Skip to main content

Advertisement

Log in

CXCL12/CXCR4 axis in the pathogenesis of acute lymphoblastic leukemia (ALL): a possible therapeutic target

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Acute lymphoblastic leukemia (ALL) is the commonest childhood malignancy, accounting for approximately 80 % of leukemia in the pediatric group, and its etiology is unknown. This neoplasia is characterized by male predominance, high-risk features and poor outcome, mainly in recurrence patients and adults. In recent years, advances in the success of childhood ALL treatment were verified, and the rate of cure is over 80 % of individuals. However, there is a considerable scope for improving therapeutic outcome in this neoplasia. Improvements in ALL therapy might readily be achieved by developing additional biomarkers that can predict and refine prognosis in patients with ALL. In normal hematopoietic cells, cytokines provide the stimulus for proliferation, survival, self-renewal, differentiation and functional activation. Abnormalities of cytokines are characteristic in all forms of leukemia, including ALL. The stromal cell-derived factor-1 (SDF-1 or CXCL12) is a member of the CXC chemokine family that binds to CXC chemokine receptor 4 (CXCR4). The CXCL12/CXCR4 axis appears to play a role in dissemination of solid tumors and hematopoietic diseases. Understanding the mechanisms by which ALL cells are disseminated will provide additional information to expand therapeutic approach. Therefore, this review summarizes information relating to ALL cell biology, focusing specifically in a cytokine receptor important axis, CXCL12/CXCR4, that may have implications for novel treatment strategies to improve life expectancy of patients with this neoplasia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ayala F, Dewar R, Kieran M, Kalluri R (2009) Contribution of bone microenvironment to leukemogenesis and leukemia progression. Leukemia 23(12):2233–2241

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Baggiolini M (1998) Chemokines and leukocyte traffic. Nature 392(6676):565–568

    Article  CAS  PubMed  Google Scholar 

  3. Barrett AJ, Horowitz MM, Pollock BH, Zhang MJ, Bortin MM, Buchanan GR, Camitta BM, Ochs J, Graham-Pole J, Rowlings PA et al (1994) Bone marrow transplants from HLA-identical siblings as compared with chemotherapy for children with acute lymphoblastic leukemia in a second remission. N Engl J Med 331(19):1253–1258

    Article  CAS  PubMed  Google Scholar 

  4. Bartram CR, Schrauder A, Kohler R, Schrappe M (2012) Acute lymphoblastic leukemia in children: treatment planning via minimal residual disease assessment. Deutsches Arzteblatt int 109(40):652–658. doi:10.3238/arztebl.2012.0652

    Google Scholar 

  5. Bendall L (2005) Chemokines and their receptors in disease. Histol Histopathol 20(3):907–926

    CAS  PubMed  Google Scholar 

  6. Bendall LJ, Baraz R, Juarez J, Shen W, Bradstock KF (2005) Defective p38 mitogen-activated protein kinase signaling impairs chemotaxic but not proliferative responses to stromal-derived factor-1alpha in acute lymphoblastic leukemia. Cancer Res 65(8):3290–3298

    CAS  PubMed  Google Scholar 

  7. Bertolini F, Dell’Agnola C, Mancuso P, Rabascio C, Burlini A, Monestiroli S, Gobbi A, Pruneri G, Martinelli G (2002) CXCR4 neutralization, a novel therapeutic approach for non-Hodgkin’s lymphoma. Cancer Res 62(11):3106–3112

    CAS  PubMed  Google Scholar 

  8. Bradstock KF, Makrynikola V, Bianchi A, Shen W, Hewson J, Gottlieb DJ (2000) Effects of the chemokine stromal cell-derived factor-1 on the migration and localization of precursor-B acute lymphoblastic leukemia cells within bone marrow stromal layers. Leukemia 14(5):882–888

