009) Structural requirements for the activation of vomeronasal sensory neurons by MHC peptides. Nat Neurosci 12(12):1551–1558

    Article  CAS  PubMed  Google Scholar 

  101. Dey S, Matsunami H (2011) Calreticulin chaperones regulate functional expression of vomeronasal type 2 pheromone receptors. Proc Natl Acad Sci 108(40):16651–16656

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Haga-Yamanaka S, Ma L, He J, Qiu Q, Lavis LD, Looger LL, Yu CR (2014) Integrated action of pheromone signals in promoting courtship behavior in male mice. Elife 3:e03025

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  103. He J, Ma L, Kim S, Nakai J, Yu CR (2008) Encoding gender and individual information in the mouse vomeronasal organ. Science 320(5875):535–538

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Luo M, Fee MS, Katz LC (2003) Encoding pheromonal signals in the accessory olfactory bulb of behaving mice. Science 299(5610):1196–1201

    Article  CAS  PubMed  Google Scholar 

  105. Ben-Shaul Y, Katz L, Mooney R, Dulac C (2010) In vivo vomeronasal stimulation reveals sensory encoding of conspecific and allospecific cues by the mouse accessory olfactory bulb. Proc Natl Acad Sci 107(11):5172–5177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Tolokh II, Fu X, Holy TE (2013) Reliable sex and strain discrimination in the mouse vomeronasal organ and accessory olfactory bulb. J Neurosci 33(34):13903–13913

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Hammen GF, Turaga D, Holy TE, Meeks JP (2014) Functional organization of glomerular maps in the mouse accessory olfactory bulb. Nat Neurosci 17:953–961

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Wysocki CJ, Lepri JJ (1991) Consequences of removing the vomeronasal organ. J Steroid Biochem Mol Biol 39(4):661–669

    Article  CAS  PubMed  Google Scholar 

  109. Hendrickson RC, Krauthamer S, Essenberg JM, Holy TE (2008) Inhibition shapes sex selectivity in the mouse accessory olfactory bulb. J Neurosci 28(47):12523–12534

    Article  CAS  PubMed  Google Scholar 

  110. Stowers L, Holy TE, Meister M, Dulac C, Koentges G (2002) Loss of sex discrimination and male-male aggression in mice deficient for TRP2. Science 295(5559):1493–1500

    Article  CAS  PubMed  Google Scholar 

  111. Leypold BG, Yu CR, Leinders-Zufall T, Kim MM, Zufall F, Axel R (2002) Altered sexual and social behaviors in trp2 mutant mice. Proc Natl Acad Sci 99(9):6376–6381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. Del Punta K, Leinders-Zufall T, Rodriguez I, Jukam D, Wysocki CJ, Ogawa S, Zufall F, Mombaerts P (2002) Deficient pheromone responses in mice lacking a cluster of vomeronasal receptor genes. Nature 419(6902):70–74

    Article  PubMed  CAS  Google Scholar 

  113. Norlin EM, Gussing F, Berghard A (2003) Vomeronasal phenotype and behavioral alterations in Gαi2 mutant mice. Curr Biol 13(14):1214–1219

    Article  CAS  PubMed  Google Scholar 

  114. Montani G, Tonelli S, Sanghez V, Ferrari PF, Palanza P, Zimmer A, Tirindelli R (2013) Aggressive behaviour and physiological responses to pheromones are strongly impaired in mice deficient for the olfactory G-protein γ-subunit Gγ8. J Physiol 591(16):3949–3962

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Wang Z, Sindreu CB, Li V, Nudelman A, Chan GC-K, Storm DR (2006) Pheromone detection in male mice depends on signaling through the type 3 adenylyl cyclase in the main olfactory epithelium. J Neurosci 26(28):7375–7379

    Article  CAS  PubMed  Google Scholar 

  116. Mandiyan VS, Coats JK, Shah NM (2005) Deficits in sexual and aggressive behaviors in Cnga2 mutant mice. Nat Neurosci 8(12):1660–1662

    Article  CAS  PubMed  Google Scholar 

  117. Novotny M, Harvey S, Jemiolo B, Alberts J (1985) Synthetic pheromones that promote inter-male aggression in mice. Proc Natl Acad Sci 82(7):2059–2061

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  118. Cho JH, Prince JE, Cutforth T, Cloutier J-F (2011) The pattern of glomerular map formation defines responsiveness to aversive odorants in mice. J Neurosci 31(21):7920–7926

    Article  CAS  PubMed  Google Scholar 

  119. Sheleg M, Yochum CL, Richardson JR, Wagner GC, Zhou R (2015) Ephrin-A5 regulates inter-male aggression in mice. Behav Brain Res 286:300–307

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Reesha Raja for comments on the manuscript. A.C.B. is a recipient of a Master’s studentship from the Natural Sciences and Engineering Research Council of Canada. J.F.C. held a Canada Research Chair in Developmental Neurobiology and is a Chercheur Boursier Sénior of the Fonds de Recherche du Québec—Santé. The Canadian Institutes of Health Research and the Natural Sciences and Engineering Research Council of Canada support the research performed in the Cloutier Lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Cloutier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brignall, A.C., Cloutier, JF. Neural map formation and sensory coding in the vomeronasal system. Cell. Mol. Life Sci. 72, 4697–4709 (2015). https://doi.org/10.1007/s00018-015-2029-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-2029-5

Keywords

Navigation