Skip to main content

Advertisement

Log in

Influenza infection induces host DNA damage and dynamic DNA damage responses during tissue regeneration

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Influenza viruses account for significant morbidity worldwide. Inflammatory responses, including excessive generation of reactive oxygen and nitrogen species (RONS), mediate lung injury in severe influenza infections. However, the molecular basis of inflammation-induced lung damage is not fully understood. Here, we studied influenza H1N1 infected cells in vitro, as well as H1N1 infected mice, and we monitored molecular and cellular responses over the course of 2 weeks in vivo. We show that influenza induces DNA damage to both, when cells are directly exposed to virus in vitro (measured using the comet assay) and also when cells are exposed to virus in vivo (estimated via γH2AX foci). We show that DNA damage, as well as responses to DNA damage persist in vivo until long after virus has been cleared, at times when there are inflammation associated RONS (measured by xanthine oxidase activity and oxidative products). The frequency of lung epithelial and immune cells with increased γH2AX foci is elevated in vivo, especially for dividing cells (Ki-67-positive) exposed to oxidative stress during tissue regeneration. Additionally, we observed a significant increase in apoptotic cells as well as increased levels of DNA double strand break (DSB) repair proteins Ku70, Ku86 and Rad51 during the regenerative phase. In conclusion, results show that influenza induces DNA damage both in vitro and in vivo, and that DNA damage responses are activated, raising the possibility that DNA repair capacity may be a determining factor for tissue recovery and disease outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

εdA:

1, N6-Etheno-2′-deoxyadenosine

εdG:

1, N2-Etheno-2′-deoxyguanosine

8-OH-dG:

8-Hydroxy-deoxyguanosine

8-OH-G:

8-Hydroxyguanosine

AEII:

Alveolar epithelial type II cells

ATM:

Ataxia telangiectasia mutated

ATR:

ATM- and Rad-3 related

BER:

Base excision repair

BALF:

Bronchoalveolar lavage fluid

CCSP:

Club cell secretary protein

DDR:

DNA damage response

DSBs:

DNA double-strand breaks

DNA-PKcs:

DNA-dependent protein kinase catalytic subunit

HA:

Hemagglutinin

HR:

Homologous recombination

MDCK:

Madin–Darby canine kidney

MOI:

Multiplicity of infection

NHEJ:

Non-homologous end joining

NS1:

Non-structural protein 1

PI3K-like kinases:

Phosphatidylinositol-3-kinase-like kinases

Pro-SPC:

Pro-surfactant protein C

RONS:

Reactive oxygen and nitrogen species

SSBs:

DNA single strand breaks

XO:

Xanthine oxidase

References

  1. Kobasa D, Jones SM, Shinya K, Kash JC, Copps J, Ebihara H, Hatta Y, Kim JH, Halfmann P, Hatta M, Feldmann F, Alimonti JB, Fernando L, Li Y, Katze MG, Feldmann H, Kawaoka Y (2007) Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature 445(7125):319–323. doi:10.1038/nature05495

    Article  CAS  PubMed  Google Scholar 

  2. Walsh KB, Teijaro JR, Wilker PR, Jatzek A, Fremgen DM, Das SC, Watanabe T, Hatta M, Shinya K, Suresh M, Kawaoka Y, Rosen H, Oldstone MB (2011) Suppression of cytokine storm with a sphingosine analog provides protection against pathogenic influenza virus. Proc Natl Acad Sci USA 108(29):12018–12023. doi:10.1073/pnas.1107024108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Snelgrove RJ, Edwards L, Rae AJ, Hussell T (2006) An absence of reactive oxygen species improves the resolution of lung influenza infection. Eur J Immunol 36(6):1364–1373. doi:10.1002/eji.200635977

    Article  CAS  PubMed  Google Scholar 

  4. Vlahos R, Stambas J, Bozinovski S, Broughton BR, Drummond GR, Selemidis S (2011) Inhibition of Nox2 oxidase activity ameliorates influenza A virus-induced lung inflammation. PLoS Pathog 7(2):e1001271. doi:10.1371/journal.ppat.1001271

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Akaike T, Ando M, Oda T, Doi T, Ijiri S, Araki S, Maeda H (1990) Dependence on O2- generation by xanthine oxidase of pathogenesis of influenza virus infection in mice. J Clin Investig 85(3):739–745. doi:10.1172/JCI114499

