Skip to main content
Log in

Roles of connexins and pannexins in digestive homeostasis

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Connexin proteins are abundantly present in the digestive system. They primarily form gap junctions, which control the intercellular exchange of critical homeostasis regulators. By doing so, gap junctions drive a plethora of gastrointestinal and hepatic functional features, including gastric and gut motility, gastric acid secretion, intestinal innate immune defense, xenobiotic biotransformation, glycogenolysis, bile secretion, ammonia detoxification and plasma protein synthesis. In the last decade, it has become clear that connexin hemichannels, which are the structural precursors of gap junctions, also provide a pathway for cellular communication, namely between the cytosol and the extracellular environment. Although merely pathological functions have been described, some physiological roles have been attributed to connexin hemichannels, in particular in the modulation of colonic motility. This equally holds true for cellular channels composed of pannexins, connexin-like proteins recently identified in the intestine and the liver, which have become acknowledged key players in inflammatory processes and that have been proposed to control colonic motility, secretion and blood flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ATP:

Adenosine triphosphate

cAMP:

Cyclic adenosine monophosphate

CL:

Cytoplasmic loop

CT:

Cytoplasmic carboxy tail

Cx:

Connexin

EL:

Extracellular loop

GJIC:

Gap junctional intercellular communication

IP3 :

Inositol triphosphate

NT:

Cytoplasmic amino tail

Panx:

Pannexin

TM:

Transmembrane domain

References

  1. Alexander DB, Goldberg GS (2003) Transfer of biologically important molecules between cells through gap junction channels. Curr Med Chem 10(19):2045–2058

    CAS  PubMed  Google Scholar 

  2. Dbouk HA, Mroue RM, El-Sabban ME, Talhouk RS (2009) Connexins: a myriad of functions extending beyond assembly of gap junction channels. Cell Commun Signal 7:4. doi:10.1186/1478-811X-7-4

    PubMed Central  PubMed  Google Scholar 

  3. Decrock E, Vinken M, De Vuyst E, Krysko DV, D’Herde K, Vanhaecke T, Vandenabeele P, Rogiers V, Leybaert L (2009) Connexin-related signaling in cell death: to live or let die? Cell Death Differ 16(4):524–536. doi:10.1038/cdd.2008.196

    CAS  PubMed  Google Scholar 

  4. Loewenstein WR, Kanno Y (1967) Intercellular communication and tissue growth I. Cancerous growth. J Cell Biol 33(2):225–234

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Revel JP, Karnovsky MJ (1967) Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J Cell Biol 33(3):C7–C12

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Goodenough DA (1974) Bulk isolation of mouse hepatocyte gap junctions. Characterization of the principal protein, connexin. J Cell Biol 61(2):557–563

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Paul DL (1986) Molecular cloning of cDNA for rat liver gap junction protein. J Cell Biol 103(1):123–134

    CAS  PubMed  Google Scholar 

  8. Kumar NM, Gilula NB (1986) Cloning and characterization of human and rat liver cDNAs coding for a gap junction protein. J Cell Biol 103(3):767–776

    CAS  PubMed  Google Scholar 

  9. Bai D, Wang AH (2014) Extracellular domains play different roles in gap junction formation and docking compatibility. Biochem J 458(1):1–10. doi:10.1042/BJ20131162

    CAS  PubMed  Google Scholar 

  10. Li Z, Zhou Z, Daniel EE (1993) Expression of gap junction connexin 43 and connexin 43 mRNA in different regional tissues of intestine in dog. Am J Physiol 265(5):G911–G916

    CAS  PubMed  Google Scholar 

  11. Mikkelsen HB, Huizinga JD, Thuneberg L, Rumessen JJ (1993) Immunohistochemical localization of a gap junction protein (connexin43) in the muscularis externa of murine, canine, and human intestine. Cell Tissue Res 274(2):249–256

    CAS  PubMed  Google Scholar 

  12. Panchin Y, Kelmanson I, Matz M, Lukyanov K, Usman N, Lukyanov S (2000) A ubiquitous family of putative gap junction molecules. Curr Biol 10(13):R473–R474

    CAS  PubMed  Google Scholar 

  13. Wang N, De Bock M, Decrock E, Bol M, Gadicherla A, Vinken M, Rogiers V, Bukauskas FF, Bultynck G, Leybaert L (2013) Paracrine signaling through plasma membrane hemichannels. Biochim Biophys Acta 1828(1):35–50. doi:10.1016/j.bbamem.2012.07.002

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Diezmos EF, Sandow SL, Markus I, Shevy Perera D, Lubowski DZ, King DW, Bertrand PP, Liu L (2013) Expression and localization of pannexin-1 hemichannels in human colon in health and disease. Neurogastroenterol Motil 25(6):e395–e405. doi:10.1111/nmo.12130

    CAS  PubMed  Google Scholar 

  15. Le Vasseur M, Lelowski J, Bechberger JF, Sin WC, Naus CC (2014) Pannexin 2 protein expression is not restricted to the CNS. Front Cell Neurosci 8:392. doi:10.3389/fncel.2014.00392

    PubMed Central  PubMed  Google Scholar 

  16. Bruzzone R, Hormuzdi SG, Barbe MT, Herb A, Monyer H (2003) Pannexins, a family of gap junction proteins expressed in brain. Proc Natl Acad Sci USA 100(23):13644–13649

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Csak T, Ganz M, Pespisa J, Kodys K, Dolganiuc A, Szabo G (2011) Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells. Hepatology 54(1):133–144. doi:10.1002/hep.24341

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Ganz M, Csak T, Nath B, Szabo G (2011) Lipopolysaccharide induces and activates the Nalp3 inflammasome in the liver. World J Gastroenterol 17(43):4772–4778. doi:10.3748/wjg.v17.i43.4772

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Kim HY, Kim SJ, Lee SM (2015) Activation of NLRP3 and AIM2 inflammasomes in Kupffer cells in hepatic ischemia/reperfusion. FEBS J 282(2):259–270. doi:10.1111/febs.13123

    CAS  PubMed  Google Scholar 

  20. Xiao F, Waldrop SL, Khimji AK, Kilic G (2012) Pannexin1 contributes to pathophysiological ATP release in lipoapoptosis induced by saturated free fatty acids in liver cells. Am J Physiol Cell Physiol 303(10):C1034–C1044. doi:10.1152/ajpcell.00175.2012

