Skip to main content

Advertisement

Log in

Molecular and cellular mechanisms that initiate pain and itch

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

An Erratum to this article was published on 02 July 2015

Abstract

Somatosensory neurons mediate our sense of touch. They are critically involved in transducing pain and itch sensations under physiological and pathological conditions, along with other skin-resident cells. Tissue damage and inflammation can produce a localized or systemic sensitization of our senses of pain and itch, which can facilitate our detection of threats in the environment. Although acute pain and itch protect us from further damage, persistent pain and itch are debilitating. Recent exciting discoveries have significantly advanced our knowledge of the roles of membrane-bound G protein-coupled receptors and ion channels in the encoding of information leading to pain and itch sensations. This review focuses on molecular and cellular events that are important in early stages of the biological processing that culminates in our senses of pain and itch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Han L, Dong X (2014) Itch mechanisms and circuits. Annu Rev Biophys 43:331–355

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Sun YG, Zhao ZQ, Meng XL et al (2009) Cellular basis of itch sensation. Science 325:1531–1534

    CAS  PubMed  Google Scholar 

  3. Mishra SK, Hoon MA (2013) The cells and circuitry for itch responses in mice. Science 340:968–971

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Liu Y, Abdel Samad O, Zhang L et al (2010) VGLUT2-dependent glutamate release from nociceptors is required to sense pain and suppress itch. Neuron 68:543–556

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Lagerstrom MC, Rogoz K, Abrahamsen B et al (2010) VGLUT2-dependent sensory neurons in the TRPV1 population regulate pain and itch. Neuron 68:529–542

    PubMed Central  PubMed  Google Scholar 

  6. Bautista DM, Wilson SR, Hoon MA (2014) Why we scratch an itch: the molecules, cells and circuits of itch. Nat Neurosci 17:175–182

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Ren K, Dubner R (2010) Interactions between the immune and nervous systems in pain. Nat Med 16:1267–1276

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Nakatani M, Maksimovic S, Baba Y et al (2015) Mechanotransduction in epidermal Merkel cells. Pflugers Arch 467:101–108. doi:10.1007/s00424-014-1569-0

    CAS  PubMed  Google Scholar 

  9. Braz J, Solorzano C, Wang X et al (2014) Transmitting pain and itch messages: a contemporary view of the spinal cord circuits that generate gate control. Neuron 82:522–536

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Kim YS, Chu Y, Han L et al (2014) Central terminal sensitization of TRPV1 by descending serotonergic facilitation modulates chronic pain. Neuron 81:873–887

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Waxman SG, Zamponi GW (2014) Regulating excitability of peripheral afferents: emerging ion channel targets. Nat Neurosci 17:153–163

    CAS  PubMed  Google Scholar 

  12. Han SK, Simon MI (2011) Intracellular signaling and the origins of the sensations of itch and pain. Sci Signal 4:pe38

    CAS  Google Scholar 

  13. Lee S (2013) Pharmacological inhibition of voltage-gated Ca(2+) channels for chronic pain relief. Curr Neuropharmacol 11:606–620

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Maljevic S, Lerche H (2013) Potassium channels: a review of broadening therapeutic possibilities for neurological diseases. J Neurol 260:2201–2211

    CAS  PubMed  Google Scholar 

  15. Volkers L, Mechioukhi Y, Coste B (2015) Piezo channels: from structure to function. Pflugers Arch 467:95–99. doi:10.1007/s00424-014-1578-z

    CAS  PubMed  Google Scholar 

  16. Bele T, Fabbretti E (2015) P2X receptors, sensory neurons and pain. Curr Med Chem 22:845–850

    CAS  PubMed  Google Scholar 

  17. Wemmie JA, Taugher RJ, Kreple CJ (2013) Acid-sensing ion channels in pain and disease. Nat Rev Neurosci 14:461–471

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Emery EC, Young GT, McNaughton PA (2012) HCN2 ion channels: an emerging role as the pacemakers of pain. Trends Pharmacol Sci 33:456–463

    CAS  PubMed  Google Scholar 

  19. Miyamoto T, Petrus MJ, Dubin AE et al (2011) TRPV3 regulates nitric oxide synthase-independent nitric oxide synthesis in the skin. Nat Commun 2:369

    PubMed Central  PubMed  Google Scholar 

  20. Nordlind K, Azmitia EC, Slominski A (2008) The skin as a mirror of the soul: exploring the possible roles of serotonin. Exp Dermatol 17:301–311

    CAS  PubMed  Google Scholar 

  21. Inami Y, Andoh T, Sasaki A et al (2013) Topical surfactant-induced pruritus: involvement of histamine released from epidermal keratinocytes. J Pharmacol Exp Ther 344:459–466

    CAS  PubMed  Google Scholar 

  22. Mandadi S, Sokabe T, Shibasaki K et al (2009) TRPV3 in keratinocytes transmits temperature information to sensory neurons via ATP. Pflugers Arch 458:1093–1102

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Moore C, Cevikbas F, Pasolli HA et al (2013) UVB radiation generates sunburn pain and affects skin by activating epidermal TRPV4 ion channels and triggering endothelin-1 signaling. Proc Natl Acad Sci USA 110:E3225–E3234

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Huang SM, Lee H, Chung MK et al (2008) Overexpressed transient receptor potential vanilloid 3 ion channels in skin keratinocytes modulate pain sensitivity via prostaglandin E2. J Neurosci 28:13727–13737

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Wilson SR, The L, Batia LM et al (2013) The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell 155:285–295

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Southall MD, Li T, Gharibova LS et al (2003) Activation of epidermal vanilloid receptor-1 induces release of proinflammatory mediators in human keratinocytes. J Pharmacol Exp Ther 304:217–222

    CAS  PubMed  Google Scholar 

  27. Shi X, Wang L, Clark JD et al (2013) Keratinocytes express cytokines and nerve growth factor in response to neuropeptide activation of the ERK1/2 and JNK MAPK transcription pathways. Regul Pept 186:92–103

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Radtke C, Vogt PM, Devor M et al (2010) Keratinocytes acting on injured afferents induce extreme neuronal hyperexcitability and chronic pain. Pain 148:94–102

    CAS  PubMed  Google Scholar 

  29. Galli SJ, Nakae S, Tsai M (2005) Mast cells in the development of adaptive immune responses. Nat Immunol 6:135–142

    CAS  PubMed  Google Scholar 

  30. Forsythe P, Bienenstock J (2012) The mast cell-nerve functional unit: a key component of physiologic and pathophysiologic responses. Chem Immunol Allergy 98:196–221

    CAS  PubMed  Google Scholar 

  31. Kakurai M, Monteforte R, Suto H et al (2006) Mast cell-derived tumor necrosis factor can promote nerve fiber elongation in the skin during contact hypersensitivity in mice. Am J Pathol 169:1713–1721

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Hagiyama M, Inoue T, Furuno T et al (2013) Increased expression of cell adhesion molecule 1 by mast cells as a cause of enhanced nerve-mast cell interaction in a hapten-induced mouse model of atopic dermatitis. Br J Dermatol 168:771–778

    CAS  PubMed  Google Scholar 

  33. Petra AI, Panagiotidou S, Stewart JM et al (2014) Spectrum of mast cell activation disorders. Expert Rev Clin Immunol 10:729–739

    CAS  PubMed  Google Scholar 

  34. Chatterjea D, Wetzel A, Mack M et al (2012) Mast cell degranulation mediates compound 48/80-induced hyperalgesia in mice. Biochem Biophys Res Commun 425:237–243

    CAS  PubMed Central  PubMed  Google Scholar 

  35. McNeil BD, Pundir P, Meeker S et al (2015) Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature 519:237–241. doi:10.1038/nature14022

    CAS  PubMed  Google Scholar 

  36. Zuo Y, Perkins NM, Tracey DJ et al (2003) Inflammation and hyperalgesia induced by nerve injury in the rat: a key role of mast cells. Pain 105:467–479

    PubMed  Google Scholar 

  37. Oliveira SM, Drewes CC, Silva CR et al (2011) Involvement of mast cells in a mouse model of postoperative pain. Eur J Pharmacol 672:88–95

    CAS  PubMed  Google Scholar 

  38. Done JD, Rudick CN, Quick ML et al (2012) Role of mast cells in male chronic pelvic pain. J Urol 187:1473–1482

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Undem BJ, Taylor-Clark T (2014) Mechanisms underlying the neuronal-based symptoms of allergy. J Allergy Clin Immunol 133:1521–1534

    PubMed  Google Scholar 

  40. Ahuja RB, Gupta R, Gupta G et al (2011) A comparative analysis of cetirizine, gabapentin and their combination in the relief of post-burn pruritus. Burns 37:203–207