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Lonkar P, Dedon PC (2011) Reactive species and DNA damage in chronic inflammation: reconciling chemical mechanisms and biological fates. Int J Cancer J Int Cancer 128(9):1999–2009. doi:10.1002/ijc.25815

    Article  CAS  Google Scholar 

  7. Cabon L, Galan-Malo P, Bouharrour A, Delavallee L, Brunelle-Navas MN, Lorenzo HK, Gross A, Susin SA (2012) BID regulates AIF-mediated caspase-independent necroptosis by promoting BAX activation. Cell Death Differ 19(2):245–256. doi:10.1038/cdd.2011.91

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J Off Publ Fed Am Soc Exp Biol 17(10):1195–1214. doi:10.1096/fj.02-0752rev

    CAS  Google Scholar 

  9. Charbon G, Bjorn L, Mendoza-Chamizo B, Frimodt-Moller J, Lobner-Olesen A (2014) Oxidative DNA damage is instrumental in hyperreplication stress-induced inviability of Escherichia coli. Nucleic Acids Res 42(21):13228–13241. doi:10.1093/nar/gku1149

    Article  PubMed Central  PubMed  Google Scholar 

  10. Simonelli V, Narciso L, Dogliotti E, Fortini P (2005) Base excision repair intermediates are mutagenic in mammalian cells. Nucleic Acids Res 33(14):4404–4411. doi:10.1093/nar/gki749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Chen X, Chen J, Gan S, Guan H, Zhou Y, Ouyang Q, Shi J (2013) DNA damage strength modulates a bimodal switch of p53 dynamics for cell-fate control. BMC Biol 11:73. doi:10.1186/1741-7007-11-73

    Article  PubMed Central  PubMed  Google Scholar 

  12. von Zglinicki T, Saretzki G, Ladhoff J, d’Adda di Fagagna F, Jackson SP (2005) Human cell senescence as a DNA damage response. Mech Ageing Dev 126(1):111–117. doi:10.1016/j.mad.2004.09.034

    Article  Google Scholar 

  13. Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM (2000) A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol CB 10(15):886–895

    Article  CAS  Google Scholar 

  14. Wang J, Gong Z, Chen J (2011) MDC1 collaborates with TopBP1 in DNA replication checkpoint control. J Cell Biol 193(2):267–273. doi:10.1083/jcb.201010026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273(10):5858–5868

    Article  CAS  PubMed  Google Scholar 

  16. Rothkamm K, Lobrich M (2003) Evidence for a lack of DNA double-strand break repair in human cells exposed to very low X-ray doses. Proc Natl Acad Sci USA 100(9):5057–5062. doi:10.1073/pnas.0830918100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Ward IM, Chen J (2001) Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J Biol Chem 276(51):47759–47762. doi:10.1074/jbc.C100569200

    CAS  PubMed  Google Scholar 

  18. Ewald B, Sampath D, Plunkett W (2007) H2AX phosphorylation marks gemcitabine-induced stalled replication forks and their collapse upon S-phase checkpoint abrogation. Mol Cancer Ther 6(4):1239–1248. doi:10.1158/1535-7163.MCT-06-0633

    Article  CAS  PubMed  Google Scholar 

  19. Podhorecka M, Skladanowski A, Bozko P (2010) H2AX phosphorylation: its role in DNA damage response and cancer therapy. J Nucleic Acids 2010:920161. doi:10.4061/2010/920161

  20. Mao Z, Bozzella M, Seluanov A, Gorbunova V (2008) DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle 7(18):2902–2906

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Richardson C, Jasin M (2000) Frequent chromosomal translocations induced by DNA double-strand breaks. Nature 405(6787):697–700. doi:10.1038/35015097

    Article  CAS  PubMed  Google Scholar 

  22. Helleday T, Lo J, van Gent DC, Engelward BP (2007) DNA double-strand break repair: from mechanistic understanding to cancer treatment. DNA Repair 6(7):923–935. doi:10.1016/j.dnarep.2007.02.006