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Li X, Cao J, Jin Q, Xie C, He Q, Cao R, Xiong J, Chen P, Wang X, Liang S (2008) A proteomic study reveals the diversified distribution of plasma membrane-associated proteins in rat hepatocytes. J Cell Biochem 104(3):965–984. doi:10.1002/jcb.21680

    CAS  PubMed  Google Scholar 

  22. Sáez PJ, Shoji KF, Aguirre A, Sáez JC (2014) Regulation of hemichannels and gap junction channels by cytokines in antigen-presenting cells. Mediators Inflamm 2014:742734. doi:10.1155/2014/742734

    PubMed Central  PubMed  Google Scholar 

  23. Chandrasekhar A, Bera AK (2012) Hemichannels: permeants and their effect on development, physiology and death. Cell Biochem Funct 30(2):89–100

    CAS  PubMed  Google Scholar 

  24. Spray DC, Ye ZC, Ransom BR (2006) Functional connexin “hemichannels”: a critical appraisal. Glia 54(7):758–773

    PubMed  Google Scholar 

  25. Harris AL (2007) Connexin channel permeability to cytoplasmic molecules. Prog Biophys Mol Biol 94(1–2):120–143. doi:10.1016/j.pbiomolbio.2007.03.011

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Guttman JA, Lin AE, Li Y, Bechberger J, Naus CC, Vogl AW, Finlay BB (2010) Gap junction hemichannels contribute to the generation of diarrhoea during infectious enteric disease. Gut 59(2):218–226. doi:10.1136/gut.2008.170464

    CAS  PubMed  Google Scholar 

  27. Simpson C, Kelsell DP, Marchès O (2013) Connexin 26 facilitates gastrointestinal bacterial infection in vitro. Cell Tissue Res 351(1):107–116. doi:10.1007/s00441-012-1502-9

    CAS  PubMed  Google Scholar 

  28. Tran Van Nhieu G, Clair C, Bruzzone R, Mesnil M, Sansonetti P, Combettes L (2003) Connexin-dependent inter-cellular communication increases invasion and dissemination of Shigella in epithelial cells. Nat Cell Biol 5(8):720–726. doi:10.1038/ncb1021

    CAS  PubMed  Google Scholar 

  29. Vinken M, Decrock E, De Vuyst E, De Bock M, Vandenbroucke RE, De Geest BG, Demeester J, Sanders NN, Vanhaecke T, Leybaert L, Rogiers V (2010) Connexin32 hemichannels contribute to the apoptotic-to-necrotic transition during Fas-mediated hepatocyte cell death. Cell Mol Life Sci 67(6):907–918. doi:10.1007/s00018-009-0220-2

    CAS  PubMed  Google Scholar 

  30. Vinken M, Decrock E, Vanhaecke T, Leybaert L, Rogiers V (2012) Connexin43 signaling contributes to spontaneous apoptosis in cultures of primary hepatocytes. Toxicol Sci 125(1):175–186. doi:10.1093/toxsci/kfr277

    CAS  PubMed  Google Scholar 

  31. Liu X, Furuya T, Li D, Xu J, Cao X, Li Q, Xu Z, Sasaki K (2010) Connexin 26 expression correlates with less aggressive phenotype of intestinal type-gastric carcinomas. Int J Mol Med 25(5):709–716

    CAS  PubMed  Google Scholar 

  32. Fiertak A, Semik D, Kilarski WM (1999) Immunohistochemical analysis of connexin26 and 43 expression in the mouse alimentary tract. Folia Biol (Krakow) 47(1):5–11

    CAS  Google Scholar 

  33. Zhang JT, Nicholson BJ (1989) Sequence and tissue distribution of a second protein of hepatic gap junctions, Cx26, as deduced from its cDNA. J Cell Biol 109(6):3391–3401

    CAS  PubMed  Google Scholar 

  34. Radebold K, Horakova E, Gloeckner J, Ortega G, Spray DC, Vieweger H, Siebert K, Manuelidis L, Geibel JP (2001) Gap junctional channels regulate acid secretion in the mammalian gastric gland. J Membr Biol 183(3):147–153

    CAS  PubMed  Google Scholar 

  35. Uchida Y, Matsuda K, Sasahara K, Kawabata H, Nishioka M (1995) Immunohistochemistry of gap junctions in normal and diseased gastric mucosa of humans. Gastroenterology 109(5):1492–1496

    CAS  PubMed  Google Scholar 

  36. Mine T, Yusuda H, Kataoka A, Tajima A, Nagasawa J, Takano T (1995) Human chronic gastric ulcer and connexin. J Clin Gastroenterol 21(Suppl 1):S104–S107

    PubMed  Google Scholar 

  37. Ohkusa T, Fujiki K, Tamura Y, Yamamoto M, Kyoi T (1995) Freeze-fracture and immunohistochemical studies of gap junctions in human gastric mucosa with special reference to their relationship to gastric ulcer and gastric carcinoma. Microsc Res Tech 31(3):226–233. doi:10.1002/jemt.1070310306

    CAS  PubMed  Google Scholar 

  38. Wu J, Zhou HF, Wang CH, Zhang B, Liu D, Wang W, Sui GJ (2007) Decreased expression of Cx32 and Cx43 and their function of gap junction intercellular communication in gastric cancer. Zhonghua Zhong Liu Za Zhi 29(10):742–747

    CAS  PubMed  Google Scholar 

  39. Hertzberg EL, Skibbens RV (1984) A protein homologous to the 27,000 dalton liver gap junction protein is present in a wide variety of species and tissues. Cell 39(1):61–69

    CAS  PubMed  Google Scholar 

  40. Iwata F, Joh T, Ueda F, Yokoyama Y, Itoh M (1998) Role of gap junctions in inhibiting ischemia-reperfusion injury of rat gastric mucosa. Am J Physiol 275(5):G883–G888

    CAS  PubMed  Google Scholar 

  41. Kyoi T, Ueda F, Kimura K, Yamamoto M, Kataoka K (1992) Development of gap junctions between gastric surface mucous cells during cell maturation in rats. Gastroenterology 102(6):1930–1935

    CAS  PubMed  Google Scholar 

  42. Takahashi N, Joh T, Yokoyama Y, Seno K, Nomura T, Ohara H, Ueda F, Itoh M (2000) Importance of gap junction in gastric mucosal restitution from acid-induced injury. J Lab Clin Med 136(2):93–99. doi:10.1067/mlc.2000.108158

