Skip to main content

Advertisement

Log in

Privileged frameworks from snake venom

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Venom as a form of chemical prey capture is a key innovation that has underpinned the explosive radiation of the advanced snakes (Caenophidia). Small venom proteins are often rich in disulfide bonds thus facilitating stable molecular scaffolds that present key functional residues on the protein surface. New toxin types are initially developed through the venom gland over-expression of normal body proteins, their subsequent gene duplication and diversification that leads to neofunctionalisation as random mutations modify their structure and function. This process has led to preferentially selected (privileged) cysteine-rich scaffolds that enable the snake to build arrays of toxins many of which may lead to therapeutic products and research tools. This review focuses on cysteine-rich small proteins and peptides found in snake venoms spanning natriuretic peptides to phospholipase enzymes, while highlighting their three-dimensional structures and biological functions as well as their potential as therapeutic agents or research tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fry BG, Vidal N, Norman JA et al (2006) Early evolution of the venom system in lizards and snakes. Nature 439:584–588. doi:10.1038/nature04328

    CAS  PubMed  Google Scholar 

  2. Fry BG, Casewell NR, Wüster W et al (2012) The structural and functional diversification of the Toxicofera reptile venom system. Toxicon 60:434–448. doi:10.1016/j.toxicon.2012.02.013

    CAS  PubMed  Google Scholar 

  3. Pyron RA, Burbrink FT (2012) Extinction, ecological opportunity, and the origins of global snake diversity. Evolution 66:163–178. doi:10.1111/j.1558-5646.2011.01437.x

    PubMed  Google Scholar 

  4. Fry BG (2005) From genome to “venome”: molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins. Genome Res 15:403–420. doi:10.1101/gr.3228405

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Kordis D, Gubensek F (2000) Adaptive evolution of animal toxin multigene families. Gene 261:43–52

    CAS  PubMed  Google Scholar 

  6. Fry BG, Wüster W, Kini RM et al (2003) Molecular evolution and phylogeny of elapid snake venom three-finger toxins. J Mol Evol 57:110–129. doi:10.1007/s00239-003-2461-2

    CAS  PubMed  Google Scholar 

  7. Fry BG, Scheib H, van der Weerd L et al (2008) Evolution of an arsenal: structural and functional diversification of the venom system in the advanced snakes (Caenophidia). Mol Cell Proteomics 7:215–246. doi:10.1074/mcp.M700094-MCP200

    CAS  PubMed  Google Scholar 

  8. Sunagar K, Jackson T, Undheim E et al (2013) Three-fingered RAVERs: rapid accumulation of variations in exposed residues of snake venom toxins. Toxins 5:2172–2208. doi:10.3390/toxins5112172

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Menez A (2003) The subtle beast. Snakes, from myth to medicine, vol 1. Taylor and Francis, London

    Google Scholar 

  10. Camargo ACM, Ianzer D, Guerreiro JR, Serrano SMT (2011) Bradykinin-potentiating peptides: beyond captopril. Toxicon Off J Int Soc Toxinology. doi:10.1016/j.toxicon.2011.07.013

    Google Scholar 

  11. Tsetlin V, Utkin Y, Kasheverov I (2009) Polypeptide and peptide toxins, magnifying lenses for binding sites in nicotinic acetylcholine receptors. Biochem Pharmacol 78:720–731. doi:10.1016/j.bcp.2009.05.032

    CAS  PubMed  Google Scholar 

  12. Yan W, Wu F, Morser J, Wu Q (2000) Corin, a transmembrane cardiac serine protease, acts as a pro-atrial natriuretic peptide-converting enzyme. Proc Natl Acad Sci U S A 97:8525–8529. doi:10.1073/pnas.150149097

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Wu C, Wu F, Pan J et al (2003) Furin-mediated processing of Pro-C-type natriuretic peptide. J Biol Chem 278:25847–25852. doi:10.1074/jbc.M301223200

    CAS  PubMed  Google Scholar 

  14. Moro C, Lafontan M (2013) Natriuretic peptides and cGMP signaling control of energy homeostasis. Am J Physiol Heart Circ Physiol 304:H358–H368. doi:10.1152/ajpheart.00704.2012

    CAS  PubMed  Google Scholar 

  15. Zhang F-X, Liu X-J, Gong L-Q et al (2010) Inhibition of inflammatory pain by activating B-type natriuretic peptide signal pathway in nociceptive sensory neurons. J Neurosci 30:10927–10938. doi:10.1523/JNEUROSCI.0657-10.2010

    CAS  PubMed  Google Scholar 

  16. Potter LR, Yoder AR, Flora DR et al (2009) Natriuretic peptides: their structures, receptors, physiologic functions and therapeutic applications. Handb Exp Pharmacol 191:341–366. doi:10.1007/978-3-540-68964-5_15

    CAS  PubMed  Google Scholar 

  17. Misono KS, Grammer RT, Fukumi H, Inagami T (1984) Rat atrial natriuretic factor: isolation, structure and biological activities of four major peptides. Biochem Biophys Res Commun 123:444–451

    CAS  PubMed  Google Scholar 

  18. He Xl, Chow DC, Martick MM, Garcia KC (2001) Allosteric activation of a spring-loaded natriuretic peptide receptor dimer by hormone. Science 293:1657–1662. doi:10.1126/science.1062246

    CAS  Google Scholar 

  19. Ogawa H, Qiu Y, Ogata CM, Misono KS (2004) Crystal structure of hormone-bound atrial natriuretic peptide receptor extracellular domain: rotation mechanism for transmembrane signal transduction. J Biol Chem 279:28625–28631. doi:10.1074/jbc.M313222200

    CAS  PubMed  Google Scholar 

  20. Schweitz H, Vigne P, Moinier D et al (1992) A new member of the natriuretic peptide family is present in the venom of the green mamba (Dendroaspis angusticeps). J Biol Chem 267:13928–13932

    CAS  PubMed  Google Scholar 

  21. Fry BG, Wickramaratana JC, Lemme S et al (2005) Novel natriuretic peptides from the venom of the inland taipan (Oxyuranus microlepidotus): isolation, chemical and biological characterisation. Biochem Biophys Res Commun 327:1011–1015. doi:10.1016/j.bbrc.2004.11.171

    CAS  PubMed  Google Scholar 

  22. Lee J, Kim SW (2002) Dendroaspis natriuretic peptide administered intracerebroventricularly increases renal water excretion. Clin Exp Pharmacol Physiol 29:195–197

