Skip to main content
Log in

Differential control of muscle mass in type 1 and type 2 diabetes mellitus

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Diabetes mellitus—whether driven by insulin deficiency or insulin resistance—causes major alterations in muscle metabolism. These alterations have an impact on nutrient handling, including the metabolism of glucose, lipids, and amino acids, and also on muscle mass and strength. However, the ways in which the distinct forms of diabetes affect muscle mass differ greatly. The most common forms of diabetes mellitus are type 1 and type 2. Thus, whereas type 1 diabetic subjects without insulin treatment display a dramatic loss of muscle, most type 2 diabetic subjects show no changes or even an increase in muscle mass. However, the most commonly used rodent models of type 2 diabetes are characterized by muscle atrophy and do not mimic the features of the disease in humans in terms of muscle mass. In this review, we analyze the processes that are differentially regulated under these forms of diabetes and propose regulatory mechanisms to explain them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

4EBP:

Eukaryotic translation initiation factor 4E-binding protein

AKT:

v-Akt murine thymoma viral oncogene homolog

Atg4b:

Autophagy-related protein 4b

Atg8:

Autophagy-related protein 8

Atg12:

Autophagy-related protein 12

ATP:

Adenosine triphosphate

BMI:

Body mass index

Bnip3:

BCL2/adenovirus E1B 19-kDa protein-interacting protein 3

Bnip3l:

BCL2/adenovirus E1B 19-kDa protein-interacting protein 3-like

DOR:

Diabetes and obesity regulated

EDL:

Extensor digitorum longus

eIF2B:

Eukaryotic translation initiation factor 2B

eIF4E:

Eukaryotic translation initiation factor 4E

FoxO:

Forkhead box O

GABARAP:

Gamma-aminobutyric acid receptor-associated protein

GABARAPL1:

Gamma-aminobutyric acid receptor-associated protein-like 1

GATE16:

Golgi-associated ATPase enhancer of 16 kDa

GR:

Glucocorticoid receptor

GSK3β:

Glycogen synthase kinase 3 beta

GTP:

Guanosine triphosphate

IGF-1:

Insulin-like growth factor-1

IL-6:

Interleukin-6

IRS:

Insulin receptor substrate

LC3:

Microtubule-associated protein 1 light chain 3

Lep:

Leptin

Lepr:

Leptin receptor

MuRF1:

Muscle RING finger 1

mTOR:

Mammalian target of rapamycin

mTORC1:

Mammalian target of rapamycin complex 1

mTORC2:

Mammalian target of rapamycin complex 2

PDK1:

3-Phosphoinositide-dependent protein kinase-1

PI3K:

Phosphatidylinositol 3-kinase

PML:

Promyelocytic leukemia

PPARγ:

Peroxisome proliferator-activated receptor gamma

Rheb:

Ras homolog enriched in brain

STAT3:

Signal transducer and activator of transcription 3

S6:

Ribosomal protein S6

S6K1:

Ribosomal protein S6 kinase 1

S6K2:

Ribosomal protein S6 kinase 2

TNFα:

Tumor necrosis factor α

TP53INP1:

Tumor protein p53-inducible nuclear protein 1

TP53INP2:

Tumor protein p53-inducible nuclear protein 2

TRα1:

Thyroid hormone receptor alpha large isoform

TSC1:

Tuberous sclerosis complex 1

TSC2:

Tuberous sclerosis complex 2

ULK1:

Unc-51-like autophagy-activating kinase 1

UPS:

Ubiquitin proteasome system

Vps34:

Phosphatidylinositol 3-kinase Vps34

VDR:

Vitamin D3 receptor

References

  1. http://www.idf.org

  2. American Diabetes Association (2004) Diagnosis and classification of diabetes mellitus. Diabetes Care 27(Suppl 1):S5–S10

    Google Scholar 

  3. Canadian Diabetes Association Clinical Practice Guidelines Expert, Goldenberg R, Punthakee Z (2013) Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome. Can. J Diabetes 37(Suppl 1):S8–S11

    Google Scholar 

  4. Wallberg M, Cooke A (2013) Immune mechanisms in type 1 diabetes. Trends Immunol 34(12):583–591

    Article  CAS  PubMed  Google Scholar 

  5. Gan MJ, Albanese-O’Neill A, Haller MJ (2012) Type 1 diabetes: current concepts in epidemiology, pathophysiology, clinical care, and research. Curr Probl Pediatr Adolesc Health Care 42(10):269–291

