Skip to main content
Log in

Emerging roles of nucleolar and ribosomal proteins in cancer, development, and aging

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Changes in nucleolar morphology and function are tightly associated with cellular activity, such as growth, proliferation, and cell cycle progression. Historically, these relationships have been extensively examined in cancer cells, which frequently exhibit large nucleoli and increased ribosome biogenesis. Recent findings indicate that alteration of nucleolar activity is a key regulator of development and aging. In this review, we have provided evidences that the nucleolus is not just a housekeeping factor but is actively involved in the regulation of cell proliferation, differentiation, and senescence both in vitro and in vivo. In addition, we have discussed how alteration of nucleolar function and nucleolar proteins induces specific physiological effects rather than widespread effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ES cells:

Embryonic stem cells

pre-rRNA:

Precursor ribosomal RNA

Pol I:

RNApolymerase I

rDNA:

Ribosomal DNA

snoRNPs:

Small nucleolar ribonucleoprotein particles

TIF-IA:

Transcription initiation factor IA

UBF:

Upstream binding factor

References

  1. Boulon S, Westman BJ, Hutten S et al (2010) The nucleolus under stress. Mol Cell 40:216–227. doi:10.1016/j.molcel.2010.09.024

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. van Sluis M, McStay B (2014) Ribosome biogenesis: achilles heel of cancer? Genes Cancer 12:710–716. doi:10.1016/j.coph.2012.06.011

    Google Scholar 

  3. Derenzini M, Trere D, Pession A et al (1998) Nucleolar function and size in cancer cells. Am J Pathol 152:1291–1297

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Montanaro L, Treré D, Derenzini M (2008) Nucleolus, ribosomes, and cancer. Am J Pathol 173:301–310. doi:10.2353/ajpath.2008.070752

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Hein N, Hannan KM, George AJ et al (2013) The nucleolus: an emerging target for cancer therapy. Trends Mol Med 19:643–654. doi:10.1016/j.molmed.2013.07.005

    Article  CAS  PubMed  Google Scholar 

  6. Naora H, Takai I, Adachi M et al (1998) Altered cellular responses by varying expression of a ribosomal protein gene: sequential coordination of enhancement and suppression of ribosomal protein S3a gene expression induces apoptosis. J Cell Biol 141:741–753. doi:10.1083/jcb.141.3.741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Kim J-H, You K-R, Kim IH et al (2004) Over-expression of the ribosomal protein L36a gene is associated with cellular proliferation in hepatocellular carcinoma. Hepatology 39:129–138. doi:10.1002/hep.20017

    Article  CAS  PubMed  Google Scholar 

  8. Fichelson P, Moch C, Ivanovitch K et al (2009) Live-imaging of single stem cells within their niche reveals that a U3snoRNP component segregates asymmetrically and is required for self-renewal in Drosophila. Nat Cell Biol 11:685–693. doi:10.1038/ncb1874

    Article  CAS  PubMed  Google Scholar 

  9. Zhang Q, Shalaby NA, Buszczak M (2014) Changes in rRNA transcription influence proliferation and cell fate within a stem cell lineage. Science 343:298–301. doi:10.1126/science.1246384

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Hayashi Y, Kuroda T, Kishimoto H et al (2014) Downregulation of rRNA transcription triggers cell differentiation. PLoS ONE 9:e98586. doi:10.1371/journal.pone.0098586

    Article  PubMed Central  PubMed  Google Scholar 

  11. Watanabe-Susaki K, Takada H, Enomoto K et al (2014) Biosynthesis of ribosomal RNA in nucleoli regulates pluripotency and differentiation ability of pluripotent stem cells. Stem Cells 32:3099–3111. doi:10.1002/stem.1825

    Article  CAS  PubMed  Google Scholar 

  12. Hansen M, Taubert S, Crawford D et al (2007) Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 6:95–110. doi:10.1111/j.1474-9726.2006.00267.x