    CAS  PubMed  Google Scholar 

  23. Lisy O, Jougasaki M, Heublein DM et al (1999) Renal actions of synthetic dendroaspis natriuretic peptide. Kidney Int 56:502–508. doi:10.1046/j.1523-1755.1999.00573.x

    CAS  PubMed  Google Scholar 

  24. Fry BG, Winter K, Norman JA et al (2010) Functional and structural diversification of the Anguimorpha lizard venom system. Mol Cell Proteomics MCP 9:2369–2390. doi:10.1074/mcp.M110.001370

    CAS  Google Scholar 

  25. St Pierre L, Flight S, Masci PP et al (2006) Cloning and characterisation of natriuretic peptides from the venom glands of Australian elapids. Biochimie 88:1923–1931. doi:10.1016/j.biochi.2006.06.014

    CAS  PubMed  Google Scholar 

  26. Yoshimura M, Yasue H, Morita E et al (1991) Hemodynamic, renal, and hormonal responses to brain natriuretic peptide infusion in patients with congestive heart failure. Circulation 84:1581–1588

    CAS  PubMed  Google Scholar 

  27. Colucci WS, Elkayam U, Horton DP et al (2000) Intravenous nesiritide, a natriuretic peptide, in the treatment of decompensated congestive heart failure. Nesiritide Study Group. N Engl J Med 343:246–253. doi:10.1056/NEJM200007273430403

    CAS  PubMed  Google Scholar 

  28. Saito Y, Nakao K, Nishimura K et al (1987) Clinical application of atrial natriuretic polypeptide in patients with congestive heart failure: beneficial effects on left ventricular function. Circulation 76:115–124

    CAS  PubMed  Google Scholar 

  29. Suwa M, Seino Y, Nomachi Y et al (2005) Multicenter prospective investigation on efficacy and safety of carperitide for acute heart failure in the “real world” of therapy. Circ J Off J Jpn Circ Soc 69:283–290

    Google Scholar 

  30. Sokolovsky M (1991) Endothelins and sarafotoxins: physiological regulation, receptor subtypes and transmembrane signaling. Trends Biochem Sci 16:261–264

    CAS  PubMed  Google Scholar 

  31. Yanagisawa M, Kurihara H, Kimura S et al (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332:411–415. doi:10.1038/332411a0

    CAS  PubMed  Google Scholar 

  32. Inoue A, Yanagisawa M, Kimura S et al (1989) The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc Natl Acad Sci U S A 86:2863–2867

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Bloch KD, Hong CC, Eddy RL et al (1991) cDNA cloning and chromosomal assignment of the endothelin 2 gene: vasoactive intestinal contractor peptide is rat endothelin 2. Genomics 10:236–242

    CAS  PubMed  Google Scholar 

  34. Sakurai T, Yanagisawa M, Takuwa Y et al (1990) Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor. Nature 348:732–735. doi:10.1038/348732a0

    CAS  PubMed  Google Scholar 

  35. Arai H, Hori S, Aramori I et al (1990) Cloning and expression of a cDNA encoding an endothelin receptor. Nature 348:730–732. doi:10.1038/348730a0

    CAS  PubMed  Google Scholar 

  36. Kawanabe Y, Nauli SM (2011) Endothelin. Cell Mol Life Sci 68:195–203. doi:10.1007/s00018-010-0518-0

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Kishi F, Minami K, Okishima N et al (1998) Novel 31-amino-acid-length endothelins cause constriction of vascular smooth muscle. Biochem Biophys Res Commun 248:387–390. doi:10.1006/bbrc.1998.8980

    CAS  PubMed  Google Scholar 

  38. Kochva E, Viljoen CC, Botes DP (1982) A new type of toxin in the venom of snakes of the genus Atractaspis (Atractaspidinae). Toxicon Off J Int Soc Toxinology 20:581–592

    CAS  Google Scholar 

  39. Wollberg Z, Shabo-Shina R, Intrator N et al (1988) A novel cardiotoxic polypeptide from the venom of Atractaspis engaddensis (burrowing asp): cardiac effects in mice and isolated rat and human heart preparations. Toxicon Off J Int Soc Toxinology 26:525–534

    CAS  Google Scholar 

  40. Takasaki C, Tamiya N, Bdolah A et al (1988) Sarafotoxins S6: several isotoxins from Atractaspis engaddensis (burrowing asp) venom that affect the heart. Toxicon Off J Int Soc Toxinology 26:543–548

    CAS  Google Scholar 

  41. Weiser E, Wollberg Z, Kochva E, Lee SY (1984) Cardiotoxic effects of the venom of the burrowing asp, Atractaspis engaddensis (Atractaspididae, Ophidia). Toxicon Off J Int Soc Toxinology 22:767–774

    CAS  Google Scholar 

  42. Wollberg Z, Bdolah A, Kochva E (1989) Vasoconstrictor effects of sarafotoxins in rabbit aorta: structure-function relationships. Biochem Biophys Res Commun 162:371–376

    CAS  PubMed  Google Scholar 

  43. Wollberg Z, Bousso-Mittler D, Bdolah A et al (1992) Endothelins and sarafotoxins: effects on motility, binding properties and phosphoinositide hydrolysis during the estrous cycle of the rat uterus. J Basic Clin Physiol Pharmacol 3:41–57

    CAS  PubMed  Google Scholar 

  44. Wollberg Z, Bdolah A, Galron R et al (1991) Contractile effects and binding properties of endothelins/sarafotoxins in the guinea pig ileum. Eur J Pharmacol 198:31–36

    CAS  PubMed  Google Scholar 

  45. Hayashi MAF, Ligny-Lemaire C, Wollberg Z et al (2004) Long-sarafotoxins: characterization of a new family of endothelin-like peptides. Peptides 25:1243–1251. doi:10.1016/j.peptides.2004.05.010

    CAS  PubMed  Google Scholar 

  46. Mourier G, Hajj M, Cordier F et al (2012) Pharmacological and structural characterization of long-sarafotoxins, a new family of endothelin-like peptides: Role of the C-terminus extension. Biochimie 94:461–470. doi:10.1016/j.biochi.2011.08.014

    CAS  PubMed  Google Scholar 

  47. Atkins AR, Martin RC, Smith R (1995) 1H NMR studies of sarafotoxin SRTb, a nonselective endothelin receptor agonist, and IRL 1620, an ETB receptor-specific agonist. Biochemistry (Mosc) 34:2026–2033

    CAS  Google Scholar 

  48. Tamaoki H, Kobayashi Y, Nishimura S et al (1991) Solution conformation of endothelin determined by means of 1H-NMR spectroscopy and distance geometry calculations. Protein Eng 4:509–518