    Article  CAS  PubMed  Google Scholar 

  9. Buonamici S, Trimarchi T, Ruocco MG, Reavie L, Cathelin S, Mar BG, Klinakis A, Lukyanov Y, Tseng JC, Sen F, Gehrie E, Li M, Newcomb E, Zavadil J, Meruelo D, Lipp M, Ibrahim S, Efstratiadis A, Zagzag D, Bromberg JS, Dustin ML, Aifantis I (2009) CCR7 signalling as an essential regulator of CNS infiltration in T-cell leukaemia. Nature 459(7249):1000–1004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Busillo JM, Benovic JL (2007) Regulation of CXCR4 signaling. Biochim Biophys Acta 1768(4):952–963

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Cardoso BA, Girio A, Henriques C, Martins LR, Santos C, Silva A, Barata JT (2008) Aberrant signaling in T-cell acute lymphoblastic leukemia: biological and therapeutic implications. Braz J Med Biol Res 41(5):344–350

    Article  CAS  PubMed  Google Scholar 

  12. Chang F, Steelman LS, Shelton JG, Lee JT, Navolanic PM, Blalock WL, Franklin R, McCubrey JA (2003) Regulation of cell cycle progression and apoptosis by the Ras/Raf/MEK/ERK pathway (Review). Int J Oncol 22(3):469–480

    CAS  PubMed  Google Scholar 

  13. Chotinantakul K, Leeanansaksiri W (2012) Hematopoietic stem cell development, niches, and signaling pathways. Bone Marrow Res 2012:270425

    Article  PubMed Central  PubMed  Google Scholar 

  14. Crazzolara R, Kreczy A, Mann G, Heitger A, Eibl G, Fink FM, Mohle R, Meister B (2001) High expression of the chemokine receptor CXCR4 predicts extramedullary organ infiltration in childhood acute lymphoblastic leukaemia. Br J Haematol 115(3):545–553

    Article  CAS  PubMed  Google Scholar 

  15. De La Luz Sierra M, Yang F, Narazaki M, Salvucci O, Davis D, Yarchoan R, Zhang HH, Fales H, Tosato G (2004) Differential processing of stromal-derived factor-1alpha and stromal-derived factor-1beta explains functional diversity. Blood 103(7):2452–2459

    Article  Google Scholar 

  16. de Lourdes Perim A, Guembarovski RL, Oda JM, Lopes LF, Ariza CB, Amarante MK, Fungaro MH, de Oliveira KB, Watanabe MA (2013) CXCL12 and TP53 genetic polymorphisms as markers of susceptibility in a Brazilian children population with acute lymphoblastic leukemia (ALL). Mol Biol Rep 40(7):4591–4596

    Article  CAS  PubMed  Google Scholar 

  17. de Oliveira Cavassin GG, De Lucca FL, Delgado Andre N, Covas DT, Pelegrinelli Fungaro MH, Voltarelli JC, Watanabe MA (2004) Molecular investigation of the stromal cell-derived factor-1 chemokine in lymphoid leukemia and lymphoma patients from Brazil. Blood Cells Mol Dis 33(1):90–93

    Article  PubMed  Google Scholar 

  18. de Oliveira CE, Cavassin GG, Perim Ade L, Nasser TF, de Oliveira KB, Fungaro MH, Carneiro JL, Watanabe MA (2007) Stromal cell-derived factor-1 chemokine gene variant in blood donors and chronic myelogenous leukemia patients. J Clin Lab Anal 21(1):49–54

    Article  PubMed  Google Scholar 

  19. de Oliveira KB, Oda JM, Voltarelli JC, Nasser TF, Ono MA, Fujita TC, Matsuo T, Watanabe MA (2009) CXCL12 rs1801157 polymorphism in patients with breast cancer, Hodgkin’s lymphoma, and non-Hodgkin’s lymphoma. J Clin Lab Anal 23(6):387–393

    Article  PubMed  Google Scholar 

  20. do Val Carneiro JL, Nixdorf SL, Mantovani MS, da Silva do Amaral Herrera AC, Aoki MN, Amarante MK, Fabris BA, Pelegrinelli Fungaro MH, Ehara Watanabe MA (2009). Plasma malondialdehyde levels and CXCR4 expression in peripheral blood cells of breast cancer patients. J Cancer Res Clin Oncol 135(8):997–1004