    Article  CAS  PubMed  Google Scholar 

  13. Steffen KK, MacKay VL, Kerr EO et al (2008) Yeast life span extension by depletion of 60S ribosomal subunits is mediated by Gcn4. Cell 133:292–302. doi:10.1016/j.cell.2008.02.037

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Kim Y-I, Bandyopadhyay J, Cho I et al (2014) Nucleolar GTPase NOG-1 regulates development, fat storage, and longevity through insulin/IGF signaling in C. elegans. Mol Cells 37:51–58. doi:10.14348/molcells.2014.2251

    Article  PubMed Central  PubMed  Google Scholar 

  15. Dai M-S, Lu H (2008) Crosstalk between c-Myc and ribosome in ribosomal biogenesis and cancer. J Cell Biochem 105:670–677. doi:10.1002/jcb.21895

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Gomez-Roman N, Grandori C, Eisenman RN, White RJ (2003) Direct activation of RNA polymerase III transcription by c-Myc. Nature 421:290–294. doi:10.1038/nature01327

    Article  CAS  PubMed  Google Scholar 

  17. Hannan KM, Sanij E, Hein N et al (2011) Signaling to the ribosome in cancer-It is more than just mTORC1. IUBMB Life 63:79–85. doi:10.1002/iub.428

    Article  CAS  PubMed  Google Scholar 

  18. Mayer C, Grummt I (2006) Ribosome biogenesis and cell growth: mTOR coordinates transcription by all three classes of nuclear RNA polymerases. Oncogene 25:6384–6391. doi:10.1038/sj.onc.1209883

    Article  CAS  PubMed  Google Scholar 

  19. Zhai W, Comai L (2000) Repression of RNA polymerase I transcription by the tumor suppressor p53. Mol Cell Biol 20:5930–5938. doi:10.1128/MCB.20.16.5930-5938.2000

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Voit R, Schäfer K, Grummt I (1997) Mechanism of repression of RNA polymerase I transcription by the retinoblastoma protein. Mol Cell Biol 17:4230–4237

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Ghoshal K (2003) Role of human ribosomal RNA (rRNA) promoter methylation and of methyl-CpG-binding protein MBD2 in the suppression of rRNA gene expression. J Biol Chem 279:6783–6793. doi:10.1074/jbc.M309393200

    Article  PubMed Central  PubMed  Google Scholar 

  22. Henry JL, Coggin DL, King CR (1993) High-level expression of the ribosomal protein L19 in human breast tumors that overexpress erbB-2. Cancer Res 53:1403–1408

    CAS  PubMed  Google Scholar 

  23. Vaarala MH, Porvari KS, Kyllönen AP et al (1998) Several genes encoding ribosomal proteins are over-expressed in prostate-cancer cell lines: confirmation of L7a and L37 over-expression in prostate-cancer tissue samples. Int J Cancer 78:27–32. doi:10.1002/(SICI)1097-0215(19980925)78:1<27:AID-IJC6>3.0.CO;2-Z

    Article  CAS  PubMed  Google Scholar 

  24. Wang Q, Yang C, Zhou J et al (2001) Cloning and characterization of full-length human ribosomal protein L15 cDNA which was overexpressed in esophageal cancer. Gene 263:205–209. doi:10.1016/S0378-1119(00)00570-9

    Article  CAS  PubMed  Google Scholar 

  25. Choesmel V, Bacqueville D, Rouquette J et al (2006) Impaired ribosome biogenesis in Diamond-Blackfan anemia. Blood 109:1275–1283. doi:10.1182/blood-2006-07-038372

    Article  PubMed  Google Scholar 

  26. Shenoy N, Kessel R, Bhagat TD et al (2012) Alterations in the ribosomal machinery in cancer and hematologic disorders. J Hematol Oncol 5:32. doi:10.1186/1756-8722-5-32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Ebert BL, Pretz J, Bosco J et al (2008) Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature 451:335–339. doi:10.1038/nature06494

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Knight SW, Heiss NS, Vulliamy TJ et al (1999) X-linked dyskeratosis congenita is predominantly caused by missense mutations in the DKC1 gene. Am J Hum Genet 65:50–58. doi:10.1086/302446