    CAS  PubMed  Google Scholar 

  49. Lamthanh H, Bdolah A, Creminon C et al (1994) Biological activities of [Thr2]sarafotoxin-b, a synthetic analogue of sarafotoxin-b. Toxicon 32:1105–1114. doi:10.1016/0041-0101(94)90394-8

    CAS  PubMed  Google Scholar 

  50. Nakajima K, Kubo S, Kumagaye S et al (1989) Structure-activity relationship of endothelin: importance of charged groups. Biochem Biophys Res Commun 163:424–429

    CAS  PubMed  Google Scholar 

  51. Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3:710–720. doi:10.1038/nri1180

    CAS  PubMed  Google Scholar 

  52. Shai Y (2002) Mode of action of membrane active antimicrobial peptides. Biopolymers 66:236–248. doi:10.1002/bip.10260

    CAS  PubMed  Google Scholar 

  53. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250. doi:10.1038/nrmicro1098

    CAS  PubMed  Google Scholar 

  54. Bieber AL, Nedelkov D (1997) Structural, biological and biochemical studies of myotoxin α and homologous myotoxins. Toxin Rev 16:33–52. doi:10.3109/15569549709064092

    CAS  Google Scholar 

  55. Chang CC, Tseng KH (1978) Effect of crotamine, a toxin of South American rattlesnake venom, on the sodium channel of murine skeletal muscle. Br J Pharmacol 63:551–559

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Oguiura N, Boni-Mitake M, Rádis-Baptista G (2005) New view on crotamine, a small basic polypeptide myotoxin from South American rattlesnake venom. Toxicon Off J Int Soc Toxinology 46:363–370. doi:10.1016/j.toxicon.2005.06.009

    CAS  Google Scholar 

  57. Goncalves JM, Polson A (1947) The electrophoretic analysis of snake venoms. Arch Biochem 13:253–259

    CAS  PubMed  Google Scholar 

  58. Nedelkov D, O’Keefe MP, Chapman TL, Bieber AL (1997) The role of Pro20 in the isomerization of myotoxin a from Crotalus viridis viridis: folding and structural characterization of synthetic myotoxin a and its Pro20Gly homolog. Biochem Biophys Res Commun 241:525–529. doi:10.1006/bbrc.1997.7845

    CAS  PubMed  Google Scholar 

  59. Chang CC, Hong SJ, Su MJ (1983) A study on the membrane depolarization of skeletal muscles caused by a scorpion toxin, sea anemone toxin II and crotamine and the interaction between toxins. Br J Pharmacol 79:673–680

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Rizzi CT, Carvalho-de-Souza JL, Schiavon E et al (2007) Crotamine inhibits preferentially fast-twitching muscles but is inactive on sodium channels. Toxicon Off J Int Soc Toxinology 50:553–562. doi:10.1016/j.toxicon.2007.04.026

    CAS  Google Scholar 

  61. Ownby CL, Cameron D, Tu AT (1976) Isolation of myotoxic component from rattlesnake (Crotalus viridis viridis) venom. Electron microscopic analysis of muscle damage. Am J Pathol 85:149–166

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Hong SJ, Chang CC (1985) Electrophysiological studies of myotoxin a, isolated from prairie rattlesnake (Crotalus viridis viridis) venom, on murine skeletal muscles. Toxicon Off J Int Soc Toxinology 23:927–937

    CAS  Google Scholar 

  63. Cameron DL, Tu AT (1978) Chemical and functional homology of myotoxin a from prairie rattlesnake venom and crotamine from South American rattlesnake venom. Biochim Biophys Acta 532:147–154

    CAS  PubMed  Google Scholar 

  64. Fletcher JE, Hubert M, Wieland SJ et al (1996) Similarities and differences in mechanisms of cardiotoxins, melittin and other myotoxins. Toxicon Off J Int Soc Toxinology 34:1301–1311

    CAS  Google Scholar 

  65. Hirata Y, Nakahata N, Ohkura M, Ohizumi Y (1999) Identification of 30 kDa protein for Ca(2+) releasing action of myotoxin a with a mechanism common to DIDS in skeletal muscle sarcoplasmic reticulum. Biochim Biophys Acta 1451:132–140

    CAS  PubMed  Google Scholar 

  66. Nicastro G, Franzoni L, de Chiara C et al (2003) Solution structure of crotamine, a Na+ channel affecting toxin from Crotalus durissus terrificus venom. Eur J Biochem FEBS 270:1969–1979

    CAS  Google Scholar 

  67. Torres AM, de Plater GM, Doverskog M et al (2000) Defensin-like peptide-2 from platypus venom: member of a class of peptides with a distinct structural fold. Biochem J 348(Pt 3):649–656

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Torres AM, Kuchel PW (2004) The beta-defensin-fold family of polypeptides. Toxicon Off J Int Soc Toxinology 44:581–588. doi:10.1016/j.toxicon.2004.07.011

    CAS  Google Scholar 

  69. Mancin AC, Soares AM, Andrião-Escarso SH et al (1998) The analgesic activity of crotamine, a neurotoxin from Crotalus durissus terrificus (South American rattlesnake) venom: a biochemical and pharmacological study. Toxicon Off J Int Soc Toxinology 36:1927–1937

    CAS  Google Scholar 

  70. Kerkis A, Kerkis I, Rádis-Baptista G et al (2004) Crotamine is a novel cell-penetrating protein from the venom of rattlesnake Crotalus durissus terrificus. FASEB J Off Publ Fed Am Soc Exp Biol 18:1407–1409. doi:10.1096/fj.03-1459fje

    CAS  Google Scholar 

  71. Nascimento FD, Hayashi MAF, Kerkis A et al (2007) Crotamine mediates gene delivery into cells through the binding to heparan sulfate proteoglycans. J Biol Chem 282:21349–21360. doi:10.1074/jbc.M604876200

    CAS  PubMed  Google Scholar 

  72. Hayashi MAF, Nascimento FD, Kerkis A et al (2008) Cytotoxic effects of crotamine are mediated through lysosomal membrane permeabilization. Toxicon Off J Int Soc Toxinology 52:508–517. doi:10.1016/j.toxicon.2008.06.029

    CAS  Google Scholar 

  73. Kunitz M, Northrop JH (1936) Isolation from beef pancreas of crystalline trypsinogen, trypsin, a trypsin inhibitor, and an inhibitor-trypsin compound. J Gen Physiol 19:991–1007. doi:10.1085/jgp.19.6.991