  21. Einsiedel HG, von Stackelberg A, Hartmann R, Fengler R, Schrappe M, Janka-Schaub G, Mann G, Hahlen K, Gobel U, Klingebiel T, Ludwig WD, Henze G (2005) Long-term outcome in children with relapsed ALL by risk-stratified salvage therapy: results of trial acute lymphoblastic leukemia-relapse study of the Berlin-Frankfurt-Munster Group 87. J Clin Oncol 23(31):7942–7950

    Article  PubMed  Google Scholar 

  22. Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC, Behm FG, Pui CH, Downing JR, Gilliland DG, Lander ES, Golub TR, Look AT (2002) Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 1(1):75–87

    Article  CAS  PubMed  Google Scholar 

  23. Freret M, Gouel F, Buquet C, Legrand E, Vannier JP, Vasse M, Dubus I (2011) Rac-1 GTPase controls the capacity of human leukaemic lymphoblasts to migrate on fibronectin in response to SDF-1alpha (CXCL12). Leuk Res 35(7):971–973

    Article  CAS  PubMed  Google Scholar 

  24. Ganju RK, Brubaker SA, Meyer J, Dutt P, Yang Y, Qin S, Newman W, Groopman JE (1998) The alpha-chemokine, stromal cell-derived factor-1alpha, binds to the transmembrane G-protein-coupled CXCR-4 receptor and activates multiple signal transduction pathways. J Biol Chem 273(36):23169–23175

    Article  CAS  PubMed  Google Scholar 

  25. Goldsmith ZG, Dhanasekaran DN (2007) G protein regulation of MAPK networks. Oncogene 26(22):3122–3142

    Article  CAS  PubMed  Google Scholar 

  26. Haribabu B, Richardson RM, Fisher I, Sozzani S, Peiper SC, Horuk R, Ali H, Snyderman R (1997) Regulation of human chemokine receptors CXCR4. Role of phosphorylation in desensitization and internalization. J Biol Chem 272(45):28726–28731

    Article  CAS  PubMed  Google Scholar 

  27. Harrison CJ (2009) Cytogenetics of paediatric and adolescent acute lymphoblastic leukaemia. Br J Haematol 144(2):147–156

    Article  PubMed  Google Scholar 

  28. Harrison CJ, Foroni L (2002) Cytogenetics and molecular genetics of acute lymphoblastic leukemia. Rev Clin Exp Hematol 6(2):91–113 (discussion 200–112)

    Article  CAS  PubMed  Google Scholar 

  29. Hatse S, Princen K, Bridger G, De Clercq E, Schols D (2002) Chemokine receptor inhibition by AMD3100 is strictly confined to CXCR4. FEBS Lett 527(1–3):255–262

    Article  CAS  PubMed  Google Scholar 

  30. Hebert J, Cayuela JM, Berkeley J, Sigaux F (1994) Candidate tumor-suppressor genes MTS1 (p16INK4A) and MTS2 (p15INK4B) display frequent homozygous deletions in primary cells from T- but not from B-cell lineage acute lymphoblastic leukemias. Blood 84(12):4038–4044

    CAS  PubMed  Google Scholar 

  31. Hosking FJ, Papaemmanuil E, Sheridan E, Kinsey SE, Lightfoot T, Roman E, Irving JA, Allan JM, Taylor M, Tomlinson IP, Greaves M, Houlston RS (2010) Genome-wide homozygosity signatures and childhood acute lymphoblastic leukemia risk. Blood 115(22):4472–4477

    Article  CAS  PubMed  Google Scholar 

  32. INCA (2012). Instituto Nacional de Câncer (INCA) (Brasil). Câncer no Brasil: estimativa 2012: incidência de câncer no Brasil

  33. Iwamoto S, Mihara K, Downing JR, Pui CH, Campana D (2007) Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. J Clin Invest 117(4):1049–1057