    CAS  PubMed  Google Scholar 

  43. Fink C, Hembes T, Brehm R, Weigel R, Heeb C, Pfarrer C, Bergmann M, Kressin M (2006) Specific localisation of gap junction protein connexin 32 in the gastric mucosa of horses. Histochem Cell Biol 125(3):307–313. doi:10.1007/s00418-005-0047-3

    CAS  PubMed  Google Scholar 

  44. Nishitani A, Hirota S, Nishida T, Isozaki K, Hashimoto K, Nakagomi N, Matsuda H (2005) Differential expression of connexin 43 in gastrointestinal stromal tumours of gastric and small intestinal origin. J Pathol 206(4):377–382. doi:10.1002/path.1799

    CAS  PubMed  Google Scholar 

  45. Seki K, Komuro T (2002) Distribution of interstitial cells of Cajal and gap junction protein, Cx 43 in the stomach of wild-type and W/Wv mutant mice. Anat Embryol (Berl) 206(1):57–65. doi:10.1007/s00429-002-0279-0

    CAS  Google Scholar 

  46. Dupont E, el Aoumari A, Roustiau-Sévère S, Briand JP, Gros D (1988) Immunological characterization of rat cardiac gap junctions: presence of common antigenic determinants in heart of other vertebrate species and in various organs. J Membr Biol 104(2):119–128

    CAS  PubMed  Google Scholar 

  47. Kadle R, Zhang JT, Nicholson BJ (1991) Tissue-specific distribution of differentially phosphorylated forms of Cx43. Mol Cell Biol 11(1):363–369

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Mitsui R, Komuro T (2002) Direct and indirect innervation of smooth muscle cells of rat stomach, with special reference to the interstitial cells of Cajal. Cell Tissue Res 309(2):219–227. doi:10.1007/s00441-002-0592-1

    PubMed  Google Scholar 

  49. Wang YF, Daniel EE (2001) Gap junctions in gastrointestinal muscle contain multiple connexins. Am J Physiol Gastrointest Liver Physiol 281(2):G533–G543

    CAS  PubMed  Google Scholar 

  50. Larson DM, Gilbert RJ, Beyer EC (1992) Two-dimensional coupling by gap junctions in cultured gastric smooth muscle monolayers. Am J Physiol 263(2):G261–G268

    CAS  PubMed  Google Scholar 

  51. Cousins HM, Edwards FR, Hickey H, Hill CE, Hirst GD (2003) Electrical coupling between the myenteric interstitial cells of Cajal and adjacent muscle layers in the guinea-pig gastric antrum. J Physiol 550(3):829–844. doi:10.1113/jphysiol.2003.042176

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Iino S, Asamoto K, Nojyo Y (2001) Heterogeneous distribution of a gap junction protein, connexin43, in the gastroduodenal junction of the guinea pig. Auton Neurosci 93(1):8–13. doi:10.1016/S1566-0702(01)00320-4

    CAS  PubMed  Google Scholar 

  53. Seki K, Zhou DS, Komuro T (1998) Immunohistochemical study of the c-kit expressing cells and connexin 43 in the guinea-pig digestive tract. J Auton Nerv Syst 68(3):182–187

    CAS  PubMed  Google Scholar 

  54. Daniel EE, Sakai Y, Fox JE, Posey-Daniel V (1984) Structural basis for function of circular muscle of canine corpus. Can J Physiol Pharmacol 62(10):1304–1314

    CAS  PubMed  Google Scholar 

  55. Faussone-Pellegrini MS, Pantalone D, Cortesini C (1989) An ultrastructural study of the interstitial cells of Cajal of the human stomach. J Submicrosc Cytol Pathol 21(3):439–460

    CAS  PubMed  Google Scholar 

  56. Daniel EE, Berezin I, Allescher HD, Manaka H, Posey-Daniel V (1989) Morphology of the canine pyloric sphincter in relation to function. Can J Physiol Pharmacol 67(12):1560–1573

    CAS  PubMed  Google Scholar 

  57. Powley TL, Wang XY, Fox EA, Phillips RJ, Liu LW, Huizinga JD (2008) Ultrastructural evidence for communication between intramuscular vagal mechanoreceptors and interstitial cells of Cajal in the rat fundus. Neurogastroenterol Motil 20(1):69–79. doi:10.1111/j.1365-2982.2007.00990.x

    CAS  PubMed  Google Scholar 

  58. Bracken S, Byrne G, Kelly J, Jackson J, Feighery C (2008) Altered gene expression in highly purified enterocytes from patients with active coeliac disease. BMC Genom 9:377. doi:10.1186/1471-2164-9-377

    Google Scholar 

  59. Clair C, Combettes L, Pierre F, Sansonetti P, Tran Van Nhieu G (2008) Extracellular-loop peptide antibodies reveal a predominant hemichannel organization of connexins in polarized intestinal cells. Exp Cell Res 314(6):1250–1265. doi:10.1016/j.yexcr.2007.12.021

    CAS  PubMed  Google Scholar 

  60. Frinchi M, Di Liberto V, Turimella S, D’Antoni F, Theis M, Belluardo N, Mudò G (2013) Connexin36 (Cx36) expression and protein detection in the mouse carotid body and myenteric plexus. Acta Histochem 115(3):252–256. doi:10.1016/j.acthis.2012.07.005

    CAS  PubMed  Google Scholar 

  61. Husøy T, Ølstørn HB, Knutsen HK, Løberg EM, Cruciani V, Mikalsen SO, Goverud IL, Alexander J (2004) Truncated mouse adenomatous polyposis coli reduces connexin32 content and increases matrilysin secretion from Paneth cells. Eur J Cancer 40(10):1599–1603. doi:10.1016/j.ejca.2004.02.024

    PubMed  Google Scholar 

  62. Leaphart CL, Qureshi F, Cetin S, Li J, Dubowski T, Baty C, Batey C, Beer-Stolz D, Guo F, Murray SA, Hackam DJ (2007) Interferon-gamma inhibits intestinal restitution by preventing gap junction communication between enterocytes. Gastroenterology 132(7):2395–2411. doi:10.1053/j.gastro.2007.03.029

    CAS  PubMed  Google Scholar 

  63. Manthey D, Bukauskas F, Lee CG, Kozak CA, Willecke K (1999) Molecular cloning and functional expression of the mouse gap junction gene connexin-57 in human HeLa cells. J Biol Chem 274(21):14716–14723