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. He J, Navarrete S, Jasinski M et al (2002) Targeted disruption of Dkc1, the gene mutated in X-linked dyskeratosis congenita, causes embryonic lethality in mice. Oncogene 21:7740–7744. doi:10.1038/sj.onc

    Article  CAS  PubMed  Google Scholar 

  30. Ridanpää M, van Eenennaam H, Pelin K, Chadwick R (2001) Mutations in the RNA component of RNase MRP cause a pleiotropic human disease, cartilage-hair hypoplasia. Cell 104:195–203. doi:10.1016/S0092-8674(01)00205-7

    Article  PubMed  Google Scholar 

  31. Zhang Y, Lu H (2009) Signaling to p53: ribosomal proteins find their way. Cancer Cell 16:369–377. doi:10.1016/j.ccr.2009.09.024

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Mayer C, Grummt I (2014) Cellular stress and nucleolar function. Cell Cycle 4:1036–1038. doi:10.4161/cc.4.8.1925

    Article  Google Scholar 

  33. Hein N, Ganley A, Sanij E, et al. (2012) The nucleolus and ribosomal genes in aging and senescence. InTech. doi:10.5772/34581. ISBN: 978-935051-0144-4

  34. Lim MJ, Wang XW (2006) Nucleophosmin and human cancer. Cancer Detect Prev 30:481–490. doi:10.1016/j.cdp.2006.10.008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Di Fiore PP (2008) Playing both sides: nucleophosmin between tumor suppression and oncogenesis. J Cell Biol 182:7–9. doi:10.1083/jcb.200806069

    Article  PubMed Central  PubMed  Google Scholar 

  36. Falini B, Mecucci C, Tiacci E et al (2005) Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 352:254–266. doi:10.1056/NEJMoa041974

    Article  CAS  PubMed  Google Scholar 

  37. Colombo E (2006) Delocalization and destabilization of the Arf tumor suppressor by the leukemia-associated NPM mutant. Cancer Res 66:3044–3050. doi:10.1158/0008-5472.CAN-05-2378

    Article  CAS  PubMed  Google Scholar 

  38. Grisendi S, Bernardi R, Rossi M et al (2005) Role of nucleophosmin in embryonic development and tumorigenesis. Nature 437:147–153. doi:10.1038/nature03915

    Article  CAS  PubMed  Google Scholar 

  39. Bertwistle D, Sugimoto M, Sherr CJ (2004) Physical and functional interactions of the Arf tumor suppressor protein with nucleophosmin/B23. Mol Cell Biol 24:985–996. doi:10.1128/MCB.24.3.985-996.2004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Kondo T, Minamino N, Nagamura-Inoue T et al (1997) Identification and characterization of nucleophosmin/B23/numatrin which binds the anti-oncogenic transcription factor IRF-1 and manifests oncogenic activity. Oncogene 15:1275–1281. doi:10.1038/sj.onc.1201286

    Article  CAS  PubMed  Google Scholar 

  41. Pederson T, Tsai RYL (2009) In search of nonribosomal nucleolar protein function and regulation. J Cell Biol 184:771–776. doi:10.1083/jcb.200812014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Okamoto N, Yasukawa M, Nguyen C et al (2011) Maintenance of tumor initiating cells of defined genetic composition by nucleostemin. Proc Natl Acad Sci USA 108:20388–20393. doi:10.1073/pnas.1015171108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Meshorer E, Misteli T (2006) Chromatin in pluripotent embryonic stem cells and differentiation. Nat Rev Mol Cell Biol 7:540–546. doi:10.1038/nrm1938

    Article  CAS  PubMed  Google Scholar 

  44. Baker NE (2013) Developmental regulation of nucleolus size during Drosophila eye differentiation. PLoS ONE 8:e58266. doi:10.1371/journal.pone.0058266