    Article  CAS  PubMed  Google Scholar 

  23. Wood DK, Weingeist DM, Bhatia SN, Engelward BP (2010) Single cell trapping and DNA damage analysis using microwell arrays. Proc Natl Acad Sci USA 107(22):10008–10013. doi:10.1073/pnas.1004056107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Weingeist DM, Ge J, Wood DK, Mutamba JT, Huang Q, Rowland EA, Yaffe MB, Floyd S, Engelward BP (2013) Single-cell microarray enables high-throughput evaluation of DNA double-strand breaks and DNA repair inhibitors. Cell Cycle 12(6):907–915. doi:10.4161/cc.23880

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Li N, Yin L, Thevenin D, Yamada Y, Limmon G, Chen J, Chow VT, Engelman DM, Engelward BP (2013) Peptide targeting and imaging of damaged lung tissue in influenza-infected mice. Future Microbiol 8(2):257–269. doi:10.2217/fmb.12.134

    Article  PubMed Central  PubMed  Google Scholar 

  26. Fischer AH, Jacobson KA, Rose J, Zeller R (2008) Hematoxylin and eosin staining of tissue and cell sections. CSH Protoc 2008:pdb prot4986. doi:10.1101/pdb.prot4986

    PubMed  Google Scholar 

  27. Zaynagetdinov R, Sherrill TP, Kendall PL, Segal BH, Weller KP, Tighe RM, Blackwell TS (2013) Identification of myeloid cell subsets in murine lungs using flow cytometry. Am J Respir Cell Mol Biol 49(2):180–189. doi:10.1165/rcmb.2012-0366MA

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Han HaZ S (2013) Bronchoalveolar Lavage and Lung Tissue Digestion. Bio-protocol 3(16):e859

    Google Scholar 

  29. Buchweitz JP, Karmaus PW, Harkema JR, Williams KJ, Kaminski NE (2007) Modulation of airway responses to influenza A/PR/8/34 by Delta9-tetrahydrocannabinol in C57BL/6 mice. J Pharmacol Exp Ther 323(2):675–683. doi:10.1124/jpet.107.124719

    Article  CAS  PubMed  Google Scholar 

  30. Collins AR (2004) The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol 26(3):249–261. doi:10.1385/MB:26:3:249

    Article  CAS  PubMed  Google Scholar 

  31. Olive PL, Banath JP (2006) The comet assay: a method to measure DNA damage in individual cells. Nat Protoc 1(1):23–29. doi:10.1038/nprot.2006.5

    Article  CAS  PubMed  Google Scholar 

  32. Kawaguchi S, Nakamura T, Yamamoto A, Honda G, Sasaki YF (2010) Is the comet assay a sensitive procedure for detecting genotoxicity? J Nucleic Acids 2010:541050. doi:10.4061/2010/541050

    Article  PubMed Central  PubMed  Google Scholar 

  33. Ismail IH, Wadhra TI, Hammarsten O (2007) An optimized method for detecting gamma-H2AX in blood cells reveals a significant interindividual variation in the gamma-H2AX response among humans. Nucleic Acids Res 35(5):e36. doi:10.1093/nar/gkl1169

    Article  PubMed Central  PubMed  Google Scholar 

  34. Peiris JS, Hui KP, Yen HL (2010) Host response to influenza virus: protection versus immunopathology. Curr Opin Immunol 22(4):475–481. doi:10.1016/j.coi.2010.06.003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Yoshii C et al (1998) Relationship between inflammatory cells in bronchoalveolar lavage fluid and pathologic changes in the lung interstitium. Respiration 65(5):386–392

    Article  CAS  PubMed  Google Scholar 

  36. Petreccia DC, Nauseef WM, Clark RA (1987) Respiratory burst of normal human eosinophils. J Leukoc Biol 41(4):283–288

    CAS  PubMed  Google Scholar 

  37. Solier S, Pommier Y (2009) The apoptotic ring: a novel entity with phosphorylated histones H2AX and H2B and activated DNA damage response kinases. Cell Cycle 8(12):1853–1859

    Article  CAS  PubMed  Google Scholar 

  38. Meyer B, Voss KO, Tobias F, Jakob B, Durante M, Taucher-Scholz G (2013) Clustered DNA damage induces pan-nuclear H2AX phosphorylation mediated by ATM and DNA-PK. Nucleic Acids Res 41(12):6109–6118. doi:10.1093/nar/gkt304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362(6422):709–715. doi:10.1038/362709a0