    CAS  PubMed  Google Scholar 

  64. Mazzini E, Massimiliano L, Penna G, Rescigno M (2014) Oral tolerance can be established via gap junction transfer of fed antigens from CX3CR1+ macrophages to CD103+ dendritic cells. Immunity 40(2):248–261. doi:10.1016/j.immuni.2013.12.012

    CAS  PubMed  Google Scholar 

  65. Nakamura K, Kuraoka A, Kawabuchi M, Shibata Y (1998) Specific localization of gap junction protein, connexin45, in the deep muscular plexus of dog and rat small intestine. Cell Tissue Res 292(3):487–494

    CAS  PubMed  Google Scholar 

  66. Nemeth L, Maddur S, Puri P (2000) Immunolocalization of the gap junction protein Connexin43 in the interstitial cells of Cajal in the normal and Hirschsprung’s disease bowel. J Pediatr Surg 35(6):823–828. doi:10.1053/jpsu.2000.6851

    CAS  PubMed  Google Scholar 

  67. Seki K, Komuro T (2001) Immunocytochemical demonstration of the gap junction proteins connexin 43 and connexin 45 in the musculature of the rat small intestine. Cell Tissue Res 306(3):417–422. doi:10.1007/s00441-001-0470-2

    CAS  PubMed  Google Scholar 

  68. Willecke K, Heynkes R, Dahl E, Stutenkemper R, Hennemann H, Jungbluth S, Suchyna T, Nicholson BJ (1991) Mouse connexin37: cloning and functional expression of a gap junction gene highly expressed in lung. J Cell Biol 114(5):1049–1057

    CAS  PubMed  Google Scholar 

  69. Gumber S, Nusrat A, Villinger F (2014) Immunohistological characterization of intercellular junction proteins in rhesus macaque intestine. Exp Toxicol Pathol 66(9):437–444. doi:10.1016/j.etp.2014.07.004

    CAS  PubMed  Google Scholar 

  70. Dubina MV, Iatckii NA, Popov DE, Vasil’ev SV, Krutovskikh VA (2002) Connexin 43, but not connexin 32, is mutated at advanced stages of human sporadic colon cancer. Oncogene 21(32):4992–4996. doi:10.1038/sj.onc.1205630

    CAS  PubMed  Google Scholar 

  71. Ennes HS, Young SH, Goliger JA, Mayer EA (1999) Chemical signaling from colonic smooth muscle cells to DRG neurons in culture. Am J Physiol 276(3):C602–C610

    CAS  PubMed  Google Scholar 

  72. Han Y, Zhang PJ, Chen T, Yum SW, Pasha T, Furth EE (2011) Connexin43 expression increases in the epithelium and stroma along the colonic neoplastic progression pathway: implications for its oncogenic role. Gastroenterol Res Pract 2011:561719. doi:10.1155/2011/561719

    PubMed Central  PubMed  Google Scholar 

  73. Ismail R, Rashid R, Andrabi K, Parray FQ, Besina S, Shah MA, Ul Hussain M (2014) Pathological implications of Cx43 down-regulation in human colon cancer. Asian Pac J Cancer Prev 15(7):2987–2991

    PubMed  Google Scholar 

  74. Kanczuga-Koda L, Sulkowski S, Koda M, Skrzydlewska E, Sulkowska M (2005) Connexin 26 correlates with Bcl-xL and Bax proteins expression in colorectal cancer. World J Gastroenterol 11(10):1544–1548

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Mattii L, Ippolito C, Segnani C, Battolla B, Colucci R, Dolfi A, Bassotti G, Blandizzi C, Bernardini N (2013) Altered expression pattern of molecular factors involved in colonic smooth muscle functions: an immunohistochemical study in patients with diverticular disease. PLoS One 8(2):e57023. doi:10.1371/journal.pone.0057023

    CAS  PubMed Central  PubMed  Google Scholar 

  76. McClain JL, Grubišić V, Fried D, Gomez-Suarez RA, Leinninger GM, Sévigny J, Parpura V, Gulbransen BD (2014) Ca2+ responses in enteric glia are mediated by connexin-43 hemichannels and modulate colonic transit in mice. Gastroenterology 146(2):497–507. doi:10.1053/j.gastro.2013.10.061

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Sedhom MA, Pichery M, Murdoch JR, Foligné B, Ortega N, Normand S, Mertz K, Sanmugalingam D, Brault L, Grandjean T, Lefrancais E, Fallon PG, Quesniaux V, Peyrin-Biroulet L, Cathomas G, Junt T, Chamaillard M, Girard JP, Ryffel B (2013) Neutralisation of the interleukin-33/ST2 pathway ameliorates experimental colitis through enhancement of mucosal healing in mice. Gut 62(12):1714–1723. doi:10.1136/gutjnl-2011-301785

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Sirnes S, Honne H, Ahmed D, Danielsen SA, Rognum TO, Meling GI, Leithe E, Rivedal E, Lothe RA, Lind GE (2011) DNA methylation analyses of the connexin gene family reveal silencing of GJC1 (Connexin45) by promoter hypermethylation in colorectal cancer. Epigenetics 6(5):602–609

    CAS  PubMed  Google Scholar 

  79. Sirnes S, Bruun J, Kolberg M, Kjenseth A, Lind GE, Svindland A, Brech A, Nesbakken A, Lothe RA, Leithe E, Rivedal E (2012) Connexin43 acts as a colorectal cancer tumor suppressor and predicts disease outcome. Int J Cancer 131(3):570–581. doi:10.1002/ijc.26392

    CAS  PubMed  Google Scholar 

  80. Daniel EE, Thomas J, Ramnarain M, Bowes TJ, Jury J (2001) Do gap junctions couple interstitial cells of Cajal pacing and neurotransmission to gastrointestinal smooth muscle? Neurogastroenterol Motil 13(4):297–307

    CAS  PubMed  Google Scholar 

  81. Daniel EE, Yazbi AE, Mannarino M, Galante G, Boddy G, Livergant J, Oskouei TE (2007) Do gap junctions play a role in nerve transmissions as well as pacing in mouse intestine? Am J Physiol Gastrointest Liver Physiol 292(3):G734–G745. doi:10.1152/ajpgi.00428.2006

    CAS  PubMed  Google Scholar 

  82. Eugenin EA, Gonzalez HE, Sanchez HA, Branes MC, Saez JC (2007) Inflammatory conditions induce gap junctional communication between rat Kupffer cells both in vivo and in vitro. Cell Immunol 247(2):103–110

