Skip to main content
Log in

Cytoplasmic dynein and early endosome transport

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Microtubule-based distribution of organelles/vesicles is crucial for the function of many types of eukaryotic cells and the molecular motor cytoplasmic dynein is required for transporting a variety of cellular cargos toward the microtubule minus ends. Early endosomes represent a major cargo of dynein in filamentous fungi, and dynein regulators such as LIS1 and the dynactin complex are both required for early endosome movement. In fungal hyphae, kinesin-3 and dynein drive bi-directional movements of early endosomes. Dynein accumulates at microtubule plus ends; this accumulation depends on kinesin-1 and dynactin, and it is important for early endosome movements towards the microtubule minus ends. The physical interaction between dynein and early endosome requires the dynactin complex, and in particular, its p25 component. The FTS-Hook-FHIP (FHF) complex links dynein–dynactin to early endosomes, and within the FHF complex, Hook interacts with dynein–dynactin, and Hook-early endosome interaction depends on FHIP and FTS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Engqvist-Goldstein AE, Drubin DG (2003) Actin assembly and endocytosis: from yeast to mammals. Annu Rev Cell Dev Biol 19:287–332

    CAS  PubMed  Google Scholar 

  2. Maldonado-Baez L, Williamson C, Donaldson JG (2013) Clathrin-independent endocytosis: a cargo-centric view. Exp Cell Res 319:2759–2769

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Mooren OL, Galletta BJ, Cooper JA (2012) Roles for actin assembly in endocytosis. Annu Rev Biochem 81:661–686

    CAS  PubMed  Google Scholar 

  4. Schmid SL, Sorkin A, Zerial M (2014) Endocytosis: past, present, and future. Cold Spring Harb Perspect Biol 6:a022509

    PubMed  Google Scholar 

  5. Peñalva MA (2010) Endocytosis in filamentous fungi: Cinderella gets her reward. Curr Opin Microbiol 13:684–692

    PubMed  Google Scholar 

  6. Granger E, McNee G, Allan V, Woodman P (2014) The role of the cytoskeleton and molecular motors in endosomal dynamics. Semin Cell Dev Biol 31:20–29

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Jovic M, Sharma M, Rahajeng J, Caplan S (2010) The early endosome: a busy sorting station for proteins at the crossroads. Histol Histopathol 25:99–112

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Steinberg G (2014) Endocytosis and early endosome motility in filamentous fungi. Curr Opin Microbiol 20:10–18

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Egan MJ, McClintock MA, Reck-Peterson SL (2012) Microtubule-based transport in filamentous fungi. Curr Opin Microbiol 15:637–645

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Peñalva MA, Galindo A, Abenza JF, Pinar M, Calcagno-Pizarelli AM, Arst HN Jr., Pantazopoulou A (2012) Searching for gold beyond mitosis: mining intracellular membrane traffic in Aspergillus nidulans. Cell Logist 2:2–14

    PubMed Central  PubMed  Google Scholar 

  11. Schroer TA (2004) Dynactin. Annu Rev Cell Dev Biol 20:759–779

    CAS  PubMed  Google Scholar 

  12. Kardon JR, Vale RD (2009) Regulators of the cytoplasmic dynein motor. Nat Rev Mol Cell Biol 10:854–865

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Bielska E, Schuster M, Roger Y, Berepiki A, Soanes DM, Talbot NJ, Steinberg G (2014) Hook is an adapter that coordinates kinesin-3 and dynein cargo attachment on early endosomes. J Cell Biol 204:989–1007

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Yao X, Wang X, Xiang X (2014) FHIP and FTS proteins are critical for dynein-mediated transport of early endosomes in Aspergillus. Mol Biol Cell 25:2181–2189

    PubMed Central  PubMed  Google Scholar 

  15. Zhang J, Qiu R, Arst HN Jr, Peñalva MA, Xiang X (2014) HookA is a novel dynein-early endosome linker critical for cargo movement in vivo. J Cell Biol 204:1009–1026

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Goldstein LS, Yang Z (2000) Microtubule-based transport systems in neurons: the roles of kinesins and dyneins. Annu Rev Neurosci 23:39–71

    CAS  PubMed  Google Scholar 

  17. Zheng Y, Jung MK, Oakley BR (1991) Gamma-tubulin is present in Drosophila melanogaster and Homo sapiens and is associated with the centrosome. Cell 65:817–823

    CAS  PubMed  Google Scholar 

  18. Carvalho P, Tirnauer JS, Pellman D (2003) Surfing on microtubule ends. Trends Cell Biol 13:229–237

    CAS  PubMed  Google Scholar 

  19. Wu X, Xiang X, Hammer JA 3rd (2006) Motor proteins at the microtubule plus-end. Trends Cell Biol 16:135–143

    PubMed  Google Scholar 

  20. Akhmanova A, Steinmetz MO (2008) Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nat Rev Mol Cell Biol 9:309–322

    CAS  PubMed  Google Scholar 

  21. Perlson E, Maday S, Fu MM, Moughamian AJ, Holzbaur EL (2010) Retrograde axonal transport: pathways to cell death? Trends Neurosci 33:335–344

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Fu MM, Holzbaur EL (2014) Integrated regulation of motor-driven organelle transport by scaffolding proteins. Trends Cell Biol 24:564–574

    CAS  PubMed  Google Scholar 

  23. Vallee RB, McKenney RJ, Ori-McKenney KM (2012) Multiple modes of cytoplasmic dynein regulation. Nat Cell Biol 14:224–230

    CAS  PubMed  Google Scholar 

  24. Han G, Liu B, Zhang J, Zuo W, Morris NR, Xiang X (2001) The Aspergillus cytoplasmic dynein heavy chain and NUDF localize to microtubule ends and affect microtubule dynamics. Curr Biol 11:719–724

    CAS  PubMed  Google Scholar 

  25. Lenz JH, Schuchardt I, Straube A, Steinberg G (2006) A dynein loading zone for retrograde endosome motility at microtubule plus-ends. EMBO J 25:2275–2286