    Article  CAS  PubMed  Google Scholar 

  40. Vilenchik MM, Knudson AG (2003) Endogenous DNA double-strand breaks: production, fidelity of repair, and induction of cancer. Proc Natl Acad Sci USA 100(22):12871–12876. doi:10.1073/pnas.2135498100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Harper JV, Anderson JA, O’Neill P (2010) Radiation induced DNA DSBs: contribution from stalled replication forks? DNA Repair 9(8):907–913. doi:10.1016/j.dnarep.2010.06.002

    Article  CAS  PubMed  Google Scholar 

  42. Yin L, Xu S, Cheng J, Zheng D, Limmon GV, Leung NH, Rajapakse JC, Chow VT, Chen J, Yu H (2013) Spatiotemporal quantification of cell dynamics in the lung following influenza virus infection. J Biomed Opt 18(4):046001. doi:10.1117/1.JBO.18.4.046001

    Article  PubMed  Google Scholar 

  43. Zheng D, Limmon GV, Yin L, Leung NH, Yu H, Chow VT, Chen J (2013) A cellular pathway involved in Clara cell to alveolar type II cell differentiation after severe lung injury. PLoS One 8(8):e71028. doi:10.1371/journal.pone.0071028

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Hofseth LJ, Khan MA, Ambrose M, Nikolayeva O, Xu-Welliver M, Kartalou M, Hussain SP, Roth RB, Zhou X, Mechanic LE, Zurer I, Rotter V, Samson LD, Harris CC (2003) The adaptive imbalance in base excision-repair enzymes generates microsatellite instability in chronic inflammation. J Clin Invest 112(12):1887–1894. doi:10.1172/JCI19757

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Harrison JF, Hollensworth SB, Spitz DR, Copeland WC, Wilson GL, LeDoux SP (2005) Oxidative stress-induced apoptosis in neurons correlates with mitochondrial DNA base excision repair pathway imbalance. Nucleic Acids Res 33(14):4660–4671. doi:10.1093/nar/gki759

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Cabelof DC, Raffoul JJ, Nakamura J, Kapoor D, Abdalla H, Heydari AR (2004) Imbalanced base excision repair in response to folate deficiency is accelerated by polymerase beta haploinsufficiency. J Biol Chem 279(35):36504–36513. doi:10.1074/jbc.M405185200

    Article  CAS  PubMed  Google Scholar 

  47. Sedletska Y, Radicella JP, Sage E (2013) Replication fork collapse is a major cause of the high mutation frequency at three-base lesion clusters. Nucleic Acids Res 41(20):9339–9348. doi:10.1093/nar/gkt731

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Kozmin SG, Sedletska Y, Reynaud-Angelin A, Gasparutto D, Sage E (2009) The formation of double-strand breaks at multiply damaged sites is driven by the kinetics of excision/incision at base damage in eukaryotic cells. Nucleic Acids Res 37(6):1767–1777. doi:10.1093/nar/gkp010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Kidane D, Murphy DL, Sweasy JB (2014) Accumulation of abasic sites induces genomic instability in normal human gastric epithelial cells during Helicobacter pylori infection. Oncogenesis 3:e128. doi:10.1038/oncsis.2014.42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Ebrahimkhani MR, Daneshmand A, Mazumder A, Allocca M, Calvo JA, Abolhassani N, Jhun I, Muthupalani S, Ayata C, Samson LD (2014) Aag-initiated base excision repair promotes ischemia reperfusion injury in liver, brain, and kidney. Proc Natl Acad Sci USA 111(45):E4878–E4886. doi:10.1073/pnas.1413582111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Chen F, Nastasi A, Shen Z, Brenneman M, Crissman H, Chen DJ (1997) Cell cycle-dependent protein expression of mammalian homologs of yeast DNA double-strand break repair genes Rad51 and Rad52. Mutat Res 384(3):205–211

    Article  CAS  PubMed  Google Scholar 

  52. Wong EA, Capecchi MR (1987) Homologous recombination between coinjected DNA sequences peaks in early to mid-S phase. Mol Cell Biol 7(6):2294–2295