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Laskowski M Jr, Kato I (1980) Protein inhibitors of proteinases. Annu Rev Biochem 49:593–626. doi:10.1146/annurev.bi.49.070180.003113

    CAS  PubMed  Google Scholar 

  75. Laskowski M Jr, Qasim MA (2000) What can the structures of enzyme-inhibitor complexes tell us about the structures of enzyme substrate complexes? Biochim Biophys Acta 1477:324–337. doi:10.1016/S0167-4838(99)00284-8

    CAS  PubMed  Google Scholar 

  76. Rawlings ND, Tolle DP, Barrett AJ (2004) Evolutionary families of peptidase inhibitors. Biochem J 378:705–716. doi:10.1042/BJ20031825

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Schechter I, Berger A (1967) On the size of the active site in proteases I. Papain. Biochem Biophys Res Commun 27:157–162

    CAS  PubMed  Google Scholar 

  78. Bode W, Huber R (2005) Natural protein proteinase inhibitors and their interaction with proteinases. Eur J Biochem 204:433–451. doi:10.1111/j.1432-1033.1992.tb16654.x

    Google Scholar 

  79. Takahashi H, Iwanaga S, Suzuki T (1972) Isolation of a novel inhibitor of kallikrein, plasmin and trypsin from the venom of russell’s viper (Vipera russelli). FEBS Lett 27:207–210. doi:10.1016/0014-5793(72)80621-5

    CAS  PubMed  Google Scholar 

  80. Chen C, Hsu CH, Su NY et al (2001) Solution structure of a Kunitz-type chymotrypsin inhibitor isolated from the elapid snake Bungarus fasciatus. J Biol Chem 276:45079–45087. doi:10.1074/jbc.M106182200

    CAS  PubMed  Google Scholar 

  81. Shafqat J, Beg OU, Yin SJ et al (1990) Primary structure and functional properties of cobra (Naja naja naja) venom Kunitz-type trypsin inhibitor. Eur J Biochem FEBS 194:337–341

    CAS  Google Scholar 

  82. St Pierre L, Earl ST, Filippovich I et al (2008) Common evolution of waprin and kunitz-like toxin families in Australian venomous snakes. Cell Mol Life Sci 65:4039–4054. doi:10.1007/s00018-008-8573-5

    CAS  PubMed  Google Scholar 

  83. Willmott N, Gaffney P, Masci P, Whitaker A (1995) A novel serine protease inhibitor from the Australian brown snake, Pseudonaja textilis textilis: inhibition kinetics. Fibrinolysis 9:1–8. doi:10.1016/S0268-9499(08)80040-9

    CAS  Google Scholar 

  84. Schweitz H, Heurteaux C, Bois P et al (1994) Calcicludine, a venom peptide of the Kunitz-type protease inhibitor family, is a potent blocker of high-threshold Ca2+ channels with a high affinity for L-type channels in cerebellar granule neurons. Proc Natl Acad Sci U S A 91:878–882

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Millers E-KI, Trabi M, Masci PP et al (2009) Crystal structure of textilinin-1, a Kunitz-type serine protease inhibitor from the venom of the Australian common brown snake (Pseudonaja textilis). FEBS J 276:3163–3175. doi:10.1111/j.1742-4658.2009.07034.x

    CAS  PubMed  Google Scholar 

  86. Orchard MA, Goodchild CS, Prentice CRM et al (1993) Aprotinin reduces cardiopulmonary bypass-induced blood loss and inhibits fibrinolysis without influencing platelets. Br J Haematol 85:533–541. doi:10.1111/j.1365-2141.1993.tb03344.x

    CAS  PubMed  Google Scholar 

  87. Mangano DT, Tudor IC, Dietzel C (2006) The risk associated with aprotinin in cardiac surgery. N Engl J Med 354:353–365. doi:10.1056/NEJMoa051379

    CAS  PubMed  Google Scholar 

  88. Masci PP, Whitaker AN, Sparrow LG et al (2000) Textilinins from Pseudonaja textilis textilis. Characterization of two plasmin inhibitors that reduce bleeding in an animal model. Blood Coagul Fibrinolysis Int J Haemost Thromb 11:385–393

    CAS  Google Scholar 

  89. Earl STH, Masci PP, de Jersey J et al (2010) Drug development from Australian elapid snake venoms and the venomics pipeline of candidates for haemostasis: Textilinin-1 (Q8008), Haempatch™ (Q8009) and CoVase™ (V0801). Toxicon Off J Int Soc Toxinology. doi:10.1016/j.toxicon.2010.12.010

    Google Scholar 

  90. Kondo K, Toda H, Narita K, Lee CY (1982) Amino acid sequence of beta 2-bungarotoxin from Bungarus multicinctus venom. The amino acid substitutions in the B chains. J Biochem (Tokyo) 91:1519–1530

    CAS  Google Scholar 

  91. Kwong PD, McDonald NQ, Sigler PB, Hendrickson WA (1995) Structure of β2-bungarotoxin: potassium channel binding by Kunitz modules and targeted phospholipase action. Structure 3:1109–1119. doi:10.1016/S0969-2126(01)00246-5

    CAS  PubMed  Google Scholar 

  92. Possani LD, Martin BM, Yatani A et al (1992) Isolation and physiological characterization of taicatoxin, a complex toxin with specific effects on calcium channels. Toxicon Off J Int Soc Toxinology 30:1343–1364

    CAS  Google Scholar 

  93. Bohlen CJ, Chesler AT, Sharif-Naeini R et al (2011) A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain. Nature 479:410–414. doi:10.1038/nature10607

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Torres AM, Wong HY, Desai M et al (2003) Identification of a novel family of proteins in snake venoms. Purification and structural characterization of nawaprin from Naja nigricollis snake venom. J Biol Chem 278:40097–40104. doi:10.1074/jbc.M305322200

    CAS  PubMed  Google Scholar 

  95. Nair DG, Fry BG, Alewood P et al (2007) Antimicrobial activity of omwaprin, a new member of the waprin family of snake venom proteins. Biochem J 402:93–104. doi:10.1042/BJ20060318

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Piletz JE, Heinlen M, Ganschow RE (1981) Biochemical characterization of a novel whey protein from murine milk. J Biol Chem 256:11509–11516

    CAS  PubMed  Google Scholar 

  97. Ranganathan S, Simpson KJ, Shaw DC, Nicholas KR (1999) The whey acidic protein family: a new signature motif and three-dimensional structure by comparative modeling. J Mol Graph Model 17:106–113, 134–136