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Fischer R, Reinehr R, Lu TP, Schonicke A, Warskulat U, Dienes HP, Haussinger D (2005) Intercellular communication via gap junctions in activated rat hepatic stellate cells. Gastroenterology 128(2):433–448

    CAS  PubMed  Google Scholar 

  84. Gonzalez HE, Eugenin EA, Garces G, Solis N, Pizarro M, Accatino L, Saez JC (2002) Regulation of hepatic connexins in cholestasis: possible involvement of Kupffer cells and inflammatory mediators. Am J Physiol Gastrointest Liver Physiol 282(6):G991–G1001

    CAS  PubMed  Google Scholar 

  85. Hernández-Guerra M, González-Méndez Y, de Ganzo ZA, Salido E, García-Pagán JC, Abrante B, Malagón AM, Bosch J, Quintero E (2014) Role of gap junctions modulating hepatic vascular tone in cirrhosis. Liver Int 34(6):859–868. doi:10.1111/liv.12446

    PubMed  Google Scholar 

  86. Chaytor AT, Martin PE, Edwards DH, Griffith TM (2001) Gap junctional communication underpins EDHF-type relaxations evoked by ACh in the rat hepatic artery. Am J Physiol Heart Circ Physiol 280(6):H2441–H2450

    CAS  PubMed  Google Scholar 

  87. Shiojiri N, Niwa T, Sugiyama Y, Koike T (2006) Preferential expression of connexin37 and connexin40 in the endothelium of the portal veins during mouse liver development. Cell Tissue Res 324(3):547–552. doi:10.1007/s00441-006-0165-9

    CAS  PubMed  Google Scholar 

  88. Spray DC, Saez JC, Hertzberg EL, Dermietzel R (1994) Gap junctions in liver: composition, function, and regulation. In: Arias IM, Boyer JL, Fausto N, Jakoby DA, Schachter DA, Shaftrits DA (eds) The liver: biology and pathobiology. Raven Press, New York, pp 951–967

    Google Scholar 

  89. Berthoud VM, Iwanij V, Garcia AM, Sáez JC (1992) Connexins and glucagon receptors during development of rat hepatic acinus. Am J Physiol 263(5):G650–G658

    CAS  PubMed  Google Scholar 

  90. Iwai M, Harada Y, Muramatsu A, Tanaka S, Mori T, Okanoue T, Katoh F, Ohkusa T, Kashima K (2000) Development of gap junctional channels and intercellular communication in rat liver during ontogenesis. J Hepatol 32(1):11–18. doi:10.1016/s0168-8278(00)80184-1

    CAS  PubMed  Google Scholar 

  91. Kojima T, Kokai Y, Chiba H, Yamamoto M, Mochizuki Y, Sawada N (2001) Cx32 but not Cx26 is associated with tight junctions in primary cultures of rat hepatocytes. Exp Cell Res 263(2):193–201. doi:10.1006/excr.2000.5103

    CAS  PubMed  Google Scholar 

  92. Fowler SL, Akins M, Zhou H, Figeys D, Bennett SA (2013) The liver connexin32 interactome is a novel plasma membrane-mitochondrial signaling nexus. J Proteome Res 12(6):2597–2610. doi:10.1021/pr301166p

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Oyamada M, Takebe K, Oyamada Y (2012) Regulation of connexin expression by transcription factors and epigenetic mechanisms. Biochim Biophys Acta 1828(1):118–133. doi:10.1016/j.bbamem.2011.12.031

    PubMed  Google Scholar 

  94. Koffler LD, Fernstrom MJ, Akiyama TE, Gonzalez FJ, Ruch RJ (2002) Positive regulation of connexin32 transcription by hepatocyte nuclear factor-1alpha. Arch Biochem Biophys 407(2):160–167

    CAS  PubMed  Google Scholar 

  95. Piechocki MP, Burk RD, Ruch RJ (1999) Regulation of connexin32 and connexin43 gene expression by DNA methylation in rat liver cells. Carcinogenesis 20(3):401–406

    CAS  PubMed  Google Scholar 

  96. Vinken M, Henkens T, Vanhaecke T, Papeleu P, Geerts A, Van Rossen E, Chipman JK, Meda P, Rogiers V (2006) Trichostatin a enhances gap junctional intercellular communication in primary cultures of adult rat hepatocytes. Toxicol Sci 91(2):484–492. doi:10.1093/toxsci/kfj152

    CAS  PubMed  Google Scholar 

  97. Klotz LO (2012) Posttranscriptional regulation of connexin-43 expression. Arch Biochem Biophys 524(1):23–29. doi:10.1016/j.abb.2012.03.012

    CAS  PubMed  Google Scholar 

  98. Johnstone SR, Billaud M, Lohman AW, Taddeo EP, Isakson BE (2012) Posttranslational modifications in connexins and pannexins. J Membr Biol 245(5):319–332. doi:10.1007/s00232-012-9453-3

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Saez JC, Spray DC, Nairn AC, Hertzberg E, Greengard P, Bennett MV (1986) cAMP increases junctional conductance and stimulates phosphorylation of the 27-kDa principal gap junction polypeptide. Proc Natl Acad Sci USA 83(8):2473–2477

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Elvira M, Díez JA, Wang KK, Villalobo A (1993) Phosphorylation of connexin-32 by protein kinase C prevents its proteolysis by mu-calpain and m-calpain. J Biol Chem 268(19):14294–14300

    CAS  PubMed  Google Scholar 

  101. Fukushi Y, Sakurai T, Terakawa S (2014) Cell-to-cell propagation of intracellular signals fluorescently visualized with acridine orange in the gastric glands of guinea pigs. Biochem Biophys Res Commun 447(1):38–43. doi:10.1016/j.bbrc.2014.03.095

    CAS  PubMed  Google Scholar 

  102. Ueda F, Kyoi T, Mimura K, Kimura K, Yamamoto M (1991) Intercellular communication in cultured rabbit gastric epithelial cells. Jpn J Pharmacol 57(3):321–328

    CAS  PubMed  Google Scholar 

  103. Ueda F, Kameda Y, Yamamoto O, Shibata Y (1994) Beta-adrenergic regulation of gap-junctional intercellular communication in cultured rabbit gastric epithelial cells. J Pharmacol Exp Ther 271(1):397–402