    PubMed  Google Scholar 

  41. Chen Y, Yang C, Wang ZJ (2011) Proteinase-activated receptor 2 sensitizes transient receptor potential vanilloid 1, transient receptor potential vanilloid 4, and transient receptor potential ankyrin 1 in paclitaxel-induced neuropathic pain. Neuroscience 193:440–451

    CAS  PubMed  Google Scholar 

  42. Moriconi A, Cunha TM, Souza GR et al (2014) Targeting the minor pocket of C5aR for the rational design of an oral allosteric inhibitor for inflammatory and neuropathic pain relief. Proc Natl Acad Sci USA 111:16937–16942

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Manjavachi MN, Costa R, Quintao NL et al (2014) The role of keratinocyte-derived chemokine (KC) on hyperalgesia caused by peripheral nerve injury in mice. Neuropharmacology 79:17–27

    CAS  PubMed  Google Scholar 

  44. Cunha TM, Verri WA Jr, Schivo IR et al (2008) Crucial role of neutrophils in the development of mechanical inflammatory hypernociception. J Leukoc Biol 83:824–832

    CAS  PubMed  Google Scholar 

  45. Liou JT, Lee CM, Lin YC et al (2013) P-selectin is required for neutrophils and macrophage infiltration into injured site and contributes to generation of behavioral hypersensitivity following peripheral nerve injury in mice. Pain 154:2150–2159

    CAS  PubMed  Google Scholar 

  46. Perkins NM, Tracey DJ (2000) Hyperalgesia due to nerve injury: role of neutrophils. Neuroscience 101:745–757

    CAS  PubMed  Google Scholar 

  47. Finley A, Chen Z, Esposito E et al (2013) Sphingosine 1-phosphate mediates hyperalgesia via a neutrophil-dependent mechanism. PLoS ONE 8:e55255

    CAS  PubMed Central  PubMed  Google Scholar 

  48. McNamee KE, Alzabin S, Hughes JP et al (2011) IL-17 induces hyperalgesia via TNF-dependent neutrophil infiltration. Pain 152:1838–1845

    CAS  PubMed  Google Scholar 

  49. Carreira EU, Carregaro V, Teixeira MM et al (2013) Neutrophils recruited by CXCR1/2 signalling mediate post-incisional pain. Eur J Pain 17:654–663

    CAS  PubMed  Google Scholar 

  50. Sahbaie P, Li X, Shi X et al (2012) Roles of Gr-1 + leukocytes in postincisional nociceptive sensitization and inflammation. Anesthesiology 117:602–612

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Suo J, Linke B, Meyer dos Santos S et al (2014) Neutrophils mediate edema formation but not mechanical allodynia during zymosan-induced inflammation. J Leukoc Biol 96:133–142

    PubMed  Google Scholar 

  52. Guerrero AT, Verri WA Jr, Cunha TM et al (2008) Involvement of LTB4 in zymosan-induced joint nociception in mice: participation of neutrophils and PGE2. J Leukoc Biol 83:122–130

    CAS  PubMed  Google Scholar 

  53. Giannini E, Lattanzi R, Nicotra A et al (2009) The chemokine Bv8/prokineticin 2 is up-regulated in inflammatory granulocytes and modulates inflammatory pain. Proc Natl Acad Sci USA 106:14646–14651

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Pagano RL, Dias MA, Dale CS et al (2002) Neutrophils and the calcium-binding protein MRP-14 mediate carrageenan-induced antinociception in mice. Mediat Inflamm 11:203–210

    CAS  Google Scholar 

  55. Brack A, Rittner HL, Machelska H et al (2004) Control of inflammatory pain by chemokine-mediated recruitment of opioid-containing polymorphonuclear cells. Pain 112:229–238

    CAS  PubMed  Google Scholar 

  56. Malissen B, Tamoutounour S, Henri S (2014) The origins and functions of dendritic cells and macrophages in the skin. Nat Rev Immunol 14:417–428

    CAS  PubMed  Google Scholar 

  57. Mueller M, Leonhard C, Wacker K et al (2003) Macrophage response to peripheral nerve injury: the quantitative contribution of resident and hematogenous macrophages. Lab Invest 83:175–185

    PubMed  Google Scholar 

  58. Zhang X, Mosser DM (2008) Macrophage activation by endogenous danger signals. J Pathol 214:161–178

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Niemi JP, DeFrancesco-Lisowitz A, Roldan-Hernandez L et al (2013) A critical role for macrophages near axotomized neuronal cell bodies in stimulating nerve regeneration. J Neurosci 33:16236–16248

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Mert T, Gunay I, Ocal I et al (2009) Macrophage depletion delays progression of neuropathic pain in diabetic animals. Naunyn Schmiedebergs Arch Pharmacol 379:445–452

    CAS  PubMed  Google Scholar 

  61. Ghanouni P, Behera D, Xie J et al (2012) In vivo USPIO magnetic resonance imaging shows that minocycline mitigates macrophage recruitment to a peripheral nerve injury. Mol Pain 8:49

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Willemen HL, Eijkelkamp N, Garza Carbajal A et al (2014) Monocytes/Macrophages control resolution of transient inflammatory pain. J Pain 15:496–506

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Bork K (2005) Pruritus precipitated by hydroxyethyl starch: a review. Br J Dermatol 152:3–12

    CAS  PubMed  Google Scholar 

  64. Sadri N, Schneider RJ (2009) Auf1/Hnrnpd-deficient mice develop pruritic inflammatory skin disease. J Invest Dermatol 129:657–670

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Tay SS, Roediger B, Tong PL et al (2014) The skin-resident immune network. Curr Dermatol Rep 3:13–22

    PubMed Central  PubMed  Google Scholar 

  66. Casanova-Molla J, Morales M, Planas-Rigol E et al (2012) Epidermal langerhans cells in small fiber neuropathies. Pain 153:982–989

    PubMed  Google Scholar 

  67. Kaplan DH, Jenison MC, Saeland S et al (2005) Epidermal langerhans cell-deficient mice develop enhanced contact hypersensitivity. Immunity 23:611–620

    CAS  PubMed  Google Scholar 

  68. Tamoutounour S, Guilliams M, Montanana Sanchis F et al (2013) Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity 39:925–938

    CAS  PubMed  Google Scholar 

  69. Nagao K, Ginhoux F, Leitner WW et al (2009) Murine epidermal Langerhans cells and langerin-expressing dermal dendritic cells are unrelated and exhibit distinct functions. Proc Natl Acad Sci USA 106:3312–3317

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Kim CF, Moalem-Taylor G (2011) Interleukin-17 contributes to neuroinflammation and neuropathic pain following peripheral nerve injury in mice. J Pain 12:370–383

    CAS  PubMed  Google Scholar 

  71. Kim N, Bae KB, Kim MO et al (2012) Overexpression of cathepsin S induces chronic atopic dermatitis in mice. J Invest Dermatol 132:1169–1176

    CAS  PubMed  Google Scholar 

  72. Costigan M, Moss A, Latremoliere A et al (2009) T-cell infiltration and signaling in the adult dorsal spinal cord is a major contributor to neuropathic pain-like hypersensitivity. J Neurosci 29:14415–14422

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Li J, Wei GH, Huang H et al (2013) Nerve injury-related autoimmunity activation leads to chronic inflammation and chronic neuropathic pain. Anesthesiology 118:416–429

    CAS  PubMed  Google Scholar 

  74. Moalem G, Xu K, Yu L (2004) T lymphocytes play a role in neuropathic pain following peripheral nerve injury in rats. Neuroscience 129:767–777

    CAS  PubMed  Google Scholar 

  75. Austin PJ, Moalem-Taylor G (2010) The neuro-immune balance in neuropathic pain: involvement of inflammatory immune cells, immune-like glial cells and cytokines. J Neuroimmunol 229:26–50

    CAS  PubMed  Google Scholar 

  76. Qu L, Li Y, Pan X et al (2012) Transient receptor potential canonical 3 (TRPC3) is required for IgG immune complex-induced excitation of the rat dorsal root ganglion neurons. J Neurosci 32:9554–9562

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Dillon SR, Sprecher C, Hammond A et al (2004) Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice. Nat Immunol 5:752–760

    CAS  PubMed  Google Scholar 

  78. Cevikbas F, Wang X, Akiyama T et al (2014) A sensory neuron-expressed IL-31 receptor mediates T helper cell-dependent itch: involvement of TRPV1 and TRPA1. J Allergy Clin Immunol 133:448–460

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Kasutani K, Fujii E, Ohyama S et al (2014) Anti-IL-31 receptor antibody is shown in a murine model to be a potential therapeutic option for treating itch and dermatitis. Br J Pharmacol. doi:10.1111/bph.12823