    Article  PubMed  Google Scholar 

  6. Steck AK, Rewers MJ (2011) Genetics of type 1 diabetes. Clin Chem 57(2):176–185

    Article  CAS  PubMed  Google Scholar 

  7. Barrett JC et al (2009) Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet 41(6):703–707

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Imkampe AK, Gulliford MC (2011) Trends in type 1 diabetes incidence in the UK in 0- to 14-year-olds and in 15- to 34-year-olds, 1991–2008. Diabet Med 28(7):811–814

    Article  PubMed  Google Scholar 

  9. Reaven GM (1995) Pathophysiology of insulin resistance in human disease. Physiol Rev 75(3):473–486

    CAS  PubMed  Google Scholar 

  10. Kahn BB, Flier JS (2000) Obesity and insulin resistance. J Clin Invest 106(4):473–481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. DeFronzo RA, Tripathy D (2009) Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32(Suppl 2):S157–S163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Lillioja S et al (1993) Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus. Prospective studies of Pima Indians. N Engl J Med 329(27):1988–1992

    Article  CAS  PubMed  Google Scholar 

  13. Brunetti A, Chiefari E, Foti D (2014) Recent advances in the molecular genetics of type 2 diabetes mellitus. World J Diabetes 5(2):128–140

    PubMed Central  PubMed  Google Scholar 

  14. Doria A, Patti ME, Kahn CR (2008) The emerging genetic architecture of type 2 diabetes. Cell Metab 8(3):186–200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Ahlqvist E, Ahluwalia TS, Groop L (2011) Genetics of type 2 diabetes. Clin Chem 57(2):241–254

    Article  CAS  PubMed  Google Scholar 

  16. Franks PW, Pearson E, Florez JC (2013) Gene-environment and gene-treatment interactions in type 2 diabetes: progress, pitfalls, and prospects. Diabetes Care 36(5):1413–1421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Qiu B et al (2014) NUCKS is a positive transcriptional regulator of insulin signaling. Cell Rep 7(6):1876–1886

    Article  CAS  PubMed  Google Scholar 

  18. Friedman JM (2000) Obesity in the new millennium. Nature 404(6778):632–634

    CAS  PubMed  Google Scholar 

  19. Owen N et al (2010) Sedentary behavior: emerging evidence for a new health risk. Mayo Clin Proc 85(12):1138–1141

    Article  PubMed Central  PubMed  Google Scholar 

  20. Atchley DW et al (1933) On diabetic acidosis: a detailed study of electrolyte balances following the withdrawal and reestablishment of insulin therapy. J Clin Invest 12(2):297–326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Krause MP, Riddell MC, Hawke TJ (2011) Effects of type 1 diabetes mellitus on skeletal muscle: clinical observations and physiological mechanisms. Pediatr Diabetes 12(4 Pt 1):345–364

    Article  CAS  PubMed  Google Scholar 

  22. Jakobsen J, Reske-Nielsen E (1986) Diffuse muscle fiber atrophy in newly diagnosed diabetes. Clin Neuropathol 5(2):73–77

    CAS  PubMed  Google Scholar 

  23. Nair KS et al (1995) Protein dynamics in whole body and in splanchnic and leg tissues in type I diabetic patients. J Clin Invest 95(6):2926–2937

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Nair KS, Halliday D, Garrow JS (1984) Increased energy expenditure in poorly controlled Type 1 (insulin-dependent) diabetic patients. Diabetologia 27(1):13–16

    Article  CAS  PubMed  Google Scholar 

  25. Pacy PJ, Bannister PA, Halliday D (1991) Influence of insulin on leucine kinetics in the whole body and across the forearm in post-absorptive insulin-dependent diabetic (type 1) patients. Diabetes Res 18(4):155–162

    CAS  PubMed  Google Scholar 

  26. Janssen I et al (2000) Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J Appl Physiol (1985) 89(1):81–88

    CAS  Google Scholar 

  27. Kanehisa H, Fukunaga T (2013) Association between body mass index and muscularity in healthy older Japanese women and men. J Physiol Anthropol 32(1):4

    Article  PubMed Central  PubMed  Google Scholar 

  28. Micozzi MS, Harris TM (1990) Age variations in the relation of body mass indices to estimates of body fat and muscle mass. Am J Phys Anthropol 81(3):375–379

    Article  CAS  PubMed  Google Scholar 

  29. Park SW et al (2009) Excessive loss of skeletal muscle mass in older adults with type 2 diabetes. Diabetes Care 32(11):1993–1997

    Article  PubMed Central  PubMed  Google Scholar 

  30. Park SW et al (2007) Accelerated loss of skeletal muscle strength in older adults with type 2 diabetes: the health, aging, and body composition study. Diabetes Care 30(6):1507–1512