    PubMed  Google Scholar 

  98. Hennighausen LG, Sippel AE (1982) Mouse whey acidic protein is a novel member of the family of “four-disulfide core” proteins. Nucleic Acids Res 10:2677–2684

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Bingle CD (2011) Towards defining the complement of mammalian WFDC-domain-containing proteins. Biochem Soc Trans 39:1393–1397. doi:10.1042/BST0391393

    CAS  PubMed  Google Scholar 

  100. Tsunemi M, Matsuura Y, Sakakibara S, Katsube Y (1996) Crystal structure of an elastase-specific inhibitor elafin complexed with porcine pancreatic elastase determined at 1.9 A resolution. Biochemistry (Mosc) 35:11570–11576. doi:10.1021/bi960900l

    CAS  Google Scholar 

  101. Eisenberg SP, Hale KK, Heimdal P, Thompson RC (1990) Location of the protease-inhibitory region of secretory leukocyte protease inhibitor. J Biol Chem 265:7976–7981

    CAS  PubMed  Google Scholar 

  102. Bingle CD, Vyakarnam A (2008) Novel innate immune functions of the whey acidic protein family. Trends Immunol 29:444–453. doi:10.1016/j.it.2008.07.001

    CAS  PubMed  Google Scholar 

  103. Drannik AG, Henrick BM, Rosenthal KL (2011) War and peace between WAP and HIV: role of SLPI, trappin-2, elafin and ps20 in susceptibility to HIV infection. Biochem Soc Trans 39:1427–1432. doi:10.1042/BST0391427

    CAS  PubMed  Google Scholar 

  104. Zani M, Tanga A, Saidi A et al (2011) SLPI and trappin-2 as therapeutic agents to target airway serine proteases in inflammatory lung diseases: current and future directions. Biochem Soc Trans 39:1441–1446. doi:10.1042/BST0391441

    CAS  PubMed  Google Scholar 

  105. Kolbe HV, Huber A, Cordier P et al (1993) Xenoxins, a family of peptides from dorsal gland secretion of Xenopus laevis related to snake venom cytotoxins and neurotoxins. J Biol Chem 268:16458–16464

    CAS  PubMed  Google Scholar 

  106. Fry BG, Lumsden NG, Wüster W et al (2003) Isolation of a neurotoxin (α-colubritoxin) from a nonvenomous colubrid: evidence for early origin of venom in snakes. J Mol Evol 57:446–452. doi:10.1007/s00239-003-2497-3

    CAS  PubMed  Google Scholar 

  107. Miwa JM, Ibaňez-Tallon I, Crabtree GW et al (1999) lynx1, an endogenous toxin-like modulator of nicotinic acetylcholine receptors in the mammalian CNS. Neuron 23:105–114. doi:10.1016/S0896-6273(00)80757-6

    CAS  PubMed  Google Scholar 

  108. Chang CC, Lee CY (1963) Isolation of neurotoxins from the venom of Bungarus multicinctus and their modes of neuromuscular blocking action. Arch Int Pharmacodyn Thérapie 144:241–257

    CAS  Google Scholar 

  109. Yang CC (1967) The disulfide bonds of cobrotoxin and their relationship to lethality. Biochim Biophys Acta 133:346–355

    CAS  PubMed  Google Scholar 

  110. Pawlak J, Mackessy SP, Fry BG et al (2006) Denmotoxin, a three-finger Toxin from the Colubrid Snake Boiga dendrophila (Mangrove Catsnake) with bird-specific activity. J Biol Chem 281:29030–29041. doi:10.1074/jbc.M605850200

    CAS  PubMed  Google Scholar 

  111. Pawlak J, Mackessy SP, Sixberry NM et al (2009) Irditoxin, a novel covalently linked heterodimeric three-finger toxin with high taxon-specific neurotoxicity. FASEB J Off Publ Fed Am Soc Exp Biol 23:534–545. doi:10.1096/fj.08-113555

    CAS  Google Scholar 

  112. Endo T, Tamiya N (1991) Structure-function relationships of postsynaptic neurotoxins from snake venom. Permagon Press, New York

    Google Scholar 

  113. Servent D, Winckler-Dietrich V, Hu HY et al (1997) Only snake curaremimetic toxins with a fifth disulfide bond have high affinity for the neuronal alpha7 nicotinic receptor. J Biol Chem 272:24279–24286

    CAS  PubMed  Google Scholar 

  114. Grant GA, Chiappinelli VA (1985) kappa-Bungarotoxin: complete amino acid sequence of a neuronal nicotinic receptor probe. Biochemistry (Mosc) 24:1532–1537

    CAS  Google Scholar 

  115. Jerusalinsky D, Harvey AL (1994) Toxins from mamba venoms: small proteins with selectivities for different subtypes of muscarinic acetylcholine receptors. Trends Pharmacol Sci 15:424–430

    CAS  PubMed  Google Scholar 

  116. De Weille JR, Schweitz H, Maes P et al (1991) Calciseptine, a peptide isolated from black mamba venom, is a specific blocker of the L-type calcium channel. Proc Natl Acad Sci U S A 88:2437–2440

    PubMed Central  PubMed  Google Scholar 

  117. Albrand J-P, Blackledge MJ, Pascaud F et al (1995) NMR and restrained molecular dynamics study of the three-dimensional solution structure of toxin FS2, a specific blocker of the L-type calcium channel, isolated from black mamba venom. Biochemistry (Mosc) 34:5923–5937. doi:10.1021/bi00017a022

    CAS  Google Scholar 

  118. Diochot S, Baron A, Salinas M et al (2012) Black mamba venom peptides target acid-sensing ion channels to abolish pain. Nature. doi:10.1038/nature11494

    PubMed  Google Scholar 

  119. Konshina AG, Dubovskii PV, Efremov RG (2012) Structure and dynamics of cardiotoxins. Curr Protein Pept Sci 13:570–584

    CAS  PubMed  Google Scholar 

  120. Sivaraman T, Kumar TK, Yang P, Yu C (1997) Cardiotoxin-like basic protein (CLBP) from Naja naja atra is not a cardiotoxin. Toxicon 35:1367–1371. doi:10.1016/S0041-0101(96)00205-X

    CAS  PubMed  Google Scholar 

  121. Harvey AL (1985) Cardiotoxins from Cobra Venoms: possible Mechanisms of Action. Toxin Rev 4:41–69. doi:10.3109/15569548509014413