    PubMed  Google Scholar 

  80. Chiu IM, Heesters BA, Ghasemlou N et al (2013) Bacteria activate sensory neurons that modulate pain and inflammation. Nature 501:52–57

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Meseguer V, Alpizar YA, Luis E et al (2014) TRPA1 channels mediate acute neurogenic inflammation and pain produced by bacterial endotoxins. Nat Commun 5:3125

    PubMed Central  PubMed  Google Scholar 

  82. Prescott SA, Ma Q, De Koninck Y (2014) Normal and abnormal coding of somatosensory stimuli causing pain. Nat Neurosci 17:183–191

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Djouhri L, Lawson SN (2004) Abeta-fiber nociceptive primary afferent neurons: a review of incidence and properties in relation to other afferent A-fiber neurons in mammals. Brain Res Brain Res Rev 46:131–145

    PubMed  Google Scholar 

  84. Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413:203–210

    CAS  PubMed  Google Scholar 

  85. Lopes C, Liu Z, Xu Y et al (2012) Tlx3 and Runx1 act in combination to coordinate the development of a cohort of nociceptors, thermoceptors, and pruriceptors. J Neurosci 32:9706–9715

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Caterina MJ, Leffler A, Malmberg AB et al (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288:306–313

    CAS  PubMed  Google Scholar 

  87. Han L, Ma C, Liu Q et al (2013) A subpopulation of nociceptors specifically linked to itch. Nat Neurosci 16:174–182

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Reche PA, Soumelis V, Gorman DM et al (2001) Human thymic stromal lymphopoietin preferentially stimulates myeloid cells. J Immunol 167:336–343

    CAS  PubMed  Google Scholar 

  89. Ziegler SF (2010) The role of thymic stromal lymphopoietin (TSLP) in allergic disorders. Curr Opin Immunol 22:795–799

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Jariwala SP, Abrams E, Benson A et al (2011) The role of thymic stromal lymphopoietin in the immunopathogenesis of atopic dermatitis. Clin Exp Allergy 41:1515–1520

    CAS  PubMed  Google Scholar 

  91. Li M, Messaddeq N, Teletin M et al (2005) Retinoid X receptor ablation in adult mouse keratinocytes generates an atopic dermatitis triggered by thymic stromal lymphopoietin. Proc Natl Acad Sci USA 102:14795–14800

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Yoo J, Omori M, Gyarmati D et al (2005) Spontaneous atopic dermatitis in mice expressing an inducible thymic stromal lymphopoietin transgene specifically in the skin. J Exp Med 202:541–549

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Pandey A, Ozaki K, Baumann H et al (2000) Cloning of a receptor subunit required for signaling by thymic stromal lymphopoietin. Nat Immunol 1:59–64

    CAS  PubMed  Google Scholar 

  94. Kido-Nakahara M, Buddenkotte J, Kempkes C et al (2014) Neural peptidase endothelin-converting enzyme 1 regulates endothelin 1-induced pruritus. J Clin Invest 124:2683–2695

    CAS  PubMed Central  PubMed  Google Scholar 

  95. McQueen DS, Noble MA, Bond SM (2007) Endothelin-1 activates ETA receptors to cause reflex scratching in BALB/c mice. Br J Pharmacol 151:278–284

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Trentin PG, Fernandes MB, D’Orleans-Juste P et al (2006) Endothelin-1 causes pruritus in mice. Exp Biol Med (Maywood) 231:1146–1151

    CAS  Google Scholar 

  97. Gomes LO, Hara DB, Rae GA (2012) Endothelin-1 induces itch and pain in the mouse cheek model. Life Sci 91:628–633

    CAS  PubMed  Google Scholar 

  98. Liang J, Ji Q, Ji W (2011) Role of transient receptor potential ankyrin subfamily member 1 in pruritus induced by endothelin-1. Neurosci Lett 492:175–178

    CAS  PubMed  Google Scholar 

  99. Imamachi N, Park GH, Lee H et al (2009) TRPV1-expressing primary afferents generate behavioral responses to pruritogens via multiple mechanisms. Proc Natl Acad Sci USA 106:11330–11335

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Piovezan AP, D’Orleans-Juste P, Souza GE et al (2000) Endothelin-1-induced ET(A) receptor-mediated nociception, hyperalgesia and oedema in the mouse hind-paw: modulation by simultaneous ET(B) receptor activation. Br J Pharmacol 129:961–968

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Menendez L, Lastra A, Hidalgo A et al (2003) Nociceptive reaction and thermal hyperalgesia induced by local ET-1 in mice: a behavioral and Fos study. Naunyn Schmiedebergs Arch Pharmacol 367:28–34

    CAS  PubMed  Google Scholar 

  102. Dahlof B, Gustafsson D, Hedner T et al (1990) Regional haemodynamic effects of endothelin-1 in rat and man: unexpected adverse reaction. J Hypertens 8:811–817

    CAS  PubMed  Google Scholar 

  103. Khodorova A, Fareed MU, Gokin A et al (2002) Local injection of a selective endothelin-B receptor agonist inhibits endothelin-1-induced pain-like behavior and excitation of nociceptors in a naloxone-sensitive manner. J Neurosci 22:7788–7796

    CAS  PubMed  Google Scholar 

  104. Khodorova A, Navarro B, Jouaville LS et al (2003) Endothelin-B receptor activation triggers an endogenous analgesic cascade at sites of peripheral injury. Nat Med 9:1055–1061

    CAS  PubMed  Google Scholar 

  105. Hasue F, Kuwaki T, Kisanuki YY et al (2005) Increased sensitivity to acute and persistent pain in neuron-specific endothelin-1 knockout mice. Neuroscience 130:349–358

    CAS  PubMed  Google Scholar 

  106. Thurmond RL, Kazerouni K, Chaplan SR et al (2014) peripheral neuronal mechanism of itch: histamine and itch. In: Carstens E, Akiyama T (eds) Itch: mechanisms and treatment Boca Raton (FL)

  107. Shim WS, Oh U (2008) Histamine-induced itch and its relationship with pain. Mol Pain 4:29

    PubMed Central  PubMed  Google Scholar 

  108. Bell JK, McQueen DS, Rees JL (2004) Involvement of histamine H4 and H1 receptors in scratching induced by histamine receptor agonists in Balb C mice. Br J Pharmacol 142:374–380

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Tiligada E, Zampeli E, Sander K et al (2009) Histamine H3 and H4 receptors as novel drug targets. Expert Opin Investig Drugs 18:1519–1531

    CAS  PubMed  Google Scholar 

  110. Kollmeier A, Francke K, Chen B et al (2014) The histamine H(4) receptor antagonist, JNJ 39758979, is effective in reducing histamine-induced pruritus in a randomized clinical study in healthy subjects. J Pharmacol Exp Ther 350:181–187

    PubMed  Google Scholar 

  111. Hwang SW, Cho H, Kwak J et al (2000) Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. Proc Natl Acad Sci USA 97:6155–6160

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Shim WS, Tak MH, Lee MH et al (2007) TRPV1 mediates histamine-induced itching via the activation of phospholipase A2 and 12-lipoxygenase. J Neurosci 27:2331–2337

    CAS  PubMed  Google Scholar 

  113. Mobarakeh JI, Sakurada S, Katsuyama S et al (2000) Role of histamine H(1) receptor in pain perception: a study of the receptor gene knockout mice. Eur J Pharmacol 391:81–89

    CAS  PubMed  Google Scholar 

  114. Yanai K, Mobarakeh JI, Kuramasu A et al (2003) Roles of histamine receptors in pain perception: a study using receptors gene knockout mice. Nihon Yakurigaku Zasshi 122:391–399

    CAS  PubMed  Google Scholar 

  115. Hachisuka J, Furue H, Furue M et al (2010) Responsiveness of C neurons in rat dorsal root ganglion to 5-hydroxytryptamine-induced pruritic stimuli in vivo. J Neurophysiol 104:271–279

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Klein A, Carstens MI, Carstens E (2011) Facial injections of pruritogens or algogens elicit distinct behavior responses in rats and excite overlapping populations of primary sensory and trigeminal subnucleus caudalis neurons. J Neurophysiol 106:1078–1088

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Rausl A, Nordlind K, Wahlgren CF (2013) Pruritic and vascular responses induced by serotonin in patients with atopic dermatitis and in healthy controls. Acta Derm Venereol 93:277–280

    PubMed  Google Scholar 

  118. Lundeberg L, Sundstrom E, Nordlind K et al (1999) Serotonin in human allergic contact dermatitis. Ann N Y Acad Sci 885:422–426

    CAS  PubMed  Google Scholar 

  119. Diehn F, Tefferi A (2001) Pruritus in polycythaemia vera: prevalence, laboratory correlates and management. Br J Haematol 115:619–621