    Article  PubMed  Google Scholar 

  31. Bell JA et al (2006) Skeletal muscle protein anabolic response to increased energy and insulin is preserved in poorly controlled type 2 diabetes. J Nutr 136(5):1249–1255

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Rennie MJ et al (2004) Control of the size of the human muscle mass. Annu Rev Physiol 66:799–828

    Article  CAS  PubMed  Google Scholar 

  33. Sandri M (2008) Signaling in muscle atrophy and hypertrophy. Physiology (Bethesda) 23:160–170

    Article  CAS  Google Scholar 

  34. Rock KL et al (1994) Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78(5):761–771

    Article  CAS  PubMed  Google Scholar 

  35. Jagoe RT, Goldberg AL (2001) What do we really know about the ubiquitin-proteasome pathway in muscle atrophy? Curr Opin Clin Nutr Metab Care 4(3):183–190

    Article  CAS  PubMed  Google Scholar 

  36. Voges D, Zwickl P, Baumeister W (1999) The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 68:1015–1068

    Article  CAS  PubMed  Google Scholar 

  37. Tawa NE Jr, Odessey R, Goldberg AL (1997) Inhibitors of the proteasome reduce the accelerated proteolysis in atrophying rat skeletal muscles. J Clin Invest 100(1):197–203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Mitch WE et al (1994) Metabolic acidosis stimulates muscle protein degradation by activating the adenosine triphosphate-dependent pathway involving ubiquitin and proteasomes. J Clin Invest 93(5):2127–2133

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Wing SS, Goldberg AL (1993) Glucocorticoids activate the ATP-ubiquitin-dependent proteolytic system in skeletal muscle during fasting. Am J Physiol 264(4 Pt 1):E668–E676

    CAS  PubMed  Google Scholar 

  40. Martinez-Vicente M, Cuervo AM (2007) Autophagy and neurodegeneration: when the cleaning crew goes on strike. Lancet Neurol 6(4):352–361

    Article  CAS  PubMed  Google Scholar 

  41. Lowell BB, Ruderman NB, Goodman MN (1986) Evidence that lysosomes are not involved in the degradation of myofibrillar proteins in rat skeletal muscle. Biochem J 234(1):237–240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Baracos VE et al (1995) Activation of the ATP-ubiquitin-proteasome pathway in skeletal muscle of cachectic rats bearing a hepatoma. Am J Physiol 268(5 Pt 1):E996–E1006

    CAS  PubMed  Google Scholar 

  43. Penna F et al (2013) Autophagic degradation contributes to muscle wasting in cancer cachexia. Am J Pathol 182(4):1367–1378

    Article  CAS  PubMed  Google Scholar 

  44. Wang XH, Mitch WE (2014) Mechanisms of muscle wasting in chronic kidney disease. Nat Rev Nephrol 10(9):504–516

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Bailey JL et al (2006) Chronic kidney disease causes defects in signaling through the insulin receptor substrate/phosphatidylinositol 3-kinase/Akt pathway: implications for muscle atrophy. J Am Soc Nephrol 17(5):1388–1394

    Article  CAS  PubMed  Google Scholar 

  46. Price SR et al (1996) Muscle wasting in insulinopenic rats results from activation of the ATP-dependent, ubiquitin-proteasome proteolytic pathway by a mechanism including gene transcription. J Clin Invest 98(8):1703–1708

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Qiu J et al (2012) Hyperammonemia-mediated autophagy in skeletal muscle contributes to sarcopenia of cirrhosis. Am J Physiol Endocrinol Metab 303(8):E983–E993

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Zhao J et al (2007) FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 6(6):472–483

    Article  CAS  PubMed  Google Scholar 

  49. Stitt TN et al (2004) The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 14(3):395–403

    Article  CAS  PubMed  Google Scholar 

  50. Lecker SH et al (2004) Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 18(1):39–51

    Article  CAS  PubMed  Google Scholar 

  51. Mammucari C et al (2007) FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6(6):458–471

    Article  CAS  PubMed  Google Scholar 

  52. Sandri M et al (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117(3):399–412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Gelfand RA, Barrett EJ (1987) Effect of physiologic hyperinsulinemia on skeletal muscle protein synthesis and breakdown in man. J Clin Invest 80(1):1–6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Louard RJ et al (1992) Insulin sensitivity of protein and glucose metabolism in human forearm skeletal muscle. J Clin Invest 90(6):2348–2354