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Egan MJ, Tan K, Reck-Peterson SL (2012) Lis1 is an initiation factor for dynein-driven organelle transport. J Cell Biol 197:971–982

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Efimov VP, Zhang J, Xiang X (2006) CLIP-170 homologue and NUDE play overlapping roles in NUDF localization in Aspergillus nidulans. Mol Biol Cell 17:2021–2034

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Zeng CJ, Kim HR, Vargas Arispuro I, Kim JM, Huang AC, Liu B (2014) Microtubule plus end-tracking proteins play critical roles in directional growth of hyphae by regulating the dynamics of cytoplasmic microtubules in Aspergillus nidulans. Mol Microbiol 94:506–521

  29. Konzack S, Rischitor PE, Enke C, Fischer R (2005) The role of the kinesin motor KipA in microtubule organization and polarized growth of Aspergillus nidulans. Mol Biol Cell 16:497–506

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Horio T, Oakley BR (2005) The role of microtubules in rapid hyphal tip growth of Aspergillus nidulans. Mol Biol Cell 16:918–926

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Govindaraghavan M, McGuire Anglin SL, Shen KF, Shukla N, De Souza CP, Osmani SA (2014) Identification of interphase functions for the NIMA kinase involving microtubules and the ESCRT pathway. PLoS Genet 10:e1004248

    PubMed Central  PubMed  Google Scholar 

  32. Winey M, Bloom K (2012) Mitotic spindle form and function. Genetics 190:1197–1224

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Oakley BR, Oakley CE, Yoon Y, Jung MK (1990) Gamma-tubulin is a component of the spindle pole body that is essential for microtubule function in Aspergillus nidulans. Cell 61:1289–1301

    CAS  PubMed  Google Scholar 

  34. Hoepfner S, Severin F, Cabezas A, Habermann B, Runge A, Gillooly D, Stenmark H, Zerial M (2005) Modulation of receptor recycling and degradation by the endosomal kinesin KIF16B. Cell 121:437–450

    CAS  PubMed  Google Scholar 

  35. Wedlich-Soldner R, Straube A, Friedrich MW, Steinberg G (2002) A balance of KIF1A-like kinesin and dynein organizes early endosomes in the fungus Ustilago maydis. EMBO J 21:2946–2957

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Valetti C, Wetzel DM, Schrader M, Hasbani MJ, Gill SR, Kreis TE, Schroer TA (1999) Role of dynactin in endocytic traffic: effects of dynamitin overexpression and colocalization with CLIP-170. Mol Biol Cell 10:4107–4120

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Abenza JF, Pantazopoulou A, Rodriguez JM, Galindo A, Peñalva MA (2009) Long-distance movement of Aspergillus nidulans early endosomes on microtubule tracks. Traffic 10:57–75

    CAS  PubMed  Google Scholar 

  38. Zekert N, Fischer R (2009) The Aspergillus nidulans kinesin-3 UncA motor moves vesicles along a subpopulation of microtubules. Mol Biol Cell 20:673–684

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Zhang J, Zhuang L, Lee Y, Abenza JF, Peñalva MA, Xiang X (2010) The microtubule plus-end localization of Aspergillus dynein is important for dynein-early-endosome interaction but not for dynein ATPase activation. J Cell Sci 123:3596–3604

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Qiu R, Zhang J, Xiang X (2013) Identification of a novel site in the tail of Dynein heavy chain important for Dynein function in vivo. J Biol Chem 288:2271–2280

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Tan K, Roberts AJ, Chonofsky M, Egan MJ, Reck-Peterson SL (2014) A microscopy-based screen employing multiplex genome sequencing identifies cargo-specific requirements for dynein velocity. Mol Biol Cell 25:669–678

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Seidel C, Moreno-Velasquez SD, Riquelme M, Fischer R (2013) Neurospora crassa NKIN2, a kinesin-3 motor, transports early endosomes and is required for polarized growth. Eukaryot Cell 12:1020–1032

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Araujo-Bazan L, Peñalva MA, Espeso EA (2008) Preferential localization of the endocytic internalization machinery to hyphal tips underlies polarization of the actin cytoskeleton in Aspergillus nidulans. Mol Microbiol 67:891–905

    CAS  PubMed  Google Scholar 

  44. Echauri-Espinosa RO, Callejas-Negrete OA, Roberson RW, Bartnicki-Garcia S, Mourino-Perez RR (2012) Coronin is a component of the endocytic collar of hyphae of Neurospora crassa and is necessary for normal growth and morphogenesis. PLoS One 7:e38237

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Taheri-Talesh N, Horio T, Araujo-Bazan L, Dou X, Espeso EA, Peñalva MA, Osmani SA, Oakley BR (2008) The tip growth apparatus of Aspergillus nidulans. Mol Biol Cell 19:1439–1449

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Upadhyay S, Shaw BD (2008) The role of actin, fimbrin and endocytosis in growth of hyphae in Aspergillus nidulans. Mol Microbiol 68:690–705

    CAS  PubMed  Google Scholar 

  47. Peñalva MA (2005) Tracing the endocytic pathway of Aspergillus nidulans with FM4-64. Fungal Genet Biol 42:963–975

    PubMed  Google Scholar 

  48. Abenza JF, Galindo A, Pantazopoulou A, Gil C, de los Rios V, Peñalva MA (2010) Aspergillus RabB Rab5 integrates acquisition of degradative identity with the long distance movement of early endosomes. Mol Biol Cell 21:2756–2769

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Abenza JF, Galindo A, Pinar M, Pantazopoulou A, de los Rios V, Peñalva MA (2012) Endosomal maturation by Rab conversion in Aspergillus nidulans is coupled to dynein-mediated basipetal movement. Mol Biol Cell 23:1889–1901

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Fuchs U, Hause G, Schuchardt I, Steinberg G (2006) Endocytosis is essential for pathogenic development in the corn smut fungus Ustilago maydis. Plant Cell 18:2066–2081