    CAS  PubMed  Google Scholar 

  120. Xander C, Meerpohl JJ, Galandi D et al (2013) Pharmacological interventions for pruritus in adult palliative care patients. Cochrane Database Syst Rev 6:CD008320

    PubMed  Google Scholar 

  121. Akiyama T, Merrill AW, Carstens MI et al (2009) Activation of superficial dorsal horn neurons in the mouse by a PAR-2 agonist and 5-HT: potential role in itch. J Neurosci 29:6691–6699

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Yamaguchi T, Nagasawa T, Satoh M et al (1999) Itch-associated response induced by intradermal serotonin through 5-HT2 receptors in mice. Neurosci Res 35:77–83

    CAS  PubMed  Google Scholar 

  123. Akiyama T, Carstens MI, Carstens E (2010) Enhanced scratching evoked by PAR-2 agonist and 5-HT but not histamine in a mouse model of chronic dry skin itch. Pain 151:378–383

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Nojima H, Carstens E (2003) 5-Hydroxytryptamine (5-HT)2 receptor involvement in acute 5-HT-evoked scratching but not in allergic pruritus induced by dinitrofluorobenzene in rats. J Pharmacol Exp Ther 306:245–252

    CAS  PubMed  Google Scholar 

  125. Taiwo YO, Levine JD (1992) Serotonin is a directly-acting hyperalgesic agent in the rat. Neuroscience 48:485–490

    CAS  PubMed  Google Scholar 

  126. Godinez-Chaparro B, Barragan-Iglesias P, Castaneda-Corral G et al (2011) Role of peripheral 5-HT(4), 5-HT(6), and 5-HT(7) receptors in development and maintenance of secondary mechanical allodynia and hyperalgesia. Pain 152:687–697

    CAS  PubMed  Google Scholar 

  127. Sommer C (2004) Serotonin in pain and analgesia: actions in the periphery. Mol Neurobiol 30:117–125

    CAS  PubMed  Google Scholar 

  128. Wu S, Zhu M, Wang W et al (2001) Changes of the expression of 5-HT receptor subtype mRNAs in rat dorsal root ganglion by complete Freund’s adjuvant-induced inflammation. Neurosci Lett 307:183–186

    CAS  PubMed  Google Scholar 

  129. Bardin L (2011) The complex role of serotonin and 5-HT receptors in chronic pain. Behav Pharmacol 22:390–404

    CAS  PubMed  Google Scholar 

  130. Theodosiou M, Rush RA, Zhou XF et al (1999) Hyperalgesia due to nerve damage: role of nerve growth factor. Pain 81:245–255

    CAS  PubMed  Google Scholar 

  131. Dogrul A, Ossipov MH, Porreca F (2009) Differential mediation of descending pain facilitation and inhibition by spinal 5HT-3 and 5HT-7 receptors. Brain Res 1280:52–59

    CAS  PubMed  Google Scholar 

  132. Guo W, Miyoshi K, Dubner R et al (2014) Spinal 5-HT3 receptors mediate descending facilitation and contribute to behavioral hypersensitivity via a reciprocal neuron-glial signaling cascade. Mol Pain 10:35

    PubMed Central  PubMed  Google Scholar 

  133. Kim D, You B, Lim H et al (2011) Toll-like receptor 2 contributes to chemokine gene expression and macrophage infiltration in the dorsal root ganglia after peripheral nerve injury. Mol Pain 7:74

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Qian NS, Liao YH, Feng QX et al (2011) Spinal toll like receptor 3 is involved in chronic pancreatitis-induced mechanical allodynia of rat. Mol Pain 7:15

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Stokes JA, Corr M, Yaksh TL (2013) Spinal toll-like receptor signaling and nociceptive processing: regulatory balance between TIRAP and TRIF cascades mediated by TNF and IFNbeta. Pain 154:733–742

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Kwok YH, Hutchinson MR, Gentgall MG et al (2012) Increased responsiveness of peripheral blood mononuclear cells to in vitro TLR 2, 4 and 7 ligand stimulation in chronic pain patients. PLoS ONE 7:e44232

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Wadachi R, Hargreaves KM (2006) Trigeminal nociceptors express TLR-4 and CD14: a mechanism for pain due to infection. J Dent Res 85:49–53

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Ferraz CC, Henry MA, Hargreaves KM et al (2011) Lipopolysaccharide from Porphyromonas gingivalis sensitizes capsaicin-sensitive nociceptors. J Endod 37:45–48

    PubMed Central  PubMed  Google Scholar 

  139. Saito O, Svensson CI, Buczynski MW et al (2010) Spinal glial TLR4-mediated nociception and production of prostaglandin E(2) and TNF. Br J Pharmacol 160:1754–1764

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Tanga FY, Nutile-McMenemy N, DeLeo JA (2005) The CNS role of Toll-like receptor 4 in innate neuroimmunity and painful neuropathy. Proc Natl Acad Sci USA 102:5856–5861

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Hutchinson MR, Zhang Y, Shridhar M et al (2010) Evidence that opioids may have toll-like receptor 4 and MD-2 effects. Brain Behav Immun 24:83–95

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Qi J, Buzas K, Fan H et al (2011) Painful pathways induced by TLR stimulation of dorsal root ganglion neurons. J Immunol 186:6417–6426

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Khariv V, Pang K, Servatius RJ et al (2013) Toll-like receptor 9 deficiency impacts sensory and motor behaviors. Brain Behav Immun 32:164–172

    CAS  PubMed  Google Scholar 

  144. David BT, Ratnayake A, Amarante MA et al (2013) A toll-like receptor 9 antagonist reduces pain hypersensitivity and the inflammatory response in spinal cord injury. Neurobiol Dis 54:194–205

    CAS  PubMed  Google Scholar 

  145. Liu T, Berta T, Xu ZZ et al (2012) TLR3 deficiency impairs spinal cord synaptic transmission, central sensitization, and pruritus in mice. J Clin Invest 122:2195–2207

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Park CK, Xu ZZ, Berta T et al (2014) Extracellular microRNAs activate nociceptor neurons to elicit pain via TLR7 and TRPA1. Neuron 82:47–54

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Liu T, Xu ZZ, Park CK et al (2010) Toll-like receptor 7 mediates pruritus. Nat Neurosci 13:1460–1462

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Kim SJ, Park GH, Kim D et al (2011) Analysis of cellular and behavioral responses to imiquimod reveals a unique itch pathway in transient receptor potential vanilloid 1 (TRPV1)-expressing neurons. Proc Natl Acad Sci USA 108:3371–3376

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Liu T, Ji RR (2014) Toll-like receptors and itch. In: Carstens E, Akiyama T (eds) Itch: mechanisms and treatment Boca Raton (FL)

  150. Cao YQ, Mantyh PW, Carlson EJ et al (1998) Primary afferent tachykinins are required to experience moderate to intense pain. Nature 392:390–394

    CAS  PubMed  Google Scholar 

  151. Park TJ, Lu Y, Juttner R et al (2008) Selective inflammatory pain insensitivity in the African naked mole-rat (Heterocephalus glaber). PLoS Biol 6:e13

    PubMed Central  PubMed  Google Scholar 

  152. Steinhoff MS, von Mentzer B, Geppetti P et al (2014) Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease. Physiol Rev 94:265–301

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Quartara L, Maggi CA (1997) The tachykinin NK1 receptor. Part I: ligands and mechanisms of cellular activation. Neuropeptides 31:537–563

    CAS  PubMed  Google Scholar 

  154. Zhang H, Cang CL, Kawasaki Y et al (2007) Neurokinin-1 receptor enhances TRPV1 activity in primary sensory neurons via PKCepsilon: a novel pathway for heat hyperalgesia. J Neurosci 27:12067–12077

    CAS  PubMed  Google Scholar 

  155. Laird JM, Roza C, De Felipe C et al (2001) Role of central and peripheral tachykinin NK1 receptors in capsaicin-induced pain and hyperalgesia in mice. Pain 90:97–103

    CAS  PubMed  Google Scholar 

  156. Mantyh PW, Rogers SD, Honore P et al (1997) Inhibition of hyperalgesia by ablation of lamina I spinal neurons expressing the substance P receptor. Science 278:275–279

    CAS  PubMed  Google Scholar 

  157. Weisshaar CL, Winkelstein BA (2014) Ablating spinal NK1-bearing neurons eliminates the development of pain and reduces spinal neuronal hyperexcitability and inflammation from mechanical joint injury in the rat. J Pain 15:378–386

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Linley JE, Ooi L, Pettinger L et al (2012) Reactive oxygen species are second messengers of neurokinin signaling in peripheral sensory neurons. Proc Natl Acad Sci USA 109:E1578–E1586