    CAS  Google Scholar 

  122. Condrea E (1976) Hemolytic disorders associated with a primary red cell membrane defect. Experientia 32:537–542

    CAS  PubMed  Google Scholar 

  123. Wang C-H, Monette R, Lee S-C et al (2005) Cobra cardiotoxin-induced cell death in fetal rat cardiomyocytes and cortical neurons: different pathway but similar cell surface target. Toxicon 46:430–440. doi:10.1016/j.toxicon.2005.06.012

    CAS  PubMed  Google Scholar 

  124. Yang S-H, Chien C-M, Lu M-C et al (2005) Cardiotoxin III induces apoptosis in K562 cells through a mitochondrial-mediated pathway. Clin Exp Pharmacol Physiol 32:515–520. doi:10.1111/j.1440-1681.2005.04223.x

    CAS  PubMed  Google Scholar 

  125. Jayaraman G, Kumar TK, Tsai CC et al (2000) Elucidation of the solution structure of cardiotoxin analogue V from the Taiwan cobra (Naja naja atra)–identification of structural features important for the lethal action of snake venom cardiotoxins. Protein Sci Publ Protein Soc 9:637–646. doi:10.1110/ps.9.4.637

    CAS  Google Scholar 

  126. Forouhar F, Huang W-N, Liu J-H et al (2003) Structural basis of membrane-induced cardiotoxin A3 oligomerization. J Biol Chem 278:21980–21988. doi:10.1074/jbc.M208650200

    CAS  PubMed  Google Scholar 

  127. Kao P-H, Wu M-J, Chang L-S (2009) Membrane-bound conformation of Naja nigricollis toxin γ affects its membrane-damaging activity. Toxicon 53:342–348. doi:10.1016/j.toxicon.2008.12.003

    CAS  PubMed  Google Scholar 

  128. Kao P-H, Lin S-R, Chang L-S (2009) Differential binding to phospholipid bilayers modulates membrane-damaging activity of Naja naja atra cardiotoxins. Toxicon 54:321–328. doi:10.1016/j.toxicon.2009.04.024

    CAS  PubMed  Google Scholar 

  129. Wang C-H, Liu J-H, Lee S-C et al (2006) Glycosphingolipid-facilitated membrane insertion and internalization of cobra cardiotoxin. The sulfatide.cardiotoxin complex structure in a membrane-like environment suggests a lipid-dependent cell-penetrating mechanism for membrane binding polypeptides. J Biol Chem 281:656–667. doi:10.1074/jbc.M507880200

    CAS  PubMed  Google Scholar 

  130. Wang C-H, Wu W (2005) Amphiphilic β-sheet cobra cardiotoxin targets mitochondria and disrupts its network. FEBS Lett 579:3169–3174. doi:10.1016/j.febslet.2005.05.006

    CAS  PubMed  Google Scholar 

  131. Rajagopalan N, Pung YF, Zhu YZ et al (2007) Beta-cardiotoxin: a new three-finger toxin from Ophiophagus hannah (king cobra) venom with beta-blocker activity. FASEB J 21:3685–3695. doi:10.1096/fj.07-8658com

    CAS  PubMed  Google Scholar 

  132. Eichhorn EJ, Bristow MR (2001) The carvedilol prospective randomized cumulative survival (COPERNICUS) trial. Curr Control Trials Cardiovasc Med 2:20–23. doi:10.1186/cvm-2-1-020

    PubMed Central  CAS  PubMed  Google Scholar 

  133. Bernstein D, Fajardo G, Zhao M (2011) The Role of β-adrenergic receptors in heart failure: differential regulation of cardiotoxicity and cardioprotection. Prog Pediatr Cardiol 31:35–38. doi:10.1016/j.ppedcard.2010.11.007

    PubMed Central  PubMed  Google Scholar 

  134. Schweitz H, Pacaud P, Diochot S et al (1999) MIT(1), a black mamba toxin with a new and highly potent activity on intestinal contraction. FEBS Lett 461:183–188

    CAS  PubMed  Google Scholar 

  135. Boisbouvier J, Albrand JP, Blackledge M et al (1998) A structural homologue of colipase in black mamba venom revealed by NMR floating disulphide bridge analysis. J Mol Biol 283:205–219. doi:10.1006/jmbi.1998.2057

    CAS  PubMed  Google Scholar 

  136. Morales RAV, Daly NL, Vetter I et al (2010) Chemical synthesis and structure of the prokineticin Bv8. Chem Bio Chem 11:1882–1888. doi:10.1002/cbic.201000330

    CAS  PubMed  Google Scholar 

  137. Masuda Y, Takatsu Y, Terao Y et al (2002) Isolation and identification of EG-VEGF/prokineticins as cognate ligands for two orphan G-protein-coupled receptors. Biochem Biophys Res Commun 293:396–402. doi:10.1016/S0006-291X(02)00239-5

    CAS  PubMed  Google Scholar 

  138. Negri L, Lattanzi R, Giannini E, Melchiorri P (2007) Bv8/Prokineticin proteins and their receptors. Life Sci 81:1103–1116. doi:10.1016/j.lfs.2007.08.011

    CAS  PubMed  Google Scholar 

  139. Negri L, Lattanzi R (2012) Bv8/PK2 and prokineticin receptors: a druggable pronociceptive system. Curr Opin Pharmacol 12:62–66. doi:10.1016/j.coph.2011.10.023

    CAS  PubMed  Google Scholar 

  140. Casewell NR, Wagstaff SC, Harrison RA et al (2011) Domain loss facilitates accelerated evolution and neofunctionalization of duplicate snake venom metalloproteinase toxin genes. Mol Biol Evol 28:2637–2649. doi:10.1093/molbev/msr091

    CAS  PubMed  Google Scholar 

  141. Brust A, Sunagar K, Undheim EAB et al (2013) Differential evolution and neofunctionalization of snake venom metalloprotease domains. Mol Cell Proteomics 12:651–663. doi:10.1074/mcp.M112.023135

    PubMed Central  CAS  PubMed  Google Scholar 

  142. Jia LG, Shimokawa K, Bjarnason JB, Fox JW (1996) Snake venom metalloproteinases: structure, function and relationship to the ADAMs family of proteins. Toxicon Off J Int Soc Toxinology 34:1269–1276

    CAS  Google Scholar 

  143. Trikha M, Rote WE, Manley PJ et al (1994) Purification and characterization of platelet aggregation inhibitors from snake venoms. Thromb Res 73:39–52

    CAS  PubMed  Google Scholar 

  144. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    CAS  PubMed  Google Scholar 

  145. Marcinkiewicz C, Vijay-Kumar S, McLane MA, Niewiarowski S (1997) Significance of RGD loop and C-terminal domain of echistatin for recognition of alphaIIb beta3 and alpha(v) beta3 integrins and expression of ligand-induced binding site. Blood 90:1565–1575