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Baumann S, Pohlmann T, Jungbluth M, Brachmann A, Feldbrugge M (2012) Kinesin-3 and dynein mediate microtubule-dependent co-transport of mRNPs and endosomes. J Cell Sci 125:2740–2752

    CAS  PubMed  Google Scholar 

  52. Higuchi Y, Ashwin P, Roger Y, Steinberg G (2014) Early endosome motility spatially organizes polysome distribution. J Cell Biol 204:343–357

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Bielska E, Higuchi Y, Schuster M, Steinberg N, Kilaru S, Talbot NJ, Steinberg G (2014) Long-distance endosome trafficking drives fungal effector production during plant infection. Nat Commun 5:5097

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Schuster M, Lipowsky R, Assmann MA, Lenz P, Steinberg G (2011) Transient binding of dynein controls bidirectional long-range motility of early endosomes. Proc Natl Acad Sci USA 108:3618–3623

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Vaughan KT, Tynan SH, Faulkner NE, Echeverri CJ, Vallee RB (1999) Colocalization of cytoplasmic dynein with dynactin and CLIP-170 at microtubule distal ends. J Cell Sci 112(Pt 10):1437–1447

    CAS  PubMed  Google Scholar 

  56. Xiang X, Han G, Winkelmann DA, Zuo W, Morris NR (2000) Dynamics of cytoplasmic dynein in living cells and the effect of a mutation in the dynactin complex actin-related protein Arp1. Curr Biol 10:603–606

    CAS  PubMed  Google Scholar 

  57. Zhang J, Li S, Fischer R, Xiang X (2003) Accumulation of cytoplasmic dynein and dynactin at microtubule plus ends in Aspergillus nidulans is kinesin dependent. Mol Biol Cell 14:1479–1488

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Arimoto M, Koushika SP, Choudhary BC, Li C, Matsumoto K, Hisamoto N (2011) The Caenorhabditis elegans JIP3 protein UNC-16 functions as an adaptor to link kinesin-1 with cytoplasmic dynein. J Neurosci 31:2216–2224

    CAS  PubMed  Google Scholar 

  59. Schuster M, Kilaru S, Ashwin P, Lin C, Severs NJ, Steinberg G (2011) Controlled and stochastic retention concentrates dynein at microtubule ends to keep endosomes on track. EMBO J 30:652–664

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Pfister KK, Shah PR, Hummerich H, Russ A, Cotton J, Annuar AA, King SM, Fisher EM (2006) Genetic analysis of the cytoplasmic dynein subunit families. PLoS Genet 2:e1

    PubMed Central  PubMed  Google Scholar 

  61. Allan VJ (2011) Cytoplasmic dynein. Biochem Soc Trans 39:1169–1178

    CAS  PubMed  Google Scholar 

  62. Roberts AJ, Kon T, Knight PJ, Sutoh K, Burgess SA (2013) Functions and mechanics of dynein motor proteins. Nat Rev Mol Cell Biol 14:713–726

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Schmidt H, Zalyte R, Urnavicius L, Carter AP (2015) Structure of human cytoplasmic dynein-2 primed for its power stroke. Nature 518:435–438

    CAS  PubMed  Google Scholar 

  64. Burgess SA, Walker ML, Sakakibara H, Knight PJ, Oiwa K (2003) Dynein structure and power stroke. Nature 421:715–718

    CAS  PubMed  Google Scholar 

  65. Samso M, Radermacher M, Frank J, Koonce MP (1998) Structural characterization of a dynein motor domain. J Mol Biol 276:927–937

    CAS  PubMed  Google Scholar 

  66. Hook P, Vallee R (2012) Dynein dynamics. Nat Struct Mol Biol 19:467–469

    PubMed  Google Scholar 

  67. Schmidt H, Gleave ES, Carter AP (2012) Insights into dynein motor domain function from a 3.3-A crystal structure. Nat Struct Mol Biol 19(492–497):S491

    Google Scholar 

  68. Kon T, Oyama T, Shimo-Kon R, Imamula K, Shima T, Sutoh K, Kurisu G (2012) The 2.8 A crystal structure of the dynein motor domain. Nature 484:345–350

    CAS  PubMed  Google Scholar 

  69. Gibbons IR, Lee-Eiford A, Mocz G, Phillipson CA, Tang WJ, Gibbons BH (1987) Photosensitized cleavage of dynein heavy chains. Cleavage at the “V1 site” by irradiation at 365 nm in the presence of ATP and vanadate. J Biol Chem 262:2780–2786

    CAS  PubMed  Google Scholar 

  70. Bhabha G, Cheng HC, Zhang N, Moeller A, Liao M, Speir JA, Cheng Y, Vale RD (2014) Allosteric communication in the Dynein motor domain. Cell 159:857–868

    CAS  PubMed  Google Scholar 

  71. Cho C, Reck-Peterson SL, Vale RD (2008) Regulatory ATPase sites of cytoplasmic dynein affect processivity and force generation. J Biol Chem 283:25839–25845

    CAS  PubMed Central  PubMed  Google Scholar 

  72. DeWitt MA, Cypranowska CA, Cleary FB, Belyy V, Yildiz A (2015) The AAA3 domain of cytoplasmic dynein acts as a switch to facilitate microtubule release. Nat Struct Mol Biol 22:73–80

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Kon T, Nishiura M, Ohkura R, Toyoshima YY, Sutoh K (2004) Distinct functions of nucleotide-binding/hydrolysis sites in the four AAA modules of cytoplasmic dynein. Biochemistry 43:11266–11274

    CAS  PubMed  Google Scholar 

  74. Silvanovich A, Li MG, Serr M, Mische S, Hays TS (2003) The third P-loop domain in cytoplasmic dynein heavy chain is essential for dynein motor function and ATP-sensitive microtubule binding. Mol Biol Cell 14:1355–1365