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Janowski M (2009) Functional diversity of SDF-1 splicing variants. Cell Adhes Migr 3(3):243–249

    Article  Google Scholar 

  35. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics, 2009. CA Cancer J Clin 59(4):225–249

    Article  PubMed  Google Scholar 

  36. Juarez J, Bradstock KF, Gottlieb DJ, Bendall LJ (2003) Effects of inhibitors of the chemokine receptor CXCR4 on acute lymphoblastic leukemia cells in vitro. Leukemia 17(7):1294–1300

    Article  CAS  PubMed  Google Scholar 

  37. Juarez J, Dela Pena A, Baraz R, Hewson J, Khoo M, Cisterne A, Fricker S, Fujii N, Bradstock KF, Bendall LJ (2007) CXCR4 antagonists mobilize childhood acute lymphoblastic leukemia cells into the peripheral blood and inhibit engraftment. Leukemia 21(6):1249–1257

    Article  CAS  PubMed  Google Scholar 

  38. Juarez JG, Thien M, Dela Pena A, Baraz R, Bradstock KF, Bendall LJ (2009) CXCR4 mediates the homing of B cell progenitor acute lymphoblastic leukaemia cells to the bone marrow via activation of p38MAPK. Br J Haematol 145(4):491–499

    Article  CAS  PubMed  Google Scholar 

  39. Kato I, Niwa A, Heike T, Fujino H, Saito MK, Umeda K, Hiramatsu H, Ito M, Morita M, Nishinaka Y, Adachi S, Ishikawa F, Nakahata T (2011) Identification of hepatic niche harboring human acute lymphoblastic leukemic cells via the SDF-1/CXCR4 axis. PLoS One 6(11):e27042

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Kato Y, Iwama A, Tadokoro Y, Shimoda K, Minoguchi M, Akira S, Tanaka M, Miyajima A, Kitamura T, Nakauchi H (2005) Selective activation of STAT5 unveils its role in stem cell self-renewal in normal and leukemic hematopoiesis. J Exp Med 202(1):169–179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Kim CH, Hangoc G, Cooper S, Helgason CD, Yew S, Humphries RK, Krystal G, Broxmeyer HE (1999) Altered responsiveness to chemokines due to targeted disruption of SHIP. J Clin Invest 104(12):1751–1759

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Konoplev S, Jorgensen JL, Thomas DA, Lin E, Burger J, Kantarjian HM, Andreeff M, Medeiros LJ, Konopleva M (2011) Phosphorylated CXCR4 is associated with poor survival in adults with B-acute lymphoblastic leukemia. Cancer 117(20):4689–4695

    Article  CAS  PubMed  Google Scholar 

  43. Kucia M, Jankowski K, Reca R, Wysoczynski M, Bandura L, Allendorf DJ, Zhang J, Ratajczak J, Ratajczak MZ (2004) CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion. J Mol Histol 35(3):233–245

    Article  CAS  PubMed  Google Scholar 

  44. Levine RL, Pardanani A, Tefferi A, Gilliland DG (2007) Role of JAK2 in the pathogenesis and therapy of myeloproliferative disorders. Nat Rev Cancer 7(9):673–683

    Article  CAS  PubMed  Google Scholar 

  45. Matsumoto T, Jimi S, Hara S, Takamatsu Y, Suzumiya J, Tamura K (2010) Am 80 inhibits stromal cell-derived factor-1-induced chemotaxis in T-cell acute lymphoblastic leukemia cells. Leuk Lymphoma 51(3):507–514

    Article  CAS  PubMed  Google Scholar 

  46. Mellado M, Rodriguez-Frade JM, Manes S, Martinez AC (2001) Chemokine signaling and functional responses: the role of receptor dimerization and TK pathway activation. Annu Rev Immunol 19:397–421

    Article  CAS  PubMed  Google Scholar 

  47. Mishra S, Zhang B, Cunnick JM, Heisterkamp N, Groffen J (2006) Resistance to imatinib of bcr/abl p190 lymphoblastic leukemia cells. Cancer Res 66(10):5387–5393