    CAS  PubMed  Google Scholar 

  104. Endo K, Watanabe S, Nagahara A, Hirose M, Sato N (1995) Restoration of gap junctions in the regenerative process of ethanol-induced gastric mucosal injury. J Gastroenterol Hepatol 10(5):589–594

    CAS  PubMed  Google Scholar 

  105. Mine T, Kushima R, Fujita T (1997) Relationship between healing of acetic acid-induced chronic gastric ulcer and connexin. J Clin Gastroenterol 25(Suppl 1):S111–S115

    PubMed  Google Scholar 

  106. Saund RS, Kanai-Azuma M, Kanai Y, Kim I, Lucero MT, Saijoh Y (2012) Gut endoderm is involved in the transfer of left-right asymmetry from the node to the lateral plate mesoderm in the mouse embryo. Development 139(13):2426–2435. doi:10.1242/dev.079921

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Viotti M, Niu L, Shi SH, Hadjantonakis AK (2012) Role of the gut endoderm in relaying left-right patterning in mice. PLoS Biol 10(3):e1001276. doi:10.1371/journal.pbio.1001276

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Morita H, Katsuno T, Hoshimoto A, Hirano N, Saito Y, Suzuki Y (2004) Connexin 26-mediated gap junctional intercellular communication suppresses paracellular permeability of human intestinal epithelial cell monolayers. Exp Cell Res 298(1):1–8. doi:10.1016/j.yexcr.2004.03.046

    CAS  PubMed  Google Scholar 

  109. Sibaev A, Yüce B, Schirra J, Göke B, Allescher HD, Storr M (2006) Are gap junctions truly involved in inhibitory neuromuscular interaction in mouse proximal colon? Clin Exp Pharmacol Physiol 33(8):740–745. doi:10.1111/j.1440-1681.2006.04433.x

    CAS  PubMed  Google Scholar 

  110. Daniel EE, Wang YF (1999) Gap junctions in intestinal smooth muscle and interstitial cells of Cajal. Microsc Res Tech 47(5):309–320

    CAS  PubMed  Google Scholar 

  111. Döring B, Pfitzer G, Adam B, Liebregts T, Eckardt D, Holtmann G, Hofmann F, Feil S, Feil R, Willecke K (2007) Ablation of connexin43 in smooth muscle cells of the mouse intestine: functional insights into physiology and morphology. Cell Tissue Res 327(2):333–342. doi:10.1007/s00441-006-0281-6

    PubMed  Google Scholar 

  112. Nagy JI, Urena-Ramirez V, Ghia JE (2014) Functional alterations in gut contractility after connexin36 ablation and evidence for gap junctions forming electrical synapses between nitrergic enteric neurons. FEBS Lett 588(8):1480–1490. doi:10.1016/j.febslet.2014.02.002

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Ey B, Eyking A, Gerken G, Podolsky DK, Cario E (2009) TLR2 mediates gap junctional intercellular communication through connexin-43 in intestinal epithelial barrier injury. J Biol Chem 284(33):22332–22343. doi:10.1074/jbc.M901619200

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Simon AM, McWhorter AR (2002) Vascular abnormalities in mice lacking the endothelial gap junction proteins connexin37 and connexin40. Dev Biol 251(2):206–220

    CAS  PubMed  Google Scholar 

  115. Naves MMV, Silveira ER, Dagli MLZ, Moreno FS (2001) Effects of beta-carotene and vitamin A on oval cell proliferation and connexin 43 expression during hepatic differentiation in the rat. J Nutr Biochem 12(12):685–692. doi:10.1016/s0955-2863(01)00187-5

    CAS  PubMed  Google Scholar 

  116. Neveu MJ, Hully JR, Babcock KL, Vaughan J, Hertzberg EL, Nicholson BJ, Paul DL, Pitot HC (1995) Proliferation-associated differences in the spatial and temporal expression of gap junction genes in rat liver. Hepatology 22(1):202–212

    CAS  PubMed  Google Scholar 

  117. Paku S, Nagy P, Kopper L, Thorgeirsson SS (2004) 2-acetylaminofluorene dose-dependent differentiation of rat oval cells into hepatocytes: confocal and electron microscopic studies. Hepatology 39(5):1353–1361. doi:10.1002/hep.20178

    CAS  PubMed  Google Scholar 

  118. Kojima T, Mitaka T, Shibata Y, Mochizuki Y (1995) Induction and regulation of connexin26 by glucagon in primary cultures of adult rat hepatocytes. J Cell Sci 108(8):2771–2780

    CAS  PubMed  Google Scholar 

  119. Saez JC, Berthoud VM, Branes MC, Martinez AD, Beyer EC (2003) Plasma membrane channels formed by connexins: their regulation and functions. Physiol Rev 83(4):1359–1400. doi:10.1152/physrev.00007.2003

    CAS  PubMed  Google Scholar 

  120. Stumpel F, Ott T, Willecke K, Jungermann K (1998) Connexin 32 gap junctions enhance stimulation of glucose output by glucagon and noradrenaline in mouse liver. Hepatology 28(6):1616–1620. doi:10.1002/hep.510280622

    CAS  PubMed  Google Scholar 

  121. Clair C, Chalumeau C, Tordjmann T, Poggioli J, Erneux C, Dupont G, Combettes L (2001) Investigation of the roles of Ca(2+) and InsP(3) diffusion in the coordination of Ca(2+) signals between connected hepatocytes. J Cell Sci 114:1999–2007

    CAS  PubMed  Google Scholar 

  122. Nelles E, Butzler C, Jung D, Temme A, Gabriel HD, Dahl U, Traub O, Stumpel F, Jungermann K, Zielasek J, Toyka KV, Dermietzel R, Willecke K (1996) Defective propagation of signals generated by sympathetic nerve stimulation in the liver of connexin32-deficient mice. Proc Natl Acad Sci USA 93(18):9565–9570. doi:10.1073/pnas.93.18.9565

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Bode HP, Wang L, Cassio D, Leite MF, St-Pierre MV, Hirata K, Okazaki K, Sears ML, Meda P, Nathanson MH, Dufour JF (2002) Expression and regulation of gap junctions in rat cholangiocytes. Hepatology 36(3):631–640. doi:10.1053/jhep.2002.35274

    CAS  PubMed  Google Scholar 

  124. Nathanson MH, Rios-Velez L, Burgstahler AD, Mennone A (1999) Communication via gap junctions modulates bile secretion in the isolated perfused rat liver. Gastroenterology 116(5):1176–1183. doi:10.1016/s0016-5085(99)70021-1