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Xiang X, Fischer R (2004) Nuclear migration and positioning in filamentous fungi. Fungal Genet Biol 41:411–419

    CAS  PubMed  Google Scholar 

  76. Xiang X, Plamann M (2003) Cytoskeleton and motor proteins in filamentous fungi. Curr Opin Microbiol 6:628–633

    CAS  PubMed  Google Scholar 

  77. Morris NR (2000) Nuclear migration. From fungi to the mammalian brain. J Cell Biol 148:1097–1101

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Alberti-Segui C, Dietrich F, Altmann-Johl R, Hoepfner D, Philippsen P (2001) Cytoplasmic dynein is required to oppose the force that moves nuclei towards the hyphal tip in the filamentous ascomycete Ashbya gossypii. J Cell Sci 114:975–986

    CAS  PubMed  Google Scholar 

  79. Carminati JL, Stearns T (1997) Microtubules orient the mitotic spindle in yeast through dynein-dependent interactions with the cell cortex. J Cell Biol 138:629–641

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Grava S, Keller M, Voegeli S, Seger S, Lang C, Philippsen P (2011) Clustering of nuclei in multinucleated hyphae is prevented by dynein-driven bidirectional nuclear movements and microtubule growth control in Ashbya gossypii. Eukaryot Cell 10:902–915

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Willins DA, Xiang X, Morris NR (1995) An alpha tubulin mutation suppresses nuclear migration mutations in Aspergillus nidulans. Genetics 141:1287–1298

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Harms MB, Ori-McKenney KM, Scoto M, Tuck EP, Bell S, Ma D, Masi S, Allred P, Al-Lozi M, Reilly MM et al (2012) Mutations in the tail domain of DYNC1H1 cause dominant spinal muscular atrophy. Neurology 78:1714–1720

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Ori-McKenney KM, Vallee RB (2011) Neuronal migration defects in the Loa dynein mutant mouse. Neural Dev 6:26

    PubMed Central  PubMed  Google Scholar 

  84. Ori-McKenney KM, Xu J, Gross SP, Vallee RB (2010) A cytoplasmic dynein tail mutation impairs motor processivity. Nat Cell Biol 12:1228–1234

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Rao L, Romes EM, Nicholas MP, Brenner S, Tripathy A, Gennerich A, Slep KC (2013) The yeast dynein Dyn2-Pac11 complex is a dynein dimerization/processivity factor: structural and single-molecule characterization. Mol Biol Cell 24:2362–2377

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Sivagurunathan S, Schnittker RR, Nandini S, Plamann MD, King SJ (2012) A mouse neurodegenerative dynein heavy chain mutation alters dynein motility and localization in Neurospora crassa. Cytoskeleton (Hoboken) 69:613–624

    CAS  Google Scholar 

  87. Sivagurunathan S, Schnittker RR, Razafsky DS, Nandini S, Plamann MD, King SJ (2012) Analyses of dynein heavy chain mutations reveal complex interactions between dynein motor domains and cellular dynein functions. Genetics 191:1157–1179

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Urnavicius L, Zhang K, Diamant AG, Motz C, Schlager MA, Yu M, Patel NA, Robinson CV, Carter AP (2015) The structure of the dynactin complex and its interaction with dynein. Science 347:1441–1446

    CAS  PubMed  Google Scholar 

  89. Torisawa T, Ichikawa M, Furuta A, Saito K, Oiwa K, Kojima H, Toyoshima YY, Furuta K (2014) Autoinhibition and cooperative activation mechanisms of cytoplasmic dynein. Nat Cell Biol 16:1118–1124

    CAS  PubMed  Google Scholar 

  90. Gill SR, Schroer TA, Szilak I, Steuer ER, Sheetz MP, Cleveland DW (1991) Dynactin, a conserved, ubiquitously expressed component of an activator of vesicle motility mediated by cytoplasmic dynein. J Cell Biol 115:1639–1650

    CAS  PubMed  Google Scholar 

  91. Holzbaur EL, Hammarback JA, Paschal BM, Kravit NG, Pfister KK, Vallee RB (1991) Homology of a 150 K cytoplasmic dynein-associated polypeptide with the Drosophila gene Glued. Nature 351:579–583

    CAS  PubMed  Google Scholar 

  92. Schroer TA, Sheetz MP (1991) Two activators of microtubule-based vesicle transport. J Cell Biol 115:1309–1318

    CAS  PubMed  Google Scholar 

  93. Karki S, Holzbaur EL (1995) Affinity chromatography demonstrates a direct binding between cytoplasmic dynein and the dynactin complex. J Biol Chem 270:28806–28811

    CAS  PubMed  Google Scholar 

  94. Vaughan KT, Vallee RB (1995) Cytoplasmic dynein binds dynactin through a direct interaction between the intermediate chains and p150Glued. J Cell Biol 131:1507–1516

    CAS  PubMed  Google Scholar 

  95. King SJ, Brown CL, Maier KC, Quintyne NJ, Schroer TA (2003) Analysis of the dynein-dynactin interaction in vitro and in vivo. Mol Biol Cell 14:5089–5097

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Chowdhury S, Ketcham SA, Schroer TA, Lander GC (2015) Structural organization of the dynein-dynactin complex bound to microtubules. Nat Struct Mol Biol 22:345–347

  97. Imai H, Narita A, Maeda Y, Schroer TA (2014) Dynactin 3D structure: implications for assembly and dynein binding. J Mol Biol 426:3262–3271

    CAS  PubMed  Google Scholar 

  98. Imai H, Narita A, Schroer TA, Maeda Y (2006) Two-dimensional averaged images of the dynactin complex revealed by single particle analysis. J Mol Biol 359:833–839

    CAS  PubMed  Google Scholar 

  99. Schafer DA, Gill SR, Cooper JA, Heuser JE, Schroer TA (1994) Ultrastructural analysis of the dynactin complex: an actin-related protein is a component of a filament that resembles F-actin. J Cell Biol 126:403–412