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Poortinga G, Wall M, Sanij E et al (2011) c-MYC coordinately regulates ribosomal gene chromatin remodeling and Pol I availability during granulocyte differentiation. Nucleic Acids Res 39:3267–3281. doi:10.1093/nar/gkq1205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Ali SA, Zaidi SK, Dacwag CS et al (2008) Phenotypic transcription factors epigenetically mediate cell growth control. Proc Natl Acad Sci USA 105:6632–6637. doi:10.1073/pnas.0800970105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Yang A, Shi G, Zhou C et al (2011) Nucleolin maintains embryonic stem cell self-renewal by suppression of p53 protein-dependent pathway. J Biol Chem 286:43370–43382. doi:10.1074/jbc.M111.225185

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Qu J, Bishop JM (2012) Nucleostemin maintains self-renewal of embryonic stem cells and promotes reprogramming of somatic cells to pluripotency. J Cell Biol 197:731–745. doi:10.1083/jcb.201103071

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Rosby R, Cui Z, Rogers E, Robinson VL (2009) Knockdown of the Drosophila GTPase nucleostemin 1 impairs large ribosomal subunit biogenesis, cell growth, and midgut precursor cell maintenance. Mol Biol Cell 20:4424–4434. doi:10.1091/mbc.E08

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. McCain J, Danzy L, Hamdi A et al (2005) Tracking nucleolar dynamics with GFP-Nopp140 during Drosophila oogenesis and embryogenesis. Cell Tissue Res 323:105–115. doi:10.1007/s00441-005-0044-9

    Article  PubMed  Google Scholar 

  51. James A, Cindass R Jr, Mayer D et al (2014) Nucleolar stress in Drosophila melanogaster. Nucleus 4:123–133. doi:10.4161/nucl.23944

    Article  Google Scholar 

  52. Qin W, Chen Z, Zhang Y et al (2014) Nom1 mediates pancreas development by regulating ribosome biogenesis in zebrafish. PLoS One 9:e100796. doi:10.1371/journal.pone.0100796

    Article  PubMed Central  PubMed  Google Scholar 

  53. Grewal SS, Li L, Orian A et al (2005) Myc-dependent regulation of ribosomal RNA synthesis during Drosophila development. Nat Cell Biol 7:295–302. doi:10.1038/ncb1223

    Article  CAS  PubMed  Google Scholar 

  54. Demontis F, Perrimon N (2009) Integration of insulin receptor/Foxo signaling and dMyc activity during muscle growth regulates body size in Drosophila. Development 136:983–993. doi:10.1242/dev.027466

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Grewal SS, Evans JR, Edgar BA (2007) Drosophila TIF-IA is required for ribosome synthesis and cell growth and is regulated by the TOR pathway. J Cell Biol 179:1105–1113. doi:10.1083/jcb.200709044

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Guarente L (1997) Link between aging and the nucleolus. Genes Dev 11:2449–2455. doi:10.1101/gad.11.19.2449

    Article  CAS  PubMed  Google Scholar 

  57. Smith JS, Brachmann CB, Pillus L, Boeke JD (1998) Distribution of a limited Sir2 protein pool regulates the strength of yeast rDNA silencing and is modulated by Sir4p. Genetics 149:1205–1219

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Machín F, Paschos K, Jarmuz A et al (2004) Condensin regulates rDNA silencing by modulating nucleolar Sir2p. Curr Biol 14:125–130. doi:10.1016/j.cub.2004.01.001

    Article  PubMed  Google Scholar 

  59. Guarente L (1999) Diverse and dynamic functions of the Sir silencing complex. Nat Genet 23:281–285. doi:10.1038/15458

    Article  CAS  PubMed  Google Scholar 

  60. Murayama A, Ohmori K, Fujimura A et al (2008) Epigenetic control of rDNA loci in response to intracellular energy status. Cell 133:627–639. doi:10.1016/j.cell.2008.03.030