    CAS  PubMed  Google Scholar 

  125. Neveu MJ, Babcock KL, Hertzberg EL, Paul DL, Nicholson BJ, Pitot HC (1994) Colocalized alterations in connexin32 and cytochrome P450IIB1/2 by phenobarbital and related liver tumor promoters. Cancer Res 54(12):3145–3152

    CAS  PubMed  Google Scholar 

  126. Shoda T, Mitsumori K, Onodera H, Toyoda K, Uneyama C, Imazawa T, Hirose M (1999) The relationship between decrease in Cx32 and induction of P450 isozymes in the early phase of clofibrate hepatocarcinogenesis in the rat. Arch Toxicol 73(7):373–380

    CAS  PubMed  Google Scholar 

  127. Shoda T, Mitsumori K, Onodera H, Toyoda K, Uneyama C, Takada K, Hirose M (2000) Liver tumor-promoting effect of beta-naphthoflavone, a strong CYP 1A1/2 inducer, and the relationship between CYP 1A1/2 induction and Cx32 decrease in its hepatocarcinogenesis in the rat. Toxicol Pathol 28(4):540–547

    CAS  PubMed  Google Scholar 

  128. Yang J, Ichikawa A, Tsuchiya T (2003) A novel function of connexin 32: marked enhancement of liver function in a hepatoma cell line. Biochem Biophys Res Commun 307(1):80–85

    CAS  PubMed  Google Scholar 

  129. Fladmark KE, Gjertsen BT, Molven A, Mellgren G, Vintermyr OK, Døskeland SO (1997) Gap junctions and growth control in liver regeneration and in isolated rat hepatocytes. Hepatology 25(4):847–855. doi:10.1002/hep.510250411

    CAS  PubMed  Google Scholar 

  130. Kren BT, Kumar NM, Wang SQ, Gilula NB, Steer CJ (1993) Differential regulation of multiple gap junction transcripts and proteins during rat liver regeneration. J Cell Biol 123(3):707–718

    CAS  PubMed  Google Scholar 

  131. Temme A, Ott T, Dombrowski F, Willecke K (2000) The extent of synchronous initiation and termination of DNA synthesis in regenerating mouse liver is dependent on connexin32 expressing gap junctions. J Hepatol 32(4):627–635

    CAS  PubMed  Google Scholar 

  132. Kojima T, Yamamoto T, Murata M, Lan M, Takano K, Go M, Ichimiya S, Chiba H, Sawada N (2003) Role of the p38 MAP-kinase signaling pathway for Cx32 and claudin-1 in the rat liver. Cell Commun Adhes 10(4–6):437–443

    CAS  PubMed  Google Scholar 

  133. Chipman JK, Mally A, Edwards GO (2003) Disruption of gap junctions in toxicity and carcinogenicity. Toxicol Sci 71(2):146–153

    CAS  PubMed  Google Scholar 

  134. Koffler L, Roshong S, Park IK, Cesen-Cummings K, Thompson DC, Dwyer-Nield LD, Rice P, Mamay C, Malkinson AM, Ruch RJ (2000) Growth inhibition in G(1) and altered expression of cyclin D1 and p27(kip-1) after forced connexin expression in lung and liver carcinoma cells. J Cell Biochem 79(3):347–354

    CAS  PubMed  Google Scholar 

  135. Yano T, Hernandez-Blazquez FJ, Omori Y, Yamasaki H (2001) Reduction of malignant phenotype of HEPG2 cell is associated with the expression of connexin 26 but not connexin 32. Carcinogenesis 22(10):1593–1600. doi:10.1093/carcin/22.10.1593

    CAS  PubMed  Google Scholar 

  136. Wilson MR, Close TW, Trosko JE (2000) Cell population dynamics (apoptosis, mitosis, and cell-cell communication) during disruption of homeostasis. Exp Cell Res 254(2):257–268

    CAS  PubMed  Google Scholar 

  137. Vinken M, Maes M, Cavill R, Valkenborg D, Ellis JK, Decrock E, Leybaert L, Staes A, Gevaert K, Oliveira AG, Menezes GB, Cogliati B, Dagli ML, Ebbels TM, Witters E, Keun HC, Vanhaecke T, Rogiers V (2013) Proteomic and metabolomic responses to connexin43 silencing in primary hepatocyte cultures. Arch Toxicol 87(5):883–894. doi:10.1007/s00204-012-0994-0

    CAS  PubMed  Google Scholar 

  138. Azarashvili T, Baburina Y, Grachev D, Krestinina O, Evtodienko Y, Stricker R, Reiser G (2011) Calcium-induced permeability transition in rat brain mitochondria is promoted by carbenoxolone through targeting connexin43. Am J Physiol Cell Physiol 300(3):C707–C720. doi:10.1152/ajpcell.00061.2010

    CAS  PubMed  Google Scholar 

  139. Goubaeva F, Mikami M, Giardina S, Ding B, Abe J, Yang J (2007) Cardiac mitochondrial connexin 43 regulates apoptosis. Biochem Biophys Res Commun 352(1):97–103

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Lu G, Haider HKh, Porollo A, Ashraf M (2010) Mitochondria-specific transgenic overexpression of connexin-43 simulates preconditioning-induced cytoprotection of stem cells. Cardiovasc Res 88(2):277–286. doi:10.1093/cvr/cvq293

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Chekeni FB, Elliott MR, Sandilos JK, Walk SF, Kinchen JM, Lazarowski ER, Armstrong AJ, Penuela S, Laird DW, Salvesen GS, Isakson BE, Bayliss DA, Ravichandran KS (2010) Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature 467(7317):863–867

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Qu Y, Misaghi S, Newton K, Gilmour LL, Louie S, Cupp JE, Dubyak GR, Hackos D, Dixit VM (2011) Pannexin-1 is required for ATP release during apoptosis but not for inflammasome activation. J Immunol 186(11):6553–6561

    CAS  PubMed  Google Scholar 

  143. Sandilos JK, Chiu YH, Chekeni FB, Armstrong AJ, Walk SF, Ravichandran KS, Bayliss DA (2012) Pannexin 1, an ATP release channel, is activated by caspase cleavage of its pore-associated c-terminal autoinhibitory region. J Biol Chem 287(14):11303–11311. doi:10.1074/jbc.M111.323378