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Godil MA et al (2005) Effect of insulin with concurrent amino acid infusion on protein metabolism in rapidly growing pubertal children with type 1 diabetes. Pediatr Res 58(2):229–234

    Article  CAS  PubMed  Google Scholar 

  56. Lecker SH et al (1999) Muscle protein breakdown and the critical role of the ubiquitin-proteasome pathway in normal and disease states. J Nutr 129(1S Suppl):227S–237S

    CAS  PubMed  Google Scholar 

  57. Sala D et al (2014) Autophagy-regulating TP53INP2 mediates muscle wasting and is repressed in diabetes. J Clin Invest 124(5):1914–1927

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Airhart J et al (1982) Insulin stimulation of protein synthesis in cultured skeletal and cardiac muscle cells. Am J Physiol 243(1):C81–C86

    CAS  PubMed  Google Scholar 

  59. Shen WH et al (2005) Insulin and IGF-I stimulate the formation of the eukaryotic initiation factor 4F complex and protein synthesis in C2C12 myotubes independent of availability of external amino acids. J Endocrinol 185(2):275–289

    Article  CAS  PubMed  Google Scholar 

  60. Pain VM, Garlick PJ (1974) Effect of streptozotocin diabetes and insulin treatment on the rate of protein synthesis in tissues of the rat in vivo. J Biol Chem 249(14):4510–4514

    CAS  PubMed  Google Scholar 

  61. Monier S, Le Cam A, Le Marchand-Brustel Y (1983) Insulin and insulin-like growth factor I. Effects on protein synthesis in isolated muscles from lean and goldthioglucose-obese mice. Diabetes 32(5):392–397

    Article  CAS  PubMed  Google Scholar 

  62. Araki E et al (1994) Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature 372(6502):186–190

    Article  CAS  PubMed  Google Scholar 

  63. Baker J et al (1993) Role of insulin-like growth factors in embryonic and postnatal growth. Cell 75(1):73–82

    Article  CAS  PubMed  Google Scholar 

  64. Withers DJ et al (1998) Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391(6670):900–904

    Article  CAS  PubMed  Google Scholar 

  65. Long YC et al (2011) Insulin receptor substrates Irs1 and Irs2 coordinate skeletal muscle growth and metabolism via the Akt and AMPK pathways. Mol Cell Biol 31(3):430–441

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18(16):1926–1945

    Article  CAS  PubMed  Google Scholar 

  67. Facchinetti V et al (2008) The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO J 27(14):1932–1943

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Sarbassov DD et al (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307(5712):1098–1101

    Article  CAS  PubMed  Google Scholar 

  69. Alessi DR et al (1997) Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 7(4):261–269

    Article  CAS  PubMed  Google Scholar 

  70. Altomare DA et al (1995) Cloning, chromosomal localization and expression analysis of the mouse Akt2 oncogene. Oncogene 11(6):1055–1060

    CAS  PubMed  Google Scholar 

  71. Altomare DA et al (1998) Akt2 mRNA is highly expressed in embryonic brown fat and the AKT2 kinase is activated by insulin. Oncogene 16(18):2407–2411

    Article  CAS  PubMed  Google Scholar 

  72. Chen WS et al (2001) Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. Genes Dev 15(17):2203–2208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Cho H et al (2001) Akt1/PKBalpha is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J Biol Chem 276(42):38349–38352

    Article  CAS  PubMed  Google Scholar 

  74. Peng XD et al (2003) Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2. Genes Dev 17(11):1352–1365

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Blaauw B et al (2009) Inducible activation of Akt increases skeletal muscle mass and force without satellite cell activation. FASEB J 23(11):3896–3905

    Article  CAS  PubMed  Google Scholar 

  76. Bentzinger CF et al (2008) Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy. Cell Metab 8(5):411–424

    Article  CAS  PubMed  Google Scholar 

  77. Sekulic A et al (2000) A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res 60(13):3504–3513

    CAS  PubMed  Google Scholar 

  78. Inoki K et al (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4(9):648–657

    Article  CAS  PubMed  Google Scholar 

  79. Manning BD et al (2002) Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell 10(1):151–162

    Article  CAS  PubMed  Google Scholar 

  80. Potter CJ, Pedraza LG, Xu T (2002) Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol 4(9):658–665

    Article  CAS  PubMed  Google Scholar 

  81. Inoki K et al (2003) Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 17(15):1829–1834

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Garami A et al (2003) Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell 11(6):1457–1466