    Article  CAS  PubMed  Google Scholar 

  61. Yang L, Song T, Chen L et al (2013) Regulation of SirT1-nucleomethylin binding by rRNA coordinates ribosome biogenesis with nutrient availability. Mol Cell Biol 33:3835–3848. doi:10.1128/MCB.00476-13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Evans DS, Kapahi P, Hsueh W-C, Kockel L (2011) TOR signaling never gets old: aging, longevity and TORC1 activity. Ageing Res Rev 10:225–237. doi:10.1016/j.arr.2010.04.001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Martin DE, Powers T, Hall MN (2006) Regulation of ribosome biogenesis: where is TOR? Cell Metab 4:259–260. doi:10.1016/j.cmet.2006.09.002

    Article  CAS  PubMed  Google Scholar 

  64. Demontis F, Patel VK, Swindell WR, Perrimon N (2014) Intertissue control of the nucleolus via a myokine-dependent longevity pathway. Cell Rep 7:1481–1494. doi:10.1016/j.celrep.2014.05.001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Matheu A, Maraver A, Klatt P et al (2007) Delayed ageing through damage protection by the Arf/p53 pathway. Nature 448:375–379. doi:10.1038/nature05949

    Article  CAS  PubMed  Google Scholar 

  66. Hulbert AJ, Pamplona R, Buffenstein R, Buttemer WA (2007) Life and death: metabolic rate, membrane composition, and life span of animals. Physiol Rev 87:1175–1213. doi:10.1152/physrev.00047.2006

    Article  CAS  PubMed  Google Scholar 

  67. Ping Tang Y, Wade J (2006) Sexually dimorphic expression of the genes encoding ribosomal proteins L17 and L37 in the song control nuclei of juvenile zebra finches. Brain Res 1126:102–108. doi:10.1016/j.brainres.2006.08.002

    Article  Google Scholar 

  68. Wu S, De Croos JNA, Storey KB (2008) Cold acclimation-induced up-regulation of the ribosomal protein L7 gene in the freeze tolerant wood frog, Rana sylvatica. Gene 424:48–55. doi:10.1016/j.gene.2008.07.023

    Article  CAS  PubMed  Google Scholar 

  69. Twiss JL, Smith DS, Chang B, Shooter EM (2000) Translational control of ribosomal protein L4 mRNA is required for rapid neurite regeneration. Neurobiol Dis 7:416–428. doi:10.1006/nbdi.2000.0293

    Article  CAS  PubMed  Google Scholar 

  70. Uechi T, Nakajima Y, Nakao A et al (2006) Ribosomal protein gene knockdown causes developmental defects in zebrafish. PLoS ONE 1:e37. doi:10.1371/journal.pone.0000037

    Article  PubMed Central  PubMed  Google Scholar 

  71. Zhang Y, Duc A-CE, Rao S et al (2013) Control of hematopoietic stem cell emergence by antagonistic functions of ribosomal protein paralogs. Dev Cell 24:411–425. doi:10.1016/j.devcel.2013.01.018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Komili S, Farny NG, Roth FP, Silver PA (2007) Functional specificity among ribosomal proteins regulates gene expression. Cell 131:557–571. doi:10.1016/j.cell.2007.08.037

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Kondrashov N, Pusic A, Stumpf CR et al (2011) Ribosome-mediated specificity in Hox mRNA translation and vertebrate tissue patterning. Cell 145:383–397. doi:10.1016/j.cell.2011.03.02

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Xue S, Tian S, Fujii K et al (2015) RNA regulons in Hox 5′ UTRs confer ribosome specificity to gene regulation. Nature 517:33–38. doi:10.1038/nature14010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Le Bouteiller M, Souilhol C, Beck-Cormier S et al (2013) Notchless-dependent ribosome synthesis is required for the maintenance of adult hematopoietic stem cells. J Exp Med 210:2351–2369. doi:10.1084/jem.20122019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Kurisaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takada, H., Kurisaki, A. Emerging roles of nucleolar and ribosomal proteins in cancer, development, and aging. Cell. Mol. Life Sci. 72, 4015–4025 (2015). https://doi.org/10.1007/s00018-015-1984-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1984-1

Keywords

Navigation