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Iglesias R, Locovei S, Roque A, Alberto AP, Dahl G, Spray DC, Scemes E (2008) P2X(7) receptor-Pannexin1 complex: pharmacology and signaling. Am J Physiol Cell Physiol 295(3):C752–C760. doi:10.1152/ajpcell.00228.2008

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J 25(21):5071–5082

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Pelegrin P, Surprenant A (2007) Pannexin-1 couples to maitotoxin- and nigericin-induced interleukin-1beta release through a dye uptake-independent pathway. J Biol Chem 282(4):2386–2394

    CAS  PubMed  Google Scholar 

  147. Bodendiek SB, Raman G (2010) Connexin modulators and their potential targets under the magnifying glass. Curr Med Chem 17(34):4191–4230

    CAS  PubMed  Google Scholar 

  148. Abudara V, Bechberger J, Freitas-Andrade M, De Bock M, Wang N, Bultynck G, Naus CC, Leybaert L, Giaume C (2014) The connexin43 mimetic peptide Gap19 inhibits hemichannels without altering gap junctional communication in astrocytes. Front Cell Neurosci 8:306. doi:10.3389/fncel.2014.00306

    PubMed Central  PubMed  Google Scholar 

  149. Iyyathurai J, Dhondt C, Wang N, De Bock M, Himpens B, Retamal MA, Stehberg J, Leybaert L, Bultynck G (2013) Peptides and peptide-derived molecules targeting the intracellular domains of Cx43: gap junctions versus hemichannels. Neuropharmacology 75:491–505. doi:10.1016/j.neuropharm.2013.04.050

    CAS  PubMed  Google Scholar 

  150. Pelegrin P, Barroso-Gutierrez C, Surprenant A (2008) P2X7 receptor differentially couples to distinct release pathways for IL-1beta in mouse macrophage. J Immunol 180(11):7147–7157

    CAS  PubMed  Google Scholar 

  151. Kanczuga-Koda L, Sulkowski S, Koda M, Sobaniec-Lotowska M, Sulkowska M (2004) Expression of connexins 26, 32 and 43 in the human colon: an immunohistochemical study. Folia Histochem Cytobiol 42(4):203–207

    CAS  PubMed  Google Scholar 

  152. Nicholson B, Dermietzel R, Teplow D, Traub O, Willecke K, Revel JP (1987) Two homologous protein components of hepatic gap junctions. Nature 329(6141):732–734. doi:10.1038/329732a0

    CAS  PubMed  Google Scholar 

  153. Kuraoka A, Iida H, Hatae T, Shibata Y, Itoh M, Kurita T (1993) Localization of gap junction proteins, connexins 32 and 26, in rat and guinea pig liver as revealed by quick-freeze, deep-etch immunoelectron microscopy. J Histochem Cytochem 41(7):971–980

    CAS  PubMed  Google Scholar 

  154. Nakashima Y, Ono T, Yamanoi A, El-Assal ON, Kohno H, Nagasue N (2004) Expression of gap junction protein connexin32 in chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. J Gastroenterol 39(8):763–768

    CAS  PubMed  Google Scholar 

  155. Temme A, Traub O, Willecke K (1998) Downregulation of connexin32 protein and gap-junctional intercellular communication by cytokine-mediated acute-phase response in immortalized mouse hepatocytes. Cell Tissue Res 294(2):345–350

    CAS  PubMed  Google Scholar 

  156. Tang B, Peng ZH, Yu PW, Yu G, Qian F, Zeng DZ, Zhao YL, Shi Y, Hao YX, Luo HX (2013) Aberrant expression of Cx43 is associated with the peritoneal metastasis of gastric cancer and Cx43-mediated gap junction enhances gastric cancer cell diapedesis from peritoneal mesothelium. PLoS ONE 8(9):e74527. doi:10.1371/journal.pone.0074527

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Oyamada M, Krutovskikh VA, Mesnil M, Partensky C, Berger F, Yamasaki H (1990) Aberrant expression of gap junction gene in primary human hepatocellular carcinomas: increased expression of cardiac-type gap junction gene connexin 43. Mol Carcinog 3(5):273–278

    CAS  PubMed  Google Scholar 

  158. Wang ZS, Wu LQ, Yi X, Geng C, Li YJ, Yao RY (2013) Connexin-43 can delay early recurrence and metastasis in patients with hepatitis B-related hepatocellular carcinoma and low serum alpha-fetoprotein after radical hepatectomy. BMC Cancer 13:306. doi:10.1186/1471-2407-13-306

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Zhang D, Kaneda M, Nakahama K, Arii S, Morita I (2007) Connexin 43 expression promotes malignancy of HuH7 hepatocellular carcinoma cells via the inhibition of cell-cell communication. Cancer Lett 252(2):208–215. doi:10.1016/j.canlet.2006.12.024

    CAS  PubMed  Google Scholar 

  160. Balasubramaniyan V, Dhar DK, Warner AE, Vivien Li WY, Amiri AF, Bright B, Mookerjee RP, Davies NA, Becker DL, Jalan R (2013) Importance of Connexin-43 based gap junction in cirrhosis and acute-on-chronic liver failure. J Hepatol 58(6):1194–1200. doi:10.1016/j.jhep.2013.01.023

    CAS  PubMed  Google Scholar 

  161. Cogliati B, Da Silva TC, Aloia TP, Chaible LM, Real-Lima MA, Sanches DS, Matsuzaki P, Hernandez-Blazquez FJ, Dagli ML (2011) Morphological and molecular pathology of CCL4-induced hepatic fibrosis in connexin43-deficient mice. Microsc Res Tech 74(5):421–429. doi:10.1002/jemt.20926

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the grants of Agency for Innovation by Science and Technology in Flanders (IWT), the University Hospital of the Vrije Universiteit Brussel-Belgium (“Willy Gepts Fonds” UZ-VUB), the Fund for Scientific Research-Flanders (FWO Grants G009514 N and G010214 N), the European Research Council (ERC Starting Grant 335476), the University of São Paulo-Brazil and the Foundation for Research Support of the State of São Paulo (FAPESP SPEC Grant 2013/50420-6).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationship that could be construed as a potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Vinken.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maes, M., Cogliati, B., Crespo Yanguas, S. et al. Roles of connexins and pannexins in digestive homeostasis. Cell. Mol. Life Sci. 72, 2809–2821 (2015). https://doi.org/10.1007/s00018-015-1961-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1961-8

Keywords

Navigation