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Lin CC, Chen WN, Chen CJ et al (2012) An antinociceptive role for substance P in acid-induced chronic muscle pain. Proc Natl Acad Sci USA 109:E76–E83

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Hill R (2000) NK1 (substance P) receptor antagonists–why are they not analgesic in humans? Trends Pharmacol Sci 21:244–246

    CAS  PubMed  Google Scholar 

  161. McCoy ES, Taylor-Blake B, Street SE et al (2013) Peptidergic CGRPalpha primary sensory neurons encode heat and itch and tonically suppress sensitivity to cold. Neuron 78:138–151

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Jeftinija S, Liu F, Jeftinija K et al (1992) Effect of capsaicin and resiniferatoxin on peptidergic neurons in cultured dorsal root ganglion. Regul Pept 39:123–135

    CAS  PubMed  Google Scholar 

  163. Li Y, Liu G, Li H et al (2013) Different responses of galanin and calcitonin gene-related peptide to capsaicin stimulation on dorsal root ganglion neurons in vitro. Regul Pept 184:68–74

    CAS  PubMed  Google Scholar 

  164. Benemei S, Nicoletti P, Capone JG et al (2009) CGRP receptors in the control of pain and inflammation. Curr Opin Pharmacol 9:9–14

    CAS  PubMed  Google Scholar 

  165. Reuter U (2014) Anti-CGRP antibodies: a new approach to migraine prevention. Lancet Neurol 13:857–859

    PubMed  Google Scholar 

  166. Amatya B, Nordlind K, Wahlgren CF (2010) Responses to intradermal injections of substance P in psoriasis patients with pruritus. Skin Pharmacol Physiol 23:133–138

    CAS  PubMed  Google Scholar 

  167. Andoh T, Nagasawa T, Satoh M et al (1998) Substance P induction of itch-associated response mediated by cutaneous NK1 tachykinin receptors in mice. J Pharmacol Exp Ther 286:1140–1145

    CAS  PubMed  Google Scholar 

  168. Smith ES, Blass GR, Lewin GR et al (2010) Absence of histamine-induced itch in the African naked mole-rat and “rescue” by Substance P. Mol Pain 6:29

    PubMed Central  PubMed  Google Scholar 

  169. Akiyama T, Tominaga M, Davoodi A et al (2013) Roles for substance P and gastrin-releasing peptide as neurotransmitters released by primary afferent pruriceptors. J Neurophysiol 109:742–748

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Carstens EE, Carstens MI, Simons CT et al (2010) Dorsal horn neurons expressing NK-1 receptors mediate scratching in rats. Neuro Rep 21:303–308

    CAS  Google Scholar 

  171. Vincenzi B, Tonini G, Santini D (2010) Aprepitant for erlotinib-induced pruritus. N Engl J Med 363:397–398

    CAS  PubMed  Google Scholar 

  172. Remrod C, Lonne-Rahm S, Nordlind K (2007) Study of substance P and its receptor neurokinin-1 in psoriasis and their relation to chronic stress and pruritus. Arch Dermatol Res 299:85–91

    PubMed  Google Scholar 

  173. Akiyama T, Tominaga M, Takamori K et al (2014) Roles of glutamate, substance P, and gastrin-releasing peptide as spinal neurotransmitters of histaminergic and nonhistaminergic itch. Pain 155:80–92

    CAS  PubMed Central  PubMed  Google Scholar 

  174. Liu Q, Tang Z, Surdenikova L et al (2009) Sensory neuron-specific GPCR Mrgprs are itch receptors mediating chloroquine-induced pruritus. Cell 139:1353–1365

    PubMed Central  PubMed  Google Scholar 

  175. Wilson SR, Gerhold KA, Bifolck-Fisher A et al (2011) TRPA1 is required for histamine-independent, Mas-related G protein-coupled receptor-mediated itch. Nat Neurosci 14:595–602

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Liu Q, Sikand P, Ma C et al (2012) Mechanisms of itch evoked by beta-alanine. J Neurosci 32:14532–14537

    CAS  PubMed Central  PubMed  Google Scholar 

  177. Wooten M, Weng HJ, Hartke TV et al (2014) Three functionally distinct classes of C-fibre nociceptors in primates. Nat Commun 5:4122

    CAS  PubMed Central  PubMed  Google Scholar 

  178. Vrontou S, Wong AM, Rau KK et al (2013) Genetic identification of C fibres that detect massage-like stroking of hairy skin in vivo. Nature 493:669–673

    CAS  PubMed Central  PubMed  Google Scholar 

  179. Qu L, Fan N, Ma C et al (2014) Enhanced excitability of MRGPRA3- and MRGPRD-positive nociceptors in a model of inflammatory itch and pain. Brain 137:1039–1050

    PubMed Central  PubMed  Google Scholar 

  180. Bunnett NW (2006) Protease-activated receptors: how proteases signal to cells to cause inflammation and pain. Semin Thromb Hemost 32(Suppl 1):39–48

    CAS  PubMed  Google Scholar 

  181. Kempkes C, Buddenkotte J, Cevikbas F et al (2014) Role of PAR-2 in neuroimmune communication and itch. In: Carstens E, Akiyama T (eds) Itch: mechanisms and treatment Boca Raton (FL)

  182. Cattaruzza F, Amadesi S, Carlsson JF et al (2014) Serine proteases and protease-activated receptor 2 mediate the proinflammatory and algesic actions of diverse stimulants. Br J Pharmacol 171:3814–3826

    CAS  PubMed Central  PubMed  Google Scholar 

  183. Liu S, Liu YP, Yue DM et al (2014) Protease-activated receptor 2 in dorsal root ganglion contributes to peripheral sensitization of bone cancer pain. Eur J Pain 18:326–337. doi:10.1002/j.1532-2149.2013.00372.x

    CAS  PubMed  Google Scholar 

  184. Huang ZJ, Li HC, Cowan AA et al (2012) Chronic compression or acute dissociation of dorsal root ganglion induces cAMP-dependent neuronal hyperexcitability through activation of PAR2. Pain 153:1426–1437

    CAS  PubMed  Google Scholar 

  185. Dai Y, Wang S, Tominaga M et al (2007) Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J Clin Invest 117:1979–1987

    CAS  PubMed Central  PubMed  Google Scholar 

  186. Zhao P, Lieu T, Barlow N et al (2014) Cathepsin S causes inflammatory pain via biased agonism of PAR2 and TRPV4. J Biol Chem 289:27215–27234

    CAS  PubMed  Google Scholar 

  187. Papoiu AD, Coghill RC, Kraft RA et al (2012) A tale of two itches. Common features and notable differences in brain activation evoked by cowhage and histamine induced itch. Neuroimage 59:3611–3623

    PubMed Central  PubMed  Google Scholar 

  188. Akiyama T, Merrill AW, Zanotto K et al (2009) Scratching behavior and Fos expression in superficial dorsal horn elicited by protease-activated receptor agonists and other itch mediators in mice. J Pharmacol Exp Ther 329:945–951

    CAS  PubMed Central  PubMed  Google Scholar 

  189. Liu Q, Weng HJ, Patel KN et al (2011) The distinct roles of two GPCRs, MrgprC11 and PAR2, in itch and hyperalgesia. Sci Signal 4:ra45

    CAS  PubMed Central  PubMed  Google Scholar 

  190. Caterina MJ, Schumacher MA, Tominaga M et al (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    CAS  PubMed  Google Scholar 

  191. Zygmunt PM, Petersson J, Andersson DA et al (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400:452–457

    CAS  PubMed  Google Scholar 

  192. Yin S, Luo J, Qian A et al (2013) Retinoids activate the irritant receptor TRPV1 and produce sensory hypersensitivity. J Clin Invest 123:3941–3951

    CAS  PubMed Central  PubMed  Google Scholar 

  193. Walker JM, Krey JF, Chu CJ et al (2002) Endocannabinoids and related fatty acid derivatives in pain modulation. Chem Phys Lipids 121:159–172

    CAS  PubMed  Google Scholar 

  194. Green DP, Ruparel S, Roman L et al (2013) Role of endogenous TRPV1 agonists in a postburn pain model of partial-thickness injury. Pain 154:2512–2520

    CAS  PubMed  Google Scholar 

  195. Jung H, Toth PT, White FA et al (2008) Monocyte chemoattractant protein-1 functions as a neuromodulator in dorsal root ganglia neurons. J Neurochem 104:254–263

    CAS  PubMed Central  PubMed  Google Scholar 

  196. Miyamoto T, Dubin AE, Petrus MJ et al (2009) TRPV1 and TRPA1 mediate peripheral nitric oxide-induced nociception in mice. PLoS ONE 4:e7596