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Lazrak A, Iles KE, Liu G, Noah DL, Noah JW, Matalon S (2009) Influenza virus M2 protein inhibits epithelial sodium channels by increasing reactive oxygen species. FASEB J Off Publ Fed Am Soc Exp Biol 23(11):3829–3842. doi:10.1096/fj.09-135590

    CAS  Google Scholar 

  54. Buffinton GD, Christen S, Peterhans E, Stocker R (1992) Oxidative stress in lungs of mice infected with influenza A virus. Free Radical Res Commun 16(2):99–110

    Article  CAS  Google Scholar 

  55. Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461(7267):1071–1078. doi:10.1038/nature08467

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Meira LB, Bugni JM, Green SL, Lee CW, Pang B, Borenshtein D, Rickman BH, Rogers AB, Moroski-Erkul CA, McFaline JL, Schauer DB, Dedon PC, Fox JG, Samson LD (2008) DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. J Clin Invest 118(7):2516–2525. doi:10.1172/JCI35073

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Vijaya Lakshmi AN, Ramana MV, Vijayashree B, Ahuja YR, Sharma G (1999) Detection of influenza virus induced DNA damage by comet assay. Mutat Res 442(1):53–58

    Article  CAS  PubMed  Google Scholar 

  58. Khanna M, Ray A, Rawall S, Chandna S, Kumar B, Vijayan VK (2010) Detection of influenza virus induced ultrastructural changes and DNA damage. Indian J Virol Off Organ Indian Virol Soc 21(1):50–55. doi:10.1007/s13337-010-0004-1

    CAS  Google Scholar 

  59. Ling JX, Wei F, Li N, Li JL, Chen LJ, Liu YY, Luo F, Xiong HR, Hou W, Yang ZQ (2012) Amelioration of influenza virus-induced reactive oxygen species formation by epigallocatechin gallate derived from green tea. Acta Pharmacol Sin 33(12):1533–1541. doi:10.1038/aps.2012.80

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Lee JS, Hwang HS, Ko EJ, Lee YN, Kwon YM, Kim MC, Kang SM (2014) Immunomodulatory activity of red ginseng against influenza A virus infection. Nutrients 6(2):517–529. doi:10.3390/nu6020517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Wheelhouse NM, Chan YS, Gillies SE, Caldwell H, Ross JA, Harrison DJ, Prost S (2003) TNF-alpha induced DNA damage in primary murine hepatocytes. Int J Mol Med 12(6):889–894

    CAS  PubMed  Google Scholar 

  62. Suematsu N, Tsutsui H, Wen J, Kang D, Ikeuchi M, Ide T, Hayashidani S, Shiomi T, Kubota T, Hamasaki N, Takeshita A (2003) Oxidative stress mediates tumor necrosis factor-alpha-induced mitochondrial DNA damage and dysfunction in cardiac myocytes. Circulation 107(10):1418–1423

    Article  CAS  PubMed  Google Scholar 

  63. Martinvalet D, Dykxhoorn DM, Ferrini R, Lieberman J (2008) Granzyme A cleaves a mitochondrial complex I protein to initiate caspase-independent cell death. Cell 133(4):681–692. doi:10.1016/j.cell.2008.03.032

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Calvo JA, Meira LB, Lee CY, Moroski-Erkul CA, Abolhassani N, Taghizadeh K, Eichinger LW, Muthupalani S, Nordstrand LM, Klungland A, Samson LD (2012) DNA repair is indispensable for survival after acute inflammation. J Clin Invest 122(7):2680–2689. doi:10.1172/JCI63338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Asaithamby A, Hu B, Delgado O, Ding LH, Story MD, Minna JD, Shay JW, Chen DJ (2011) Irreparable complex DNA double-strand breaks induce chromosome breakage in organotypic three-dimensional human lung epithelial cell culture. Nucleic Acids Res 39(13):5474–5488. doi:10.1093/nar/gkr149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Castleman WL, Powe JR, Crawford PC, Gibbs EP, Dubovi EJ, Donis RO, Hanshaw D (2010) Canine H3N8 influenza virus infection in dogs and mice. Vet Pathol 47(3):507–517. doi:10.1177/0300985810363718