    CAS  PubMed  Google Scholar 

  146. Wierzbicka-Patynowski I, Niewiarowski S, Marcinkiewicz C et al (1999) Structural requirements of echistatin for the recognition of alpha(v)beta(3) and alpha(5)beta(1) integrins. J Biol Chem 274:37809–37814

    CAS  PubMed  Google Scholar 

  147. Scarborough RM, Rose JW, Hsu MA et al (1991) Barbourin. A GPIIb-IIIa-specific integrin antagonist from the venom of Sistrurus m. barbouri. J Biol Chem 266:9359–9362

    CAS  PubMed  Google Scholar 

  148. Oshikawa K, Terada S (1999) Ussuristatin 2, a novel KGD-bearing disintegrin from Agkistrodon ussuriensis venom. J Biochem (Tokyo) 125:31–35

    CAS  Google Scholar 

  149. Marcinkiewicz C, Weinreb PH, Calvete JJ et al (2003) Obtustatin: a potent selective inhibitor of alpha1beta1 integrin in vitro and angiogenesis in vivo. Cancer Res 63:2020–2023

    CAS  PubMed  Google Scholar 

  150. Marcinkiewicz C, Calvete JJ, Marcinkiewicz MM et al (1999) EC3, a novel heterodimeric disintegrin from Echis carinatus venom, inhibits alpha4 and alpha5 integrins in an RGD-independent manner. J Biol Chem 274:12468–12473

    CAS  PubMed  Google Scholar 

  151. Smith KJ, Jaseja M, Lu X et al (1996) Three-dimensional structure of the RGD-containing snake toxin albolabrin in solution, based on 1H NMR spectroscopy and simulated annealing calculations. Int J Pept Protein Res 48:220–228

    CAS  PubMed  Google Scholar 

  152. Fujii Y, Okuda D, Fujimoto Z et al (2003) Crystal structure of trimestatin, a disintegrin containing a cell adhesion recognition motif RGD. J Mol Biol 332:1115–1122

    CAS  PubMed  Google Scholar 

  153. Calvete JJ, Schäfer W, Soszka T et al (1991) Identification of the disulfide bond pattern in albolabrin, an RGD-containing peptide from the venom of Trimeresurus albolabris: significance for the expression of platelet aggregation inhibitory activity. Biochemistry (Mosc) 30:5225–5229

    CAS  Google Scholar 

  154. Paz Moreno-Murciano M, Monleón D, Marcinkiewicz C et al (2003) NMR solution structure of the non-RGD disintegrin obtustatin. J Mol Biol 329:135–145

    CAS  PubMed  Google Scholar 

  155. Bhatt DL, Topol EJ (2003) Scientific and therapeutic advances in antiplatelet therapy. Nat Rev Drug Discov 2:15–28. doi:10.1038/nrd985

    CAS  PubMed  Google Scholar 

  156. Egbertson MS, Chang CT, Duggan ME et al (1994) Non-peptide fibrinogen receptor antagonists. 2. Optimization of a tyrosine template as a mimic for Arg-Gly-Asp. J Med Chem 37:2537–2551

    CAS  PubMed  Google Scholar 

  157. Barrett JS, Murphy G, Peerlinck K et al (1994) Pharmacokinetics and pharmacodynamics of MK-383, a selective non-peptide platelet glycoprotein-IIb/IIIa receptor antagonist, in healthy men. Clin Pharmacol Ther 56:377–388

    CAS  PubMed  Google Scholar 

  158. Scarborough RM, Naughton MA, Teng W et al (1993) Design of potent and specific integrin antagonists. Peptide antagonists with high specificity for glycoprotein IIb–IIIa. J Biol Chem 268:1066–1073

    CAS  PubMed  Google Scholar 

  159. Kristensen SD, Würtz M, Grove EL et al (2012) Contemporary use of glycoprotein IIb/IIIa inhibitors. Thromb Haemost. doi:10.1160/TH11-07-0468

    Google Scholar 

  160. Zhou Q, Nakada MT, Brooks PC et al (2000) Contortrostatin, a homodimeric disintegrin, binds to integrin alphavbeta5. Biochem Biophys Res Commun 267:350–355. doi:10.1006/bbrc.1999.1965

    CAS  PubMed  Google Scholar 

  161. Trikha M, De Clerck YA, Markland FS (1994) Contortrostatin, a snake venom disintegrin, inhibits beta 1 integrin-mediated human metastatic melanoma cell adhesion and blocks experimental metastasis. Cancer Res 54:4993–4998

    CAS  PubMed  Google Scholar 

  162. Swenson S, Costa F, Minea R et al (2004) Intravenous liposomal delivery of the snake venom disintegrin contortrostatin limits breast cancer progression. Mol Cancer Ther 3:499–511

    CAS  PubMed  Google Scholar 

  163. Zhou Q, Sherwin RP, Parrish C et al (2000) Contortrostatin, a dimeric disintegrin from Agkistrodon contortrix contortrix, inhibits breast cancer progression. Breast Cancer Res Treat 61:249–260

    CAS  PubMed  Google Scholar 

  164. Markland FS, Shieh K, Zhou Q et al (2001) A novel snake venom disintegrin that inhibits human ovarian cancer dissemination and angiogenesis in an orthotopic nude mouse model. Haemostasis 31:183–191

    CAS  PubMed  Google Scholar 

  165. Lin E, Wang Q, Swenson S et al (2010) The disintegrin contortrostatin in combination with docetaxel is a potent inhibitor of prostate cancer in vitro and in vivo. Prostate 70:1359–1370. doi:10.1002/pros.21173

    CAS  PubMed  Google Scholar 

  166. Kini RM (2003) Excitement ahead: structure, function and mechanism of snake venom phospholipase A2 enzymes. Toxicon Off J Int Soc Toxinology 42:827–840. doi:10.1016/j.toxicon.2003.11.002

    CAS  Google Scholar 

  167. Fry BG, Wüster W (2004) Assembling an arsenal: origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences. Mol Biol Evol 21:870–883. doi:10.1093/molbev/msh091

    CAS  PubMed  Google Scholar 

  168. Huang P, Mackessy SP (2004) Biochemical characterization of phospholipase A2 (trimorphin) from the venom of the Sonoran Lyre Snake Trimorphodon biscutatus lambda (family Colubridae). Toxicon 44:27–36. doi:10.1016/j.toxicon.2004.03.027