    PubMed Central  PubMed  Google Scholar 

  197. Morales-Lazaro SL, Simon SA, Rosenbaum T (2013) The role of endogenous molecules in modulating pain through transient receptor potential vanilloid 1 (TRPV1). J Physiol 591:3109–3121

    CAS  PubMed Central  PubMed  Google Scholar 

  198. Nishio N, Taniguchi W, Sugimura YK et al (2013) Reactive oxygen species enhance excitatory synaptic transmission in rat spinal dorsal horn neurons by activating TRPA1 and TRPV1 channels. Neuroscience 247:201–212

    CAS  PubMed  Google Scholar 

  199. Patwardhan AM, Scotland PE, Akopian AN et al (2009) Activation of TRPV1 in the spinal cord by oxidized linoleic acid metabolites contributes to inflammatory hyperalgesia. Proc Natl Acad Sci USA 106:18820–18824

    CAS  PubMed Central  PubMed  Google Scholar 

  200. Chuang HH, Prescott ED, Kong H et al (2001) Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411:957–962

    CAS  PubMed  Google Scholar 

  201. Negri L, Lattanzi R, Giannini E et al (2006) Modulators of pain: Bv8 and prokineticins. Curr Neuropharmacol 4:207–215

    CAS  PubMed Central  PubMed  Google Scholar 

  202. Moriyama T, Higashi T, Togashi K et al (2005) Sensitization of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins. Mol Pain 1:3

    PubMed Central  PubMed  Google Scholar 

  203. Dai Y, Moriyama T, Higashi T et al (2004) Proteinase-activated receptor 2-mediated potentiation of transient receptor potential vanilloid subfamily 1 activity reveals a mechanism for proteinase-induced inflammatory pain. J Neurosci 24:4293–4299

    CAS  PubMed  Google Scholar 

  204. Rosenbaum T, Simon SA (2007) TRPV1 receptors and signal transduction. In: Liedtke WB, Heller S (eds) TRP ion channel function in sensory transduction and cellular signaling cascades Boca Raton (FL)

  205. Rohacs T (2014) Phosphoinositide regulation of TRP channels. Handb Exp Pharmacol 223:1143–1176

    CAS  PubMed  Google Scholar 

  206. Stein AT, Ufret-Vincenty CA, Hua L et al (2006) Phosphoinositide 3-kinase binds to TRPV1 and mediates NGF-stimulated TRPV1 trafficking to the plasma membrane. J Gen Physiol 128:509–522

    CAS  PubMed Central  PubMed  Google Scholar 

  207. Zhang X, Huang J, McNaughton PA (2005) NGF rapidly increases membrane expression of TRPV1 heat-gated ion channels. EMBO J 24:4211–4223

    CAS  PubMed Central  PubMed  Google Scholar 

  208. Planells-Cases R, Garcia-Sanz N, Morenilla-Palao C et al (2005) Functional aspects and mechanisms of TRPV1 involvement in neurogenic inflammation that leads to thermal hyperalgesia. Pflugers Arch 451:151–159

    CAS  PubMed  Google Scholar 

  209. Wu Z, Yang Q, Crook RJ et al (2013) TRPV1 channels make major contributions to behavioral hypersensitivity and spontaneous activity in nociceptors after spinal cord injury. Pain 154:2130–2141

    CAS  PubMed  Google Scholar 

  210. Kwon SG, Roh DH, Yoon SY et al (2014) Blockade of peripheral P2Y1 receptors prevents the induction of thermal hyperalgesia via modulation of TRPV1 expression in carrageenan-induced inflammatory pain rats: involvement of p38 MAPK phosphorylation in DRGs. Neuropharmacology 79:368–379

    CAS  PubMed  Google Scholar 

  211. Homma Y, Nomiya A, Tagaya M et al (2013) Increased mRNA expression of genes involved in pronociceptive inflammatory reactions in bladder tissue of interstitial cystitis. J Urol 190:1925–1931

    CAS  PubMed  Google Scholar 

  212. Fang JQ, Du JY, Liang Y et al (2013) Intervention of electroacupuncture on spinal p38 MAPK/ATF-2/VR-1 pathway in treating inflammatory pain induced by CFA in rats. Mol Pain 9:13

    PubMed Central  PubMed  Google Scholar 

  213. Rasband MN, Park EW, Vanderah TW et al (2001) Distinct potassium channels on pain-sensing neurons. Proc Natl Acad Sci USA 98:13373–13378

    CAS  PubMed Central  PubMed  Google Scholar 

  214. Schafers M, Geis C, Svensson CI et al (2003) Selective increase of tumour necrosis factor-alpha in injured and spared myelinated primary afferents after chronic constrictive injury of rat sciatic nerve. Eur J Neurosci 17:791–804

    PubMed  Google Scholar 

  215. Hudson LJ, Bevan S, Wotherspoon G et al (2001) VR1 protein expression increases in undamaged DRG neurons after partial nerve injury. Eur J Neurosci 13:2105–2114

    CAS  PubMed  Google Scholar 

  216. Facer P, Casula MA, Smith GD et al (2007) Differential expression of the capsaicin receptor TRPV1 and related novel receptors TRPV3, TRPV4 and TRPM8 in normal human tissues and changes in traumatic and diabetic neuropathy. BMC Neurol 7:11

    PubMed Central  PubMed  Google Scholar 

  217. Lauria G, Morbin M, Lombardi R et al (2006) Expression of capsaicin receptor immunoreactivity in human peripheral nervous system and in painful neuropathies. J Peripher Nerv Syst 11:262–271

    CAS  PubMed  Google Scholar 

  218. Vilceanu D, Honore P, Hogan QH et al (2010) Spinal nerve ligation in mouse upregulates TRPV1 heat function in injured IB4-positive nociceptors. J Pain 11:588–599

    CAS  PubMed Central  PubMed  Google Scholar 

  219. Kaneko Y, Szallasi A (2014) Transient receptor potential (TRP) channels: a clinical perspective. Br J Pharmacol 171:2474–2507

    CAS  PubMed Central  PubMed  Google Scholar 

  220. Szallasi A, Sheta M (2012) Targeting TRPV1 for pain relief: limits, losers and laurels. Expert Opin Investig Drugs 21:1351–1369

    CAS  PubMed  Google Scholar 

  221. Story GM, Peier AM, Reeve AJ et al (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112:819–829

    CAS  PubMed  Google Scholar 

  222. Jordt SE, Bautista DM, Chuang HH et al (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427:260–265

    CAS  PubMed  Google Scholar 

  223. Atoyan R, Shander D, Botchkareva NV (2009) Non-neuronal expression of transient receptor potential type A1 (TRPA1) in human skin. J Invest Dermatol 129:2312–2315

    CAS  PubMed  Google Scholar 

  224. Anand U, Otto WR, Facer P et al (2008) TRPA1 receptor localisation in the human peripheral nervous system and functional studies in cultured human and rat sensory neurons. Neurosci Lett 438:221–227

    CAS  PubMed  Google Scholar 

  225. Bandell M, Story GM, Hwang SW et al (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41:849–857

    CAS  PubMed  Google Scholar 

  226. Andersson DA, Gentry C, Moss S et al (2008) Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J Neurosci 28:2485–2494

    CAS  PubMed Central  PubMed  Google Scholar 

  227. Trevisani M, Siemens J, Materazzi S et al (2007) 4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. Proc Natl Acad Sci USA 104:13519–13524

    CAS  PubMed Central  PubMed  Google Scholar 

  228. Hu H, Bandell M, Petrus MJ et al (2009) Zinc activates damage-sensing TRPA1 ion channels. Nat Chem Biol 5:183–190

    CAS  PubMed Central  PubMed  Google Scholar 

  229. Kremeyer B, Lopera F, Cox JJ et al (2010) A gain-of-function mutation in TRPA1 causes familial episodic pain syndrome. Neuron 66:671–680

    CAS  PubMed  Google Scholar 

  230. Petrus M, Peier AM, Bandell M et al (2007) A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition. Molecular pain 3:40

    PubMed Central  PubMed  Google Scholar 

  231. Eid SR, Crown ED, Moore EL et al (2008) HC-030031, a TRPA1 selective antagonist, attenuates inflammatory- and neuropathy-induced mechanical hypersensitivity. Mol Pain 4:48

    PubMed Central  PubMed  Google Scholar 

  232. Katsura H, Obata K, Mizushima T et al (2006) Antisense knock down of TRPA1, but not TRPM8, alleviates cold hyperalgesia after spinal nerve ligation in rats. Exp Neurol 200:112–123

    CAS  PubMed  Google Scholar 

  233. Ji G, Zhou S, Carlton SM (2008) Intact Adelta-fibers up-regulate transient receptor potential A1 and contribute to cold hypersensitivity in neuropathic rats. Neuroscience 154:1054–1066