    Article  CAS  PubMed  Google Scholar 

  83. Bodine SC et al (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3(11):1014–1019

    Article  CAS  PubMed  Google Scholar 

  84. Ohanna M et al (2005) Atrophy of S6K1(−/−) skeletal muscle cells reveals distinct mTOR effectors for cell cycle and size control. Nat Cell Biol 7(3):286–294

    Article  CAS  PubMed  Google Scholar 

  85. Mizushima N (2010) The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol 22(2):132–139

    Article  CAS  PubMed  Google Scholar 

  86. Castets P et al (2013) Sustained activation of mTORC1 in skeletal muscle inhibits constitutive and starvation-induced autophagy and causes a severe, late-onset myopathy. Cell Metab 17(5):731–744

    Article  CAS  PubMed  Google Scholar 

  87. Masiero E et al (2009) Autophagy is required to maintain muscle mass. Cell Metab 10(6):507–515

    Article  CAS  PubMed  Google Scholar 

  88. Jefferson LS, Fabian JR, Kimball SR (1999) Glycogen synthase kinase-3 is the predominant insulin-regulated eukaryotic initiation factor 2B kinase in skeletal muscle. Int J Biochem Cell Biol 31(1):191–200

    Article  CAS  PubMed  Google Scholar 

  89. Rommel C et al (2001) Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol 3(11):1009–1013

    Article  CAS  PubMed  Google Scholar 

  90. Kamei Y et al (2004) Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated Type I (slow twitch/red muscle) fiber genes, and impaired glycemic control. J Biol Chem 279(39):41114–41123

    Article  CAS  PubMed  Google Scholar 

  91. Brunet A et al (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96(6):857–868

    Article  CAS  PubMed  Google Scholar 

  92. Calnan DR, Brunet A (2008) The FoxO code. Oncogene 27(16):2276–2288

    Article  CAS  PubMed  Google Scholar 

  93. Charlton MR, Nair KS (1998) Role of hyperglucagonemia in catabolism associated with type 1 diabetes: effects on leucine metabolism and the resting metabolic rate. Diabetes 47(11):1748–1756

    Article  CAS  PubMed  Google Scholar 

  94. Nair KS (1987) Hyperglucagonemia increases resting metabolic rate in man during insulin deficiency. J Clin Endocrinol Metab 64(5):896–901

    Article  CAS  PubMed  Google Scholar 

  95. Lecker SH et al (1999) Ubiquitin conjugation by the N-end rule pathway and mRNAs for its components increase in muscles of diabetic rats. J Clin Invest 104(10):1411–1420

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Hu Z et al (2007) PTEN expression contributes to the regulation of muscle protein degradation in diabetes. Diabetes 56(10):2449–2456

    Article  CAS  PubMed  Google Scholar 

  97. Moyer-Mileur LJ et al (2008) IGF-1 and IGF-binding proteins and bone mass, geometry, and strength: relation to metabolic control in adolescent girls with type 1 diabetes. J Bone Miner Res 23(12):1884–1891

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Wedrychowicz A et al (2005) Insulin-like growth factor-1 and its binding proteins, IGFBP-1 and IGFBP-3, in adolescents with type-1 diabetes mellitus and microalbuminuria. Horm Res 63(5):245–251

    Article  CAS  PubMed  Google Scholar 

  99. Sacheck JM et al (2004) IGF-I stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases, atrogin-1 and MuRF1. Am J Physiol Endocrinol Metab 287(4):E591–E601

    Article  CAS  PubMed  Google Scholar 

  100. Musaro A et al (2001) Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet 27(2):195–200

    Article  CAS  PubMed  Google Scholar 

  101. Mavalli MD et al (2010) Distinct growth hormone receptor signaling modes regulate skeletal muscle development and insulin sensitivity in mice. J Clin Invest 120(11):4007–4020

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Chan O et al (2003) Diabetes and the hypothalamo-pituitary-adrenal (HPA) axis. Minerva Endocrinol 28(2):87–102

    CAS  PubMed  Google Scholar 

  103. Mitch WE et al (1999) Evaluation of signals activating ubiquitin-proteasome proteolysis in a model of muscle wasting. Am J Physiol 276(5 Pt 1):C1132–C1138

    CAS  PubMed  Google Scholar 

  104. Price SR et al (1994) Acidosis and glucocorticoids concomitantly increase ubiquitin and proteasome subunit mRNAs in rat muscle. Am J Physiol 267(4 Pt 1):C955–C960

    CAS  PubMed  Google Scholar 

  105. Dogan Y et al (2006) Serum IL-1beta, IL-2, and IL-6 in insulin-dependent diabetic children. Mediators Inflamm 2006(1):59206