    CAS  PubMed  Google Scholar 

  100. Eckley DM, Gill SR, Melkonian KA, Bingham JB, Goodson HV, Heuser JE, Schroer TA (1999) Analysis of dynactin subcomplexes reveals a novel actin-related protein associated with the arp1 minifilament pointed end. J Cell Biol 147:307–320

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Yeh TY, Quintyne NJ, Scipioni BR, Eckley DM, Schroer TA (2012) Dynactin’s pointed-end complex is a cargo-targeting module. Mol Biol Cell 23:3827–3837

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Zhang J, Wang L, Zhuang L, Huo L, Musa S, Li S, Xiang X (2008) Arp11 affects dynein-dynactin interaction and is essential for dynein function in Aspergillus nidulans. Traffic 9:1073–1087

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Akhmanova A, Hammer JA 3rd (2010) Linking molecular motors to membrane cargo. Curr Opin Cell Biol 22:479–487

    CAS  PubMed Central  PubMed  Google Scholar 

  104. King SJ, Schroer TA (2000) Dynactin increases the processivity of the cytoplasmic dynein motor. Nat Cell Biol 2:20–24

    CAS  PubMed  Google Scholar 

  105. Schroer TA (2000) Motors, clutches and brakes for membrane traffic: a commemorative review in honor of Thomas Kreis. Traffic 1:3–10

    CAS  PubMed  Google Scholar 

  106. Splinter D, Razafsky DS, Schlager MA, Serra-Marques A, Grigoriev I, Demmers J, Keijzer N, Jiang K, Poser I, Hyman AA et al (2012) BICD2, dynactin, and LIS1 cooperate in regulating dynein recruitment to cellular structures. Mol Biol Cell 23:4226–4241

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Yao X, Zhang J, Zhou H, Wang E, Xiang X (2012) In vivo roles of the basic domain of dynactin p150 in microtubule plus-end tracking and dynein function. Traffic 13:375–387

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Zhang J, Yao X, Fischer L, Abenza JF, Peñalva MA, Xiang X (2011) The p25 subunit of the dynactin complex is required for dynein-early endosome interaction. J Cell Biol 193:1245–1255

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Jha R, Surrey T (2015) Regulation of processive motion and microtubule localization of cytoplasmic dynein. Biochem Soc Trans 43:48–57

    CAS  PubMed  Google Scholar 

  110. Ayloo S, Lazarus JE, Dodda A, Tokito M, Ostap EM, Holzbaur EL (2014) Dynactin functions as both a dynamic tether and brake during dynein-driven motility. Nat Commun 5:4807

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Culver-Hanlon TL, Lex SA, Stephens AD, Quintyne NJ, King SJ (2006) A microtubule-binding domain in dynactin increases dynein processivity by skating along microtubules. Nat Cell Biol 8:264–270

    CAS  PubMed  Google Scholar 

  112. Tripathy SK, Weil SJ, Chen C, Anand P, Vallee RB, Gross SP (2014) Autoregulatory mechanism for dynactin control of processive and diffusive dynein transport. Nat Cell Biol 16:1192–1201

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Kardon JR, Reck-Peterson SL, Vale RD (2009) Regulation of the processivity and intracellular localization of Saccharomyces cerevisiae dynein by dynactin. Proc Natl Acad Sci USA 106:5669–5674

    CAS  PubMed Central  PubMed  Google Scholar 

  114. McKenney RJ, Huynh W, Tanenbaum ME, Bhabha G, Vale RD (2014) Activation of cytoplasmic dynein motility by dynactin-cargo adapter complexes. Science 345:337–341

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Schlager MA, Hoang HT, Urnavicius L, Bullock SL, Carter AP (2014) In vitro reconstitution of a highly processive recombinant human dynein complex. EMBO J 33:1855–1868

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Holleran EA, Ligon LA, Tokito M, Stankewich MC, Morrow JS, Holzbaur EL (2001) Beta III spectrin binds to the Arp1 subunit of dynactin. J Biol Chem 276:36598–36605

    CAS  PubMed  Google Scholar 

  117. Holleran EA, Karki S, Holzbaur EL (1998) The role of the dynactin complex in intracellular motility. Int Rev Cytol 182:69–109

    CAS  PubMed  Google Scholar 

  118. Zhou B, Cai Q, Xie Y, Sheng ZH (2012) Snapin recruits dynein to BDNF-TrkB signaling endosomes for retrograde axonal transport and is essential for dendrite growth of cortical neurons. Cell Rep 2:42–51

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Tai AW, Chuang JZ, Bode C, Wolfrum U, Sung CH (1999) Rhodopsin’s carboxy-terminal cytoplasmic tail acts as a membrane receptor for cytoplasmic dynein by binding to the dynein light chain Tctex-1. Cell 97:877–887

    CAS  PubMed  Google Scholar 

  120. Mitchell DJ, Blasier KR, Jeffery ED, Ross MW, Pullikuth AK, Suo D, Park J, Smiley WR, Lo KW, Shabanowitz J et al (2012) Trk activation of the ERK1/2 kinase pathway stimulates intermediate chain phosphorylation and recruits cytoplasmic dynein to signaling endosomes for retrograde axonal transport. J Neurosci 32:15495–15510

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Jordens I, Fernandez-Borja M, Marsman M, Dusseljee S, Janssen L, Calafat J, Janssen H, Wubbolts R, Neefjes J (2001) The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors. Curr Biol 11:1680–1685

    CAS  PubMed  Google Scholar 

  122. Johansson M, Rocha N, Zwart W, Jordens I, Janssen L, Kuijl C, Olkkonen VM, Neefjes J (2007) Activation of endosomal dynein motors by stepwise assembly of Rab7-RILP-p150Glued, ORP1L, and the receptor betalll spectrin. J Cell Biol 176:459–471

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Cai Q, Lu L, Tian JH, Zhu YB, Qiao H, Sheng ZH (2010) Snapin-regulated late endosomal transport is critical for efficient autophagy-lysosomal function in neurons. Neuron 68:73–86