    CAS  PubMed Central  PubMed  Google Scholar 

  234. Due MR, Park J, Zheng L et al (2014) Acrolein involvement in sensory and behavioral hypersensitivity following spinal cord injury in the rat. J Neurochem 128:776–786

    CAS  PubMed Central  PubMed  Google Scholar 

  235. Vincent AM, Brownlee M, Russell JW (2002) Oxidative stress and programmed cell death in diabetic neuropathy. Ann N Y Acad Sci 959:368–383

    CAS  PubMed  Google Scholar 

  236. Lennertz RC, Kossyreva EA, Smith AK et al (2012) TRPA1 mediates mechanical sensitization in nociceptors during inflammation. PLoS ONE 7:e43597

    CAS  PubMed Central  PubMed  Google Scholar 

  237. Wei H, Hamalainen MM, Saarnilehto M et al (2009) Attenuation of mechanical hypersensitivity by an antagonist of the TRPA1 ion channel in diabetic animals. Anesthesiology 111:147–154

    CAS  PubMed  Google Scholar 

  238. Nassini R, Materazzi S, Vriens J et al (2012) The ‘headache tree’ via umbellulone and TRPA1 activates the trigeminovascular system. Brain 135:376–390

    PubMed  Google Scholar 

  239. Bautista DM, Jordt SE, Nikai T et al (2006) TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124:1269–1282

    CAS  PubMed  Google Scholar 

  240. McNamara CR, Mandel-Brehm J, Bautista DM et al (2007) TRPA1 mediates formalin-induced pain. Proc Natl Acad Sci USA 104:13525–13530

    CAS  PubMed Central  PubMed  Google Scholar 

  241. Han SK, Mancino V, Simon MI (2006) Phospholipase Cbeta 3 mediates the scratching response activated by the histamine H1 receptor on C-fiber nociceptive neurons. Neuron 52:691–703

    CAS  PubMed  Google Scholar 

  242. Roberson DP, Gudes S, Sprague JM et al (2013) Activity-dependent silencing reveals functionally distinct itch-generating sensory neurons. Nat Neurosci 16:910–918

    CAS  PubMed  Google Scholar 

  243. Liu T, Ji RR (2012) Oxidative stress induces itch via activation of transient receptor potential subtype ankyrin 1 in mice. Neurosci Bull 28:145–154

    PubMed Central  PubMed  Google Scholar 

  244. Oh MH, Oh SY, Lu J et al (2013) TRPA1-dependent pruritus in IL-13-induced chronic atopic dermatitis. J Immunol 191:5371–5382

    CAS  PubMed Central  PubMed  Google Scholar 

  245. Fernandes ES, Vong CT, Quek S et al (2013) Superoxide generation and leukocyte accumulation: key elements in the mediation of leukotriene B(4)-induced itch by transient receptor potential ankyrin 1 and transient receptor potential vanilloid 1. FASEB J 27:1664–1673

    CAS  PubMed  Google Scholar 

  246. Lieu T, Jayaweera G, Zhao P et al (2014) The bile acid receptor TGR5 activates the TRPA1 channel to induce itch in mice. Gastroenterology 147:1417–1428. doi:10.1053/j.gastro.2014.08.042

    CAS  PubMed  Google Scholar 

  247. Wilson SR, Nelson AM, Batia L et al (2013) The ion channel TRPA1 is required for chronic itch. J Neurosci 33:9283–9294

    CAS  PubMed Central  PubMed  Google Scholar 

  248. Liu B, Escalera J, Balakrishna S et al (2013) TRPA1 controls inflammation and pruritogen responses in allergic contact dermatitis. FASEB J 27:3549–3563

    CAS  PubMed Central  PubMed  Google Scholar 

  249. McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416:52–58

    CAS  PubMed  Google Scholar 

  250. Peier AM, Moqrich A, Hergarden AC et al (2002) A TRP channel that senses cold stimuli and menthol. Cell 108:705–715

    CAS  PubMed  Google Scholar 

  251. Dhaka A, Earley TJ, Watson J et al (2008) Visualizing cold spots: TRPM8-expressing sensory neurons and their projections. J Neurosci 28:566–575

    CAS  PubMed  Google Scholar 

  252. Takashima Y, Daniels RL, Knowlton W et al (2007) Diversity in the neural circuitry of cold sensing revealed by genetic axonal labeling of transient receptor potential melastatin 8 neurons. J Neurosci 27:14147–14157

    CAS  PubMed Central  PubMed  Google Scholar 

  253. Cao E, Cordero-Morales JF, Liu B et al (2013) TRPV1 channels are intrinsically heat sensitive and negatively regulated by phosphoinositide lipids. Neuron 77:667–679

    CAS  PubMed Central  PubMed  Google Scholar 

  254. Zakharian E, Cao C, Rohacs T (2010) Gating of transient receptor potential melastatin 8 (TRPM8) channels activated by cold and chemical agonists in planar lipid bilayers. J Neurosci 30:12526–12534

    CAS  PubMed Central  PubMed  Google Scholar 

  255. Xing H, Chen M, Ling J et al (2007) TRPM8 mechanism of cold allodynia after chronic nerve injury. J Neurosci 27:13680–13690

    CAS  PubMed  Google Scholar 

  256. Caspani O, Zurborg S, Labuz D et al (2009) The contribution of TRPM8 and TRPA1 channels to cold allodynia and neuropathic pain. PLoS ONE 4:e7383

    PubMed Central  PubMed  Google Scholar 

  257. Chasman DI, Schurks M, Anttila V et al (2011) Genome-wide association study reveals three susceptibility loci for common migraine in the general population. Nat Genet 43:695–698

    CAS  PubMed Central  PubMed  Google Scholar 

  258. Bromm B, Scharein E, Darsow U et al (1995) Effects of menthol and cold on histamine-induced itch and skin reactions in man. Neurosci Lett 187:157–160

    CAS  PubMed  Google Scholar 

  259. Carstens E, Jinks SL (1998) Skin cooling attenuates rat dorsal horn neuronal responses to intracutaneous histamine. Neuro Rep 9:4145–4149

    CAS  Google Scholar 

  260. Than JY, Li L, Hasan R et al (2013) Excitation and modulation of TRPA1, TRPV1, and TRPM8 channel-expressing sensory neurons by the pruritogen chloroquine. J Biol Chem 288:12818–12827

    PubMed Central  PubMed  Google Scholar 

  261. Bang S, Yoo S, Yang TJ et al (2010) Farnesyl pyrophosphate is a novel pain-producing molecule via specific activation of TRPV3. J Biol Chem 285:19362–19371

    CAS  PubMed Central  PubMed  Google Scholar 

  262. Bang S, Yoo S, Yang TJ et al (2012) Nociceptive and pro-inflammatory effects of dimethylallyl pyrophosphate via TRPV4 activation. Br J Pharmacol 166:1433–1443

    CAS  PubMed Central  PubMed  Google Scholar 

  263. Alessandri-Haber N, Yeh JJ, Boyd AE et al (2003) Hypotonicity induces TRPV4-mediated nociception in rat. Neuron 39:497–511

    CAS  PubMed  Google Scholar 

  264. Alexander R, Kerby A, Aubdool AA et al (2013) 4α-phorbol 12,13-didecanoate activates cultured mouse dorsal root ganglia neurons independently of TRPV4. Br J Pharmacol 168:761–772

    CAS  PubMed Central  PubMed  Google Scholar 

  265. Grimm C, Kraft R, Sauerbruch S et al (2003) Molecular and functional characterization of the melastatin-related cation channel TRPM3. J Biol Chem 278:21493–21501

    CAS  PubMed  Google Scholar 

  266. Oberwinkler J, Phillipp SE (2007) TRPM3. Handb Exp Pharmacol 179:253–267

    CAS  PubMed  Google Scholar 

  267. Wagner TF, Loch S, Lambert S et al (2008) Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic beta cells. Nat Cell Biol 10:1421–1430

    CAS  PubMed  Google Scholar 

  268. Vriens J, Held K, Janssens A et al (2014) Opening of an alternative ion permeation pathway in a nociceptor TRP channel. Nat Chem Biol 10:188–195

    CAS  PubMed  Google Scholar 

  269. Bang S, Yoo S, Yang TJ et al (2011) Isopentenyl pyrophosphate is a novel antinociceptive substance that inhibits TRPV3 and TRPA1 ion channels. Pain 152:1156–1164

    CAS  PubMed  Google Scholar 

  270. Bang S, Yoo S, Yang TJ et al (2012) 17(R)-resolvin D1 specifically inhibits transient receptor potential ion channel vanilloid 3 leading to peripheral antinociception. Br J Pharmacol 165:683–692