    PubMed Central  PubMed  Google Scholar 

  106. Rosa JS et al (2010) Resting and exercise-induced IL-6 levels in children with type 1 diabetes reflect hyperglycemic profiles during the previous 3 days. J Appl Physiol (1985) 108(2):334–342

    Article  CAS  Google Scholar 

  107. Rosa JS et al (2008) Altered kinetics of interleukin-6 and other inflammatory mediators during exercise in children with type 1 diabetes. J Investig Med 56(4):701–713

    CAS  PubMed  Google Scholar 

  108. Gordin D et al (2008) Acute hyperglycaemia induces an inflammatory response in young patients with type 1 diabetes. Ann Med 40(8):627–633

    Article  CAS  PubMed  Google Scholar 

  109. Zhang L et al (2013) Stat3 activation links a C/EBPdelta to myostatin pathway to stimulate loss of muscle mass. Cell Metab 18(3):368–379

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Bonetto A et al (2012) JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia. Am J Physiol Endocrinol Metab 303(3):E410–E421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Bonetto A et al (2011) STAT3 activation in skeletal muscle links muscle wasting and the acute phase response in cancer cachexia. PLoS One 6(7):e22538

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. Strassmann G et al (1992) Evidence for the involvement of interleukin 6 in experimental cancer cachexia. J Clin Invest 89(5):1681–1684

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Hirano T, Nakajima K, Hibi M (1997) Signaling mechanisms through gp130: a model of the cytokine system. Cytokine Growth Factor Rev 8(4):241–252

    Article  CAS  PubMed  Google Scholar 

  114. Kishimoto T, Taga T, Akira S (1994) Cytokine signal transduction. Cell 76(2):253–262

    Article  CAS  PubMed  Google Scholar 

  115. Zhang L et al (2011) Pharmacological inhibition of myostatin suppresses systemic inflammation and muscle atrophy in mice with chronic kidney disease. FASEB J 25(5):1653–1663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Zhou X et al (2010) Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell 142(4):531–543

    Article  CAS  PubMed  Google Scholar 

  117. Thomas SS, Mitch WE (2013) Mechanisms stimulating muscle wasting in chronic kidney disease: the roles of the ubiquitin-proteasome system and myostatin. Clin Exp Nephrol 17(2):174–182

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  118. Doehner W et al (2012) Inverse relation of body weight and weight change with mortality and morbidity in patients with type 2 diabetes and cardiovascular co-morbidity: an analysis of the PROactive study population. Int J Cardiol 162(1):20–26

    Article  PubMed  Google Scholar 

  119. Pupim LB et al (2005) Increased muscle protein breakdown in chronic hemodialysis patients with type 2 diabetes mellitus. Kidney Int 68(4):1857–1865

    Article  PubMed  Google Scholar 

  120. Wang X et al (2006) Insulin resistance accelerates muscle protein degradation: activation of the ubiquitin-proteasome pathway by defects in muscle cell signaling. Endocrinology 147(9):4160–4168

    Article  CAS  PubMed  Google Scholar 

  121. Fulster S et al (2013) Muscle wasting in patients with chronic heart failure: results from the studies investigating co-morbidities aggravating heart failure (SICA-HF). Eur Heart J 34(7):512–519

    Article  PubMed  CAS  Google Scholar 

  122. Carrero JJ et al (2008) Muscle atrophy, inflammation and clinical outcome in incident and prevalent dialysis patients. Clin Nutr 27(4):557–564

    Article  PubMed  Google Scholar 

  123. Volpato S et al (2012) Role of muscle mass and muscle quality in the association between diabetes and gait speed. Diabetes Care 35(8):1672–1679

    Article  PubMed Central  PubMed  Google Scholar 

  124. Kim TN et al (2010) Prevalence and determinant factors of sarcopenia in patients with type 2 diabetes: the Korean Sarcopenic Obesity Study (KSOS). Diabetes Care 33(7):1497–1499

    Article  PubMed Central  PubMed  Google Scholar 

  125. Baumgartner RN et al (2004) Sarcopenic obesity predicts instrumental activities of daily living disability in the elderly. Obes Res 12(12):1995–2004

    Article  PubMed  Google Scholar 

  126. Rolland Y et al (2009) Difficulties with physical function associated with obesity, sarcopenia, and sarcopenic-obesity in community-dwelling elderly women: the EPIDOS (EPIDemiologie de l’OSteoporose) Study. Am J Clin Nutr 89(6):1895–1900

    Article  CAS  PubMed  Google Scholar 

  127. Kob R et al (2015) Sarcopenic obesity: molecular clues to a better understanding of its pathogenesis? Biogerontology 16(1):15–29