    Article  CAS  PubMed  Google Scholar 

  67. West RB, Yaneva M, Lieber MR (1998) Productive and nonproductive complexes of Ku and DNA-dependent protein kinase at DNA termini. Mol Cell Biol 18(10):5908–5920

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Betermier M, Bertrand P, Lopez BS (2014) Is non-homologous end-joining really an inherently error-prone process? PLoS Genet 10(1):e1004086. doi:10.1371/journal.pgen.1004086

    Article  PubMed Central  PubMed  Google Scholar 

  69. Errami A, Smider V, Rathmell WK, He DM, Hendrickson EA, Zdzienicka MZ, Chu G (1996) Ku86 defines the genetic defect and restores X-ray resistance and V(D)J recombination to complementation group 5 hamster cell mutants. Mol Cell Biol 16(4):1519–1526

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Fattah KR, Ruis BL, Hendrickson EA (2008) Mutations to Ku reveal differences in human somatic cell lines. DNA Repair 7(5):762–774. doi:10.1016/j.dnarep.2008.02.008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Raderschall E, Bazarov A, Cao J, Lurz R, Smith A, Mann W, Ropers HH, Sedivy JM, Golub EI, Fritz E, Haaf T (2002) Formation of higher-order nuclear Rad51 structures is functionally linked to p21 expression and protection from DNA damage-induced apoptosis. J Cell Sci 115(Pt 1):153–164

    CAS  PubMed  Google Scholar 

  72. Martin RW, Orelli BJ, Yamazoe M, Minn AJ, Takeda S, Bishop DK (2007) RAD51 up-regulation bypasses BRCA1 function and is a common feature of BRCA1-deficient breast tumors. Cancer Res 67(20):9658–9665. doi:10.1158/0008-5472.CAN-07-0290

    Article  CAS  PubMed  Google Scholar 

  73. Chen HT, Bhandoola A, Difilippantonio MJ, Zhu J, Brown MJ, Tai X, Rogakou EP, Brotz TM, Bonner WM, Ried T, Nussenzweig A (2000) Response to RAG-mediated VDJ cleavage by NBS1 and gamma-H2AX. Science 290(5498):1962–1965

    Article  CAS  PubMed  Google Scholar 

  74. Abe M, Hayashida K, Takayama K, Shiku H (1991) V(D)J recombinase activity in primary and secondary murine lymphoid organs: assessment by a PCR assay with extrachromosomal plasmids. Int Immunol 3(10):1025–1033

    Article  CAS  PubMed  Google Scholar 

  75. Rodrigue-Gervais IG, Labbe K, Dagenais M, Dupaul-Chicoine J, Champagne C, Morizot A, Skeldon A, Brincks EL, Vidal SM, Griffith TS, Saleh M (2014) Cellular inhibitor of apoptosis protein cIAP2 protects against pulmonary tissue necrosis during influenza virus infection to promote host survival. Cell Host Microbe 15(1):23–35. doi:10.1016/j.chom.2013.12.003

    Article  CAS  PubMed  Google Scholar 

  76. Tanaka T, Halicka HD, Traganos F, Darzynkiewicz Z (2006) Phosphorylation of histone H2AX on Ser 139 and activation of ATM during oxidative burst in phorbol ester-treated human leukocytes. Cell Cycle 5(22):2671–2675

    Article  CAS  PubMed  Google Scholar 

  77. deRojas-Walker T, Tamir S, Ji H, Wishnok JS, Tannenbaum SR (1995) Nitric oxide induces oxidative damage in addition to deamination in macrophage DNA. Chem Res Toxicol 8(3):473–477

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank M. C. Phoon and S. H. Lau for propagating influenza virus and technical assistance. This study was supported by the Singapore National Research Foundation (NRF) and administered by the Singapore–MIT Alliance for Research and Technology. The views expressed herein are solely the responsibility of the authors and do not necessarily represent the official views of NRF.

Conflict of interest

The authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bevin P. Engelward.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Parrish, M., Chan, T.K. et al. Influenza infection induces host DNA damage and dynamic DNA damage responses during tissue regeneration. Cell. Mol. Life Sci. 72, 2973–2988 (2015). https://doi.org/10.1007/s00018-015-1879-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1879-1

Keywords

Navigation