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Vaughan PS, Miura P, Henderson M, Byrne B, Vaughan KT (2002) A role for regulated binding of p150(Glued) to microtubule plus ends in organelle transport. J Cell Biol 158:305–319

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Moore JK, Li J, Cooper JA (2008) Dynactin function in mitotic spindle positioning. Traffic 9:510–527

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Lee IH, Kumar S, Plamann M (2001) Null mutants of the neurospora actin-related protein 1 pointed-end complex show distinct phenotypes. Mol Biol Cell 12:2195–2206

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Plamann M, Minke PF, Tinsley JH, Bruno KS (1994) Cytoplasmic dynein and actin-related protein Arp1 are required for normal nuclear distribution in filamentous fungi. J Cell Biol 127:139–149

    CAS  PubMed  Google Scholar 

  128. Huang J, Roberts AJ, Leschziner AE, Reck-Peterson SL (2012) Lis1 acts as a “Clutch” between the ATPase and microtubule-binding domains of the dynein motor. Cell 150:975–986

    CAS  PubMed Central  PubMed  Google Scholar 

  129. McKenney RJ, Vershinin M, Kunwar A, Vallee RB, Gross SP (2010) LIS1 and NudE induce a persistent dynein force-producing state. Cell 141:304–314

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Yamada M, Toba S, Yoshida Y, Haratani K, Mori D, Yano Y, Mimori-Kiyosue Y, Nakamura T, Itoh K, Fushiki S et al (2008) LIS1 and NDEL1 coordinate the plus-end-directed transport of cytoplasmic dynein. EMBO J 27:2471–2483

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Torisawa T, Nakayama A, Furuta K, Yamada M, Hirotsune S, Toyoshima YY (2011) Functional dissection of LIS1 and NDEL1 towards understanding the molecular mechanisms of cytoplasmic dynein regulation. J Biol Chem 286:1959–1965

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Pedersen LB, Rompolas P, Christensen ST, Rosenbaum JL, King SM (2007) The lissencephaly protein Lis1 is present in motile mammalian cilia and requires outer arm dynein for targeting to Chlamydomonas flagella. J Cell Sci 120:858–867

    CAS  PubMed  Google Scholar 

  133. Rompolas P, Patel-King RS, King SM (2012) Association of Lis1 with outer arm dynein is modulated in response to alterations in flagellar motility. Mol Biol Cell 23:3554–3565

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Reiner O, Carrozzo R, Shen Y, Wehnert M, Faustinella F, Dobyns WB, Caskey CT, Ledbetter DH (1993) Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature 364:717–721

    CAS  PubMed  Google Scholar 

  135. Willins DA, Liu B, Xiang X, Morris NR (1997) Mutations in the heavy chain of cytoplasmic dynein suppress the nudF nuclear migration mutation of Aspergillus nidulans. Mol Gen Genet 255:194–200

    CAS  PubMed  Google Scholar 

  136. Xiang X, Osmani AH, Osmani SA, Xin M, Morris NR (1995) NudF, a nuclear migration gene in Aspergillus nidulans, is similar to the human LIS-1 gene required for neuronal migration. Mol Biol Cell 6:297–310

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Geiser JR, Schott EJ, Kingsbury TJ, Cole NB, Totis LJ, Bhattacharyya G, He L, Hoyt MA (1997) Saccharomyces cerevisiae genes required in the absence of the CIN8-encoded spindle motor act in functionally diverse mitotic pathways. Mol Biol Cell 8:1035–1050

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Lee WL, Oberle JR, Cooper JA (2003) The role of the lissencephaly protein Pac1 during nuclear migration in budding yeast. J Cell Biol 160:355–364

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Sheeman B, Carvalho P, Sagot I, Geiser J, Kho D, Hoyt MA, Pellman D (2003) Determinants of S. cerevisiae dynein localization and activation: implications for the mechanism of spindle positioning. Curr Biol 13:364–372

    CAS  PubMed  Google Scholar 

  140. Faulkner NE, Dujardin DL, Tai CY, Vaughan KT, O’Connell CB, Wang Y, Vallee RB (2000) A role for the lissencephaly gene LIS1 in mitosis and cytoplasmic dynein function. Nat Cell Biol 2:784–791

    CAS  PubMed  Google Scholar 

  141. Lei Y, Warrior R (2000) The Drosophila Lissencephaly1 (DLis1) gene is required for nuclear migration. Dev Biol 226:57–72

    CAS  PubMed  Google Scholar 

  142. Liu Z, Steward R, Luo L (2000) Drosophila Lis1 is required for neuroblast proliferation, dendritic elaboration and axonal transport. Nat Cell Biol 2:776–783

    CAS  PubMed  Google Scholar 

  143. Niethammer M, Smith DS, Ayala R, Peng J, Ko J, Lee MS, Morabito M, Tsai LH (2000) NUDEL is a novel Cdk5 substrate that associates with LIS1 and cytoplasmic dynein. Neuron 28:697–711

    CAS  PubMed  Google Scholar 

  144. Sasaki S, Shionoya A, Ishida M, Gambello MJ, Yingling J, Wynshaw-Boris A, Hirotsune S (2000) A LIS1/NUDEL/cytoplasmic dynein heavy chain complex in the developing and adult nervous system. Neuron 28:681–696

    CAS  PubMed  Google Scholar 

  145. Smith DS, Niethammer M, Ayala R, Zhou Y, Gambello MJ, Wynshaw-Boris A, Tsai LH (2000) Regulation of cytoplasmic dynein behaviour and microtubule organization by mammalian Lis1. Nat Cell Biol 2:767–775

    CAS  PubMed  Google Scholar 

  146. Susalka SJ, Nikulina K, Salata MW, Vaughan PS, King SM, Vaughan KT, Pfister KK (2002) The roadblock light chain binds a novel region of the cytoplasmic dynein intermediate chain. J Biol Chem 277:32939–32946