    Article  CAS  PubMed  Google Scholar 

  128. Tessari P et al (2005) Insulin in methionine and homocysteine kinetics in healthy humans: plasma vs. intracellular models. Am J Physiol Endocrinol Metab 288(6):E1270–E1276

    Article  CAS  PubMed  Google Scholar 

  129. Halvatsiotis P et al (2002) Synthesis rate of muscle proteins, muscle functions, and amino acid kinetics in type 2 diabetes. Diabetes 51(8):2395–2404

    Article  CAS  PubMed  Google Scholar 

  130. Pereira S et al (2008) Insulin resistance of protein metabolism in type 2 diabetes. Diabetes 57(1):56–63

    Article  CAS  PubMed  Google Scholar 

  131. Bassil M et al (2011) Hyperaminoacidaemia at postprandial levels does not modulate glucose metabolism in type 2 diabetes mellitus. Diabetologia 54(7):1810–1818

    Article  CAS  PubMed  Google Scholar 

  132. Tessari P et al (2011) Insulin resistance of amino acid and protein metabolism in type 2 diabetes. Clin Nutr 30(3):267–272

    Article  CAS  PubMed  Google Scholar 

  133. Bassil MS, Gougeon R (2013) Muscle protein anabolism in type 2 diabetes. Curr Opin Clin Nutr Metab Care 16(1):83–88

    Article  CAS  PubMed  Google Scholar 

  134. Hwang H et al (2010) Proteomics analysis of human skeletal muscle reveals novel abnormalities in obesity and type 2 diabetes. Diabetes 59(1):33–42

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  135. Al-Khalili L et al (2014) Proteasome inhibition in skeletal muscle cells unmasks metabolic derangements in type 2 diabetes. Am J Physiol Cell Physiol 307(9):C774–C787

    Article  CAS  PubMed  Google Scholar 

  136. Zhang Y et al (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372(6505):425–432

    Article  CAS  PubMed  Google Scholar 

  137. Lindstrom P (2007) The physiology of obese-hyperglycemic mice [ob/ob mice]. ScientificWorldJournal 7:666–685

    Article  PubMed  CAS  Google Scholar 

  138. Bock T, Pakkenberg B, Buschard K (2003) Increased islet volume but unchanged islet number in ob/ob mice. Diabetes 52(7):1716–1722

    Article  CAS  PubMed  Google Scholar 

  139. Lavine RL et al (1977) Functional abnormalities of islets of Langerhans of obese hyperglycemic mouse. Am J Physiol 233(2):E86–E90

    CAS  PubMed  Google Scholar 

  140. Coleman DL (1978) Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia 14(3):141–148

    Article  CAS  PubMed  Google Scholar 

  141. Chen H et al (1996) Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 84(3):491–495

    Article  CAS  PubMed  Google Scholar 

  142. Hummel KP, Dickie MM, Coleman DL (1966) Diabetes, a new mutation in the mouse. Science 153(3740):1127–1128

    Article  CAS  PubMed  Google Scholar 

  143. Phillips MS et al (1996) Leptin receptor missense mutation in the fatty Zucker rat. Nat Genet 13(1):18–19

    Article  CAS  PubMed  Google Scholar 

  144. Polonsky KS, Lilly Lecture 1994 (1995) The beta-cell in diabetes: from molecular genetics to clinical research. Diabetes 44(6):705–717

    Article  CAS  PubMed  Google Scholar 

  145. Pick A et al (1998) Role of apoptosis in failure of beta-cell mass compensation for insulin resistance and beta-cell defects in the male Zucker diabetic fatty rat. Diabetes 47(3):358–364

    Article  CAS  PubMed  Google Scholar 

  146. Shibata T et al (2000) Effects of peroxisome proliferator-activated receptor-alpha and -gamma agonist, JTT-501, on diabetic complications in Zucker diabetic fatty rats. Br J Pharmacol 130(3):495–504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  147. Surwit RS et al (1988) Diet-induced type II diabetes in C57BL/6J mice. Diabetes 37(9):1163–1167

    Article  CAS  PubMed  Google Scholar 

  148. Winzell MS, Ahren B (2004) The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes 53(Suppl 3):S215–S219

    Article  PubMed  Google Scholar 

  149. Goto Y, Kakizaki M, Masaki N (1976) Production of spontaneous diabetic rats by repetition of selective breeding. Tohoku J Exp Med 119(1):85–90