    CAS  PubMed Central  PubMed  Google Scholar 

  271. Straub I, Krugel U, Mohr F et al (2013) Flavanones that selectively inhibit TRPM3 attenuate thermal nociception in vivo. Mol Pharmacol 84:736–750

    CAS  PubMed  Google Scholar 

  272. Alessandri-Haber N, Dina OA, Yeh JJ et al (2004) Transient receptor potential vanilloid 4 is essential in chemotherapy-induced neuropathic pain in the rat. J Neurosci 24:4444–4452

    CAS  PubMed  Google Scholar 

  273. Moqrich A, Hwang SW, Earley TJ et al (2005) Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307:1468–1472

    CAS  PubMed  Google Scholar 

  274. Vriens J, Owsianik G, Hofmann T et al (2011) TRPM3 is a nociceptor channel involved in the detection of noxious heat. Neuron 70:482–494

    CAS  PubMed  Google Scholar 

  275. Chen X, Alessandri-Haber N, Levine JD (2007) Marked attenuation of inflammatory mediator-induced C-fiber sensitization for mechanical and hypotonic stimuli in TRPV4−/− mice. Mol Pain 3:31

    PubMed Central  PubMed  Google Scholar 

  276. Asakawa M, Yoshioka T, Matsutani T et al (2006) Association of a mutation in TRPV3 with defective hair growth in rodents. J Invest Dermatol 126:2664–2672

    CAS  PubMed  Google Scholar 

  277. Yoshioka T, Imura K, Asakawa M et al (2009) Impact of the Gly573Ser substitution in TRPV3 on the development of allergic and pruritic dermatitis in mice. J Invest Dermatol 129:714–722

    CAS  PubMed  Google Scholar 

  278. Lin Z, Chen Q, Lee M et al (2012) Exome sequencing reveals mutations in TRPV3 as a cause of Olmsted syndrome. Am J Hum Genet 90:558–564

    CAS  PubMed Central  PubMed  Google Scholar 

  279. Yamamoto-Kasai E, Imura K, Yasui K et al (2012) TRPV3 as a therapeutic target for itch. J Invest Dermatol 132:2109–2112

    CAS  PubMed  Google Scholar 

  280. Sobczak M, Salaga M, Storr MA et al (2014) Physiology, signaling, and pharmacology of opioid receptors and their ligands in the gastrointestinal tract: current concepts and future perspectives. J Gastroenterol 49:24–45

    CAS  PubMed Central  PubMed  Google Scholar 

  281. Pasternak GW (2004) Multiple opiate receptors: deja vu all over again. Neuropharmacology 47(Suppl 1):312–323

    CAS  PubMed  Google Scholar 

  282. Bardoni R, Tawfik VL, Wang D et al (2014) Delta opioid receptors presynaptically regulate cutaneous mechanosensory neuron input to the spinal cord dorsal horn. Neuron 81:1312–1327

    CAS  PubMed Central  PubMed  Google Scholar 

  283. Gaveriaux-Ruff C, Karchewski LA, Hever X et al (2008) Inflammatory pain is enhanced in delta opioid receptor-knockout mice. Eur J Neurosci 27:2558–2567

    PubMed Central  PubMed  Google Scholar 

  284. Marker CL, Lujan R, Loh HH et al (2005) Spinal G-protein-gated potassium channels contribute in a dose-dependent manner to the analgesic effect of mu- and delta- but not kappa-opioids. J Neurosci 25:3551–3559

    CAS  PubMed  Google Scholar 

  285. Zhao ZQ, Gao YJ, Sun YG et al (2007) Central serotonergic neurons are differentially required for opioid analgesia but not for morphine tolerance or morphine reward. Proc Natl Acad Sci USA 104:14519–14524

    CAS  PubMed Central  PubMed  Google Scholar 

  286. Pongraweewan O, Santawata U, Weerasarn L et al (2009) Epidural nalbuphine for post cesarean epidural morphine induced pruritus. J Med Assoc Thai 92:782–786

    PubMed  Google Scholar 

  287. Yamamoto A, Kuyama S, Kamei C et al (2010) Characterization of scratching behavior induced by intradermal administration of morphine and fentanyl in mice. Eur J Pharmacol 627:162–166

    CAS  PubMed  Google Scholar 

  288. Ko MC, Song MS, Edwards T et al (2004) The role of central mu opioid receptors in opioid-induced itch in primates. J Pharmacol Exp Ther 310:169–176

    CAS  PubMed  Google Scholar 

  289. Kardon AP, Polgar E, Hachisuka J et al (2014) Dynorphin acts as a neuromodulator to inhibit itch in the dorsal horn of the spinal cord. Neuron 82:573–586

    CAS  PubMed Central  PubMed  Google Scholar 

  290. Liu XY, Liu ZC, Sun YG et al (2011) Unidirectional cross-activation of GRPR by MOR1D uncouples itch and analgesia induced by opioids. Cell 147:447–458

    CAS  PubMed Central  PubMed  Google Scholar 

  291. Sun YG, Chen ZF (2007) A gastrin-releasing peptide receptor mediates the itch sensation in the spinal cord. Nature 448:700–703

    CAS  PubMed  Google Scholar 

  292. Sukhtankar DD, Ko MC (2013) Physiological function of gastrin-releasing peptide and neuromedin B receptors in regulating itch scratching behavior in the spinal cord of mice. PLoS ONE 8:e67422

    CAS  PubMed Central  PubMed  Google Scholar 

  293. Su PY, Ko MC (2011) The role of central gastrin-releasing peptide and neuromedin B receptors in the modulation of scratching behavior in rats. J Pharmacol Exp Ther 337:822–829

    CAS  PubMed Central  PubMed  Google Scholar 

  294. Mishra SK, Holzman S, Hoon MA (2012) A nociceptive signaling role for neuromedin B. J Neurosci 32:8686–8695

    CAS  PubMed Central  PubMed  Google Scholar 

  295. Xu Y, Lopes C, Wende H et al (2013) Ontogeny of excitatory spinal neurons processing distinct somatic sensory modalities. J Neurosci 33:14738–14748

    CAS  PubMed Central  PubMed  Google Scholar 

  296. Liu XY, Wan L, Huo FQ et al (2014) B-type natriuretic peptide is neither itch-specific nor functions upstream of the GRP-GRPR signaling pathway. Mol Pain 10:4

    PubMed Central  PubMed  Google Scholar 

  297. Goswami SC, Thierry-Mieg D, Thierry-Mieg J et al (2014) Itch-associated peptides: RNA-Seq and bioinformatic analysis of natriuretic precursor peptide B and gastrin releasing peptide in dorsal root and trigeminal ganglia, and the spinal cord. Mol Pain 10:44

    PubMed Central  PubMed  Google Scholar 

  298. Fleming MS, Ramos D, Han SB et al (2012) The majority of dorsal spinal cord gastrin releasing peptide is synthesized locally whereas neuromedin B is highly expressed in pain- and itch-sensing somatosensory neurons. Mol Pain 8:52

    CAS  PubMed Central  PubMed  Google Scholar 

  299. Solorzano C, Villafuerte D, Meda K et al (2015) Primary afferent and spinal cord expression of gastrin-releasing peptide: message, protein, and antibody concerns. J Neurosci 35:648–657

    PubMed Central  PubMed  Google Scholar 

  300. Halvorsen JA, Dalgard F, Thoresen M et al (2012) Itch and pain in adolescents are associated with suicidal ideation: a population-based cross-sectional study. Acta Derm Venereol 92:543–546

    PubMed  Google Scholar 

  301. Yosipovitch G, Bernhard JD (2013) Clinical practice. Chronic pruritus. N Engl J Med 368:1625–1634

    CAS  PubMed  Google Scholar 

  302. Sarzi-Puttini P, Vellucci R, Zuccaro SM et al (2012) The appropriate treatment of chronic pain. Clin Drug Investig 32(Suppl 1):21–33

    CAS  Google Scholar 

  303. Labianca R, Sarzi-Puttini P, Zuccaro SM et al (2012) Adverse effects associated with non-opioid and opioid treatment in patients with chronic pain. Clin Drug Investig 32(Suppl 1):53–63

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the National Institutes of Health RO1RGM101218, Mission Connect/the Institute for Rehabilitation and Research (TIRR) Foundation (013-108), and the Center for the Study of Itch of the Department of Anesthesiology of Washington University to H.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhen Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Feng, J., Liu, S. et al. Molecular and cellular mechanisms that initiate pain and itch. Cell. Mol. Life Sci. 72, 3201–3223 (2015). https://doi.org/10.1007/s00018-015-1904-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1904-4

Keywords

Navigation