    CAS  PubMed  Google Scholar 

  147. Toropova K, Zou S, Roberts AJ, Redwine WB, Goodman BS, Reck-Peterson SL, Leschziner AE (2014) Lis1 regulates dynein by sterically blocking its mechanochemical cycle. Elife 3:e03372

  148. Efimov VP, Morris NR (2000) The LIS1-related NUDF protein of Aspergillus nidulans interacts with the coiled-coil domain of the NUDE/RO11 protein. J Cell Biol 150:681–688

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Minke PF, Lee IH, Tinsley JH, Bruno KS, Plamann M (1999) Neurospora crassa ro-10 and ro-11 genes encode novel proteins required for nuclear distribution. Mol Microbiol 32:1065–1076

    CAS  PubMed  Google Scholar 

  150. Liang Y, Yu W, Li Y, Yang Z, Yan X, Huang Q, Zhu X (2004) Nudel functions in membrane traffic mainly through association with Lis1 and cytoplasmic dynein. J Cell Biol 164:557–566

    CAS  PubMed Central  PubMed  Google Scholar 

  151. McKenney RJ, Weil SJ, Scherer J, Vallee RB (2011) Mutually exclusive cytoplasmic dynein regulation by NudE-Lis1 and dynactin. J Biol Chem 286:39615–39622

    CAS  PubMed Central  PubMed  Google Scholar 

  152. Wang S, Zheng Y (2011) Identification of a novel dynein binding domain in nudel essential for spindle pole organization in Xenopus egg extract. J Biol Chem 286:587–593

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Yan X, Li F, Liang Y, Shen Y, Zhao X, Huang Q, Zhu X (2003) Human Nudel and NudE as regulators of cytoplasmic dynein in poleward protein transport along the mitotic spindle. Mol Cell Biol 23:1239–1250

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Zylkiewicz E, Kijanska M, Choi WC, Derewenda U, Derewenda ZS, Stukenberg PT (2011) The N-terminal coiled-coil of Ndel1 is a regulated scaffold that recruits LIS1 to dynein. J Cell Biol 192:433–445

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Wang S, Ketcham SA, Schon A, Goodman B, Wang Y, Yates J 3rd, Freire E, Schroer TA, Zheng Y (2013) Nudel/NudE and Lis1 promote dynein and dynactin interaction in the context of spindle morphogenesis. Mol Biol Cell 24:3522–3533

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Li J, Lee WL, Cooper JA (2005) NudEL targets dynein to microtubule ends through LIS1. Nat Cell Biol 7:686–690

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Yamada M, Kumamoto K, Mikuni S, Arai Y, Kinjo M, Nagai T, Tsukasaki Y, Watanabe TM, Fukui M, Jin M et al (2013) Rab6a releases LIS1 from a dynein idling complex and activates dynein for retrograde movement. Nat Commun 4:2033

    PubMed  Google Scholar 

  158. Markus SM, Lee WL (2011) Microtubule-dependent path to the cell cortex for cytoplasmic dynein in mitotic spindle orientation. Bioarchitecture 1:209–215

    PubMed Central  PubMed  Google Scholar 

  159. Markus SM, Lee WL (2011) Regulated offloading of cytoplasmic dynein from microtubule plus ends to the cortex. Dev Cell 20:639–651

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Moughamian AJ, Osborn GE, Lazarus JE, Maday S, Holzbaur EL (2013) Ordered recruitment of dynactin to the microtubule plus-end is required for efficient initiation of retrograde axonal transport. J Neurosci 33:13190–13203

    CAS  PubMed Central  PubMed  Google Scholar 

  161. Yi JY, Ori-McKenney KM, McKenney RJ, Vershinin M, Gross SP, Vallee RB (2011) High-resolution imaging reveals indirect coordination of opposite motors and a role for LIS1 in high-load axonal transport. J Cell Biol 195:193–201

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Ding C, Liang X, Ma L, Yuan X, Zhu X (2009) Opposing effects of Ndel1 and alpha1 or alpha2 on cytoplasmic dynein through competitive binding to Lis1. J Cell Sci 122:2820–2827

    CAS  PubMed  Google Scholar 

  163. Lam C, Vergnolle MA, Thorpe L, Woodman PG, Allan VJ (2010) Functional interplay between LIS1, NDE1 and NDEL1 in dynein-dependent organelle positioning. J Cell Sci 123:202–212

    CAS  PubMed  Google Scholar 

  164. Pandey JP, Smith DS (2011) A Cdk5-dependent switch regulates Lis1/Ndel1/dynein-driven organelle transport in adult axons. J Neurosci 31:17207–17219

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Shao CY, Zhu J, Xie YJ, Wang Z, Wang YN, Wang Y, Su LD, Zhou L, Zhou TH, Shen Y (2013) Distinct functions of nuclear distribution proteins LIS1, Ndel1 and NudCL in regulating axonal mitochondrial transport. Traffic 14:785–797

    CAS  PubMed  Google Scholar 

  166. Kramer H, Phistry M (1996) Mutations in the Drosophila hook gene inhibit endocytosis of the boss transmembrane ligand into multivesicular bodies. J Cell Biol 133:1205–1215

    CAS  PubMed  Google Scholar 

  167. Kramer H, Phistry M (1999) Genetic analysis of hook, a gene required for endocytic trafficking in drosophila. Genetics 151:675–684

    CAS  PubMed Central  PubMed  Google Scholar 

  168. Sunio A, Metcalf AB, Kramer H (1999) Genetic dissection of endocytic trafficking in Drosophila using a horseradish peroxidase-bride of sevenless chimera: hook is required for normal maturation of multivesicular endosomes. Mol Biol Cell 10:847–859

    CAS  PubMed Central  PubMed  Google Scholar 

  169. Mendoza-Lujambio I, Burfeind P, Dixkens C, Meinhardt A, Hoyer-Fender S, Engel W, Neesen J (2002) The Hook1 gene is non-functional in the abnormal spermatozoon head shape (azh) mutant mouse. Hum Mol Genet 11:1647–1658