    Article  CAS  PubMed  Google Scholar 

  150. Ostenson CG, Efendic S (2007) Islet gene expression and function in type 2 diabetes; studies in the Goto-Kakizaki rat and humans. Diabetes Obes Metab 9(Suppl 2):180–186

    Article  PubMed  CAS  Google Scholar 

  151. Portha B et al (2001) beta-cell function and viability in the spontaneously diabetic GK rat: information from the GK/Par colony. Diabetes 50(Suppl 1):S89–S93

    Article  CAS  PubMed  Google Scholar 

  152. Warmington SA, Tolan R, McBennett S (2000) Functional and histological characteristics of skeletal muscle and the effects of leptin in the genetically obese (ob/ob) mouse. Int J Obes Relat Metab Disord 24(8):1040–1050

    Article  CAS  PubMed  Google Scholar 

  153. Sainz N et al (2009) Leptin administration favors muscle mass accretion by decreasing FoxO3a and increasing PGC-1alpha in ob/ob mice. PLoS One 4(9):e6808

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  154. Russell ST, Tisdale MJ (2010) Antidiabetic properties of zinc-alpha2-glycoprotein in ob/ob mice. Endocrinology 151(3):948–957

    Article  CAS  PubMed  Google Scholar 

  155. Qiu S et al (2014) Increasing muscle mass improves vascular function in obese (db/db) mice. J Am Heart Assoc 3(3):e000854

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  156. Arounleut P et al (2013) Absence of functional leptin receptor isoforms in the POUND (Lepr(db/lb)) mouse is associated with muscle atrophy and altered myoblast proliferation and differentiation. PLoS One 8(8):e72330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  157. Huang J et al (2013) Effect of a low-protein diet supplemented with ketoacids on skeletal muscle atrophy and autophagy in rats with type 2 diabetic nephropathy. PLoS One 8(11):e81464

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  158. Sitnick M, Bodine SC, Rutledge JC (2009) Chronic high-fat feeding attenuates load-induced hypertrophy in mice. J Physiol 587(Pt 23):5753–5765

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  159. Sancho A et al (2012) DOR/Tp53inp2 and Tp53inp1 constitute a metazoan gene family encoding dual regulators of autophagy and transcription. PLoS One 7(3):e34034

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  160. Tomasini R et al (2003) TP53INP1s and homeodomain-interacting protein kinase-2 (HIPK2) are partners in regulating p53 activity. J Biol Chem 278(39):37722–37729

    Article  CAS  PubMed  Google Scholar 

  161. Tomasini R et al (2005) TP53INP1 is a novel p73 target gene that induces cell cycle arrest and cell death by modulating p73 transcriptional activity. Oncogene 24(55):8093–8104

    CAS  PubMed  Google Scholar 

  162. Baumgartner BG et al (2007) Identification of a novel modulator of thyroid hormone receptor-mediated action. PLoS One 2(11):e1183

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  163. Mauvezin C et al (2012) DOR undergoes nucleo-cytoplasmic shuttling, which involves passage through the nucleolus. FEBS Lett 586(19):3179–3186

    Article  CAS  PubMed  Google Scholar 

  164. Mauvezin C et al (2010) The nuclear cofactor DOR regulates autophagy in mammalian and Drosophila cells. EMBO Rep 11(1):37–44

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  165. Nowak J et al (2009) The TP53INP2 protein is required for autophagy in mammalian cells. Mol Biol Cell 20(3):870–881

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  166. Huang R et al (2015) Deacetylation of nuclear LC3 drives autophagy initiation under starvation. Mol Cell

Download references

Acknowledgments

We would like to thank Ms. Tanya Yates for editorial support. D. S. was a recipient of a FPU fellowship from the “Ministerio de Educación y Cultura”, Spain, and currently holds a California Institute for Regenerative Medicine (CIRM) Training grant (TG2-01162). This work was supported by research grants from the MINECO (SAF2008-03803 and SAF2013-40987R), grants 2009SGR915 and 2014SGR48 from the “Generalitat de Catalunya”, CIBERDEM (“Instituto de Salud Carlos III”), INTERREG IV-B-SUDOE-FEDER (DIOMED, SOE1/P1/E178), and DEXLIFE (Grant agreement no: 279228). A. Z. is recipient of an ICREA Acadèmia (“Generalitat de Catalunya”).

Conflict of interest

The authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Zorzano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sala, D., Zorzano, A. Differential control of muscle mass in type 1 and type 2 diabetes mellitus. Cell. Mol. Life Sci. 72, 3803–3817 (2015). https://doi.org/10.1007/s00018-015-1954-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1954-7

Keywords

Navigation