    CAS  PubMed  Google Scholar 

  169. Mebs D, Ehrenfeld M, Samejima Y (1983) Local necrotizing effect of snake venoms on skin and muscle: relationship to serum creatine kinase. Toxicon Off J Int Soc Toxinology 21:393–404

    CAS  Google Scholar 

  170. Subburaju S, Kini RM (1997) Isolation and purification of superbins I and II from Austrelaps superbus (copperhead) snake venom and their anticoagulant and antiplatelet effects. Toxicon Off J Int Soc Toxinology 35:1239–1250

    CAS  Google Scholar 

  171. Scott DL, Achari A, Vidal JC, Sigler PB (1992) Crystallographic and biochemical studies of the (inactive) Lys-49 phospholipase A2 from the venom of Agkistridon piscivorus piscivorus. J Biol Chem 267:22645–22657

    CAS  PubMed  Google Scholar 

  172. Ownby CL, Selistre de Araujo HS, White SP, Fletcher JE (1999) Lysine 49 phospholipase A2 proteins. Toxicon Off J Int Soc Toxinology 37:411–445

    CAS  Google Scholar 

  173. Shen Z, Cho W (1995) Membrane leakage induced by synergetic action of Lys-49 and Asp-49 Agkistrodon piscivorus piscivorus phospholipases A2: implications in their pharmacological activities. Int J Biochem Cell Biol 27:1009–1013. doi:10.1016/1357-2725(95)00072-W

    CAS  Google Scholar 

  174. Rigoni M, Caccin P, Gschmeissner S et al (2005) Equivalent effects of snake PLA2 neurotoxins and lysophospholipid-fatty acid mixtures. Science 310:1678–1680. doi:10.1126/science.1120640

    CAS  PubMed  Google Scholar 

  175. Kini RM, Evans HJ (1989) A model to explain the pharmacological effects of snake venom phospholipases A2. Toxicon Off J Int Soc Toxinology 27:613–635

    CAS  Google Scholar 

  176. Soares AM, Giglio JR (2003) Chemical modifications of phospholipases A2 from snake venoms: effects on catalytic and pharmacological properties. Toxicon Off J Int Soc Toxinology 42:855–868. doi:10.1016/j.toxicon.2003.11.004

    CAS  Google Scholar 

  177. Páramo L, Lomonte B, Pizarro-Cerdá J et al (1998) Bactericidal activity of Lys49 and Asp49 myotoxic phospholipases A2 from Bothrops asper snake venom–synthetic Lys49 myotoxin II-(115-129)-peptide identifies its bactericidal region. Eur J Biochem FEBS 253:452–461

    Google Scholar 

  178. Cura JE, Blanzaco DP, Brisson C et al (2002) Phase I and pharmacokinetics study of crotoxin (cytotoxic PLA(2), NSC-624244) in patients with advanced cancer. Clin Cancer Res Off J Am Assoc Cancer Res 8:1033–1041

    CAS  Google Scholar 

  179. Yan C, Yang Y, Qin Z et al (2007) Autophagy is involved in cytotoxic effects of crotoxin in human breast cancer cell line MCF-7 cells. Acta Pharmacol Sin 28:540–548. doi:10.1111/j.1745-7254.2007.00530.x

    CAS  PubMed  Google Scholar 

  180. Zhang H-L, Han R, Chen Z-X et al (2006) Opiate and acetylcholine-independent analgesic actions of crotoxin isolated from crotalus durissus terrificus venom. Toxicon Off J Int Soc Toxinology 48:175–182. doi:10.1016/j.toxicon.2006.04.008

    CAS  Google Scholar 

  181. Olivera BM, Teichert RW (2011) Neuroscience: chemical ecology of pain. Nature 479:306–307. doi:10.1038/479306a

    CAS  PubMed  Google Scholar 

  182. Escoubas P, Quinton L, Nicholson GM (2008) Venomics: unravelling the complexity of animal venoms with mass spectrometry. J Mass Spectrom 43:279–295. doi:10.1002/jms.1389

    CAS  PubMed  Google Scholar 

  183. Vetter I, Davis JL, Rash LD et al (2011) Venomics: a new paradigm for natural products-based drug discovery. Amino Acids 40:15–28. doi:10.1007/s00726-010-0516-4

    CAS  PubMed  Google Scholar 

  184. Sampaio SC, Hyslop S, Fontes MRM et al (2010) Crotoxin: novel activities for a classic β-neurotoxin. Toxicon 55:1045–1060. doi:10.1016/j.toxicon.2010.01.011

    CAS  PubMed  Google Scholar 

  185. Adermann K, Wattler F, Wattler S et al. (1999) Structural and phylogenetic characterization of human SLURP-1, the first secreted mammalian member of the Ly-6/uPAR protein superfamily. Protein Sci Publ Protein Soc 8:810–819

    CAS  Google Scholar 

  186. Servent D, Fruchart-Gaillard C (2009) Muscarinic toxins: tools for the study of the pharmacological and functional properties of muscarinic receptors. J Neurochem 109:1193–1202. doi:10.1111/j.1471-4159.2009.06092.x

    CAS  PubMed  Google Scholar 

  187. Dewan JC, Grant GA, Sacchettini JC (1994) Crystal structure of kappa-bungarotoxin at 2.3-A resolution. Biochemistry (Mosc) 33:13147–13154

    CAS  Google Scholar 

  188. McDowell RS, Dennis MS, Louie A et al. (1992) Mambin, a potent glycoprotein IIb-IIIa antagonist and platelet aggregation inhibitor structurally related to the short neurotoxins. Biochemistry (Mosc) 31:4766–4772

    CAS  Google Scholar 

  189. Karlsson E, Mbugua PM, Rodriguez-Ithurralde D (1984) Fasciculins, anticholinesterase toxins from the venom of the green mamba Dendroaspis angusticeps. J Physiol (Paris) 79:232–240

    CAS  Google Scholar 

  190. Tsetlin VI, Hucho F (2004) Snake and snail toxins acting on nicotinic acetylcholine receptors: fundamental aspects and medical applications. FEBS Lett 557:9–13. doi:10.1016/S0014-5793(03)01454-6

    CAS  PubMed  Google Scholar 

  191. Swenson S, Ramu S, Markland FS (2007) Anti-angiogenesis and RGD-containing snake venom disintegrins. Curr Pharm Des 13:2860–2871

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. F. Alewood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reeks, T.A., Fry, B.G. & Alewood, P.F. Privileged frameworks from snake venom. Cell. Mol. Life Sci. 72, 1939–1958 (2015). https://doi.org/10.1007/s00018-015-1844-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1844-z

Keywords

Navigation