    CAS  PubMed  Google Scholar 

  170. Maldonado-Baez L, Cole NB, Kramer H, Donaldson JG (2013) Microtubule-dependent endosomal sorting of clathrin-independent cargo by Hook1. J Cell Biol 201:233–247

    CAS  PubMed Central  PubMed  Google Scholar 

  171. Baron Gaillard CL, Pallesi-Pocachard E, Massey-Harroche D, Richard F, Arsanto JP, Chauvin JP, Lecine P, Kramer H, Borg JP, Le Bivic A (2011) Hook2 is involved in the morphogenesis of the primary cilium. Mol Biol Cell 22:4549–4562

    PubMed Central  PubMed  Google Scholar 

  172. Szebenyi G, Hall B, Yu R, Hashim AI, Kramer H (2007) Hook2 localizes to the centrosome, binds directly to centriolin/CEP110 and contributes to centrosomal function. Traffic 8:32–46

    CAS  PubMed  Google Scholar 

  173. Szebenyi G, Wigley WC, Hall B, Didier A, Yu M, Thomas P, Kramer H (2007) Hook2 contributes to aggresome formation. BMC Cell Biol 8:19

    PubMed Central  PubMed  Google Scholar 

  174. Walenta JH, Didier AJ, Liu X, Kramer H (2001) The Golgi-associated hook3 protein is a member of a novel family of microtubule-binding proteins. J Cell Biol 152:923–934

    CAS  PubMed Central  PubMed  Google Scholar 

  175. Xu L, Sowa ME, Chen J, Li X, Gygi SP, Harper JW (2008) An FTS/Hook/p107(FHIP) complex interacts with and promotes endosomal clustering by the homotypic vacuolar protein sorting complex. Mol Biol Cell 19:5059–5071

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Simpson F, Martin S, Evans TM, Kerr M, James DE, Parton RG, Teasdale RD, Wicking C (2005) A novel hook-related protein family and the characterization of hook-related protein 1. Traffic 6:442–458

    CAS  PubMed  Google Scholar 

  177. Malone CJ, Misner L, Le Bot N, Tsai MC, Campbell JM, Ahringer J, White JG (2003) The C. elegans hook protein, ZYG-12, mediates the essential attachment between the centrosome and nucleus. Cell 115:825–836

    CAS  PubMed  Google Scholar 

  178. Bucci C, Parton RG, Mather IH, Stunnenberg H, Simons K, Hoflack B, Zerial M (1992) The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell 70:715–728

    CAS  PubMed  Google Scholar 

  179. Chavrier P, Parton RG, Hauri HP, Simons K, Zerial M (1990) Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell 62:317–329

    CAS  PubMed  Google Scholar 

  180. Gillingham AK, Sinka R, Torres IL, Lilley KS, Munro S (2014) Toward a comprehensive map of the effectors of rab GTPases. Dev Cell 31:358–373

    CAS  PubMed Central  PubMed  Google Scholar 

  181. Balderhaar HJ, Ungermann C (2013) CORVET and HOPS tethering complexes—coordinators of endosome and lysosome fusion. J Cell Sci 126:1307–1316

    CAS  PubMed  Google Scholar 

  182. Balderhaar HJ, Lachmann J, Yavavli E, Brocker C, Lurick A, Ungermann C (2013) The CORVET complex promotes tethering and fusion of Rab5/Vps21-positive membranes. Proc Natl Acad Sci USA 110:3823–3828

    CAS  PubMed Central  PubMed  Google Scholar 

  183. De Souza CP, Hashmi SB, Osmani AH, Osmani SA (2014) Application of a new dual localization-affinity purification tag reveals novel aspects of protein kinase biology in Aspergillus nidulans. PLoS One 9:e90911

    PubMed Central  PubMed  Google Scholar 

  184. Baumann S, Takeshita N, Grun N, Fischer R, Feldbrugge M (2015) Live cell imaging of endosomal trafficking in fungi. Methods Mol Biol 1270:347–363

    PubMed  Google Scholar 

  185. Chiang YM, Oakley CE, Ahuja M, Entwistle R, Schultz A, Chang SL, Sung CT, Wang CC, Oakley BR (2013) An efficient system for heterologous expression of secondary metabolite genes in Aspergillus nidulans. J Am Chem Soc 135:7720–7731

    CAS  PubMed Central  PubMed  Google Scholar 

  186. Szewczyk E, Nayak T, Oakley CE, Edgerton H, Xiong Y, Taheri-Talesh N, Osmani SA, Oakley BR (2006) Fusion PCR and gene targeting in Aspergillus nidulans. Nat Protoc 1:3111–3120

    CAS  PubMed  Google Scholar 

  187. Nayak T, Szewczyk E, Oakley CE, Osmani A, Ukil L, Murray SL, Hynes MJ, Osmani SA, Oakley BR (2006) A versatile and efficient gene-targeting system for Aspergillus nidulans. Genetics 172:1557–1566

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Samara L. Reck-Peterson for critical reading and very helpful comments. The authors’ work was supported by the National Institutes of Health grant RO1 GM097580 (to X. X.), a Uniformed Services University intramural grant BIO-71-1972 (to X. X.), the Biotechnology and Biological Sciences Research Council grant BB/F01189X/1 (to H. N. A. and Elaine Bignell), the Wellcome Trust grant 084660/Z/08/Z (to H. N. A. and Joan Tilburn), the Spanish Government grant BIO2012-30695 (to M. A. P.) and Comunidad de Madrid grant S2012/BMD2414 (to M. A. P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Xiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, X., Qiu, R., Yao, X. et al. Cytoplasmic dynein and early endosome transport. Cell. Mol. Life Sci. 72, 3267–3280 (2015). https://doi.org/10.1007/s00018-015-1926-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1926-y

Keywords

Navigation