    Article  CAS  PubMed  Google Scholar 

  48. Mohle R, Schittenhelm M, Failenschmid C, Bautz F, Kratz-Albers K, Serve H, Brugger W, Kanz L (2000) Functional response of leukaemic blasts to stromal cell-derived factor-1 correlates with preferential expression of the chemokine receptor CXCR4 in acute myelomonocytic and lymphoblastic leukaemia. Br J Haematol 110(3):563–572

    Article  CAS  PubMed  Google Scholar 

  49. Mowafi F, Cagigi A, Matskova L, Bjork O, Chiodi F, Nilsson A (2008) Chemokine CXCL12 enhances proliferation in pre-B-ALL via STAT5 activation. Pediatr Blood Cancer 50(4):812–817

    Article  PubMed  Google Scholar 

  50. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, Barrera JL, Mohar A, Verastegui E, Zlotnik A (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410(6824):50–56

    Article  CAS  PubMed  Google Scholar 

  51. Mullighan CG (2012) Molecular genetics of B-precursor acute lymphoblastic leukemia. J Clin Invest 122(10):3407–3415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Nachman JB, Heerema NA, Sather H, Camitta B, Forestier E, Harrison CJ, Dastugue N, Schrappe M, Pui CH, Basso G, Silverman LB, Janka-Schaub GE (2007) Outcome of treatment in children with hypodiploid acute lymphoblastic leukemia. Blood 110(4):1112–1115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Nagasawa T (2006) Microenvironmental niches in the bone marrow required for B-cell development. Nat Rev Immunol 6(2):107–116

    Article  CAS  PubMed  Google Scholar 

  54. Naiyer AJ, Jo DY, Ahn J, Mohle R, Peichev M, Lam G, Silverstein RL, Moore MA, Rafii S (1999) Stromal derived factor-1-induced chemokinesis of cord blood CD34(+) cells (long-term culture-initiating cells) through endothelial cells is mediated by E-selectin. Blood 94(12):4011–4019

    CAS  PubMed  Google Scholar 

  55. Nishii K, Katayama N, Miwa H, Shikami M, Masuya M, Shiku H, Kita K (1999) Survival of human leukaemic B-cell precursors is supported by stromal cells and cytokines: association with the expression of bcl-2 protein. Br J Haematol 105(3):701–710

    Article  CAS  PubMed  Google Scholar 

  56. Oda JM, de Oliveira KB, Guembarovski RL, de Lima KW, da Silva do Amaral Herrera AC, Guembarovski AL, Sobrinho WJ, Derossi DR, Watanabe MA (2012). TGF-beta polymorphism and its expression correlated with CXCR4 expression in human breast cancer. Mol Biol Rep 39(12):10131–10137

  57. Onciu M (2009) Acute lymphoblastic leukemia. Hematol Oncol Clin N Am 23(4):655–674

    Article  Google Scholar 

  58. Oyekunle AA, Castagnetti F, Gugliotta G, Soverini S, Baccarani M, Rosti G (2011) F317L BCR-ABL1 kinase domain mutation associated with a sustained major molecular response in a CML patient on dasatinib. Leuk Res 35(7):e118–e120

    Article  CAS  PubMed  Google Scholar 

  59. Palmesino E, Moepps B, Gierschik P, Thelen M (2006) Differences in CXCR4-mediated signaling in B cells. Immunobiology 211(5):377–389

    Article  CAS  PubMed  Google Scholar 

  60. Parameswaran R, Yu M, Lim M, Groffen J, Heisterkamp N (2011) Combination of drug therapy in acute lymphoblastic leukemia with a CXCR4 antagonist. Leukemia 25(8):1314–1323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Pui CH, Evans WE (2006) Treatment of acute lymphoblastic leukemia. N Engl J Med 354(2):166–178

    Article  CAS  PubMed  Google Scholar 

  62. Pui CH, Relling MV, Downing JR (2004) Acute lymphoblastic leukemia. N Engl J Med 350(15):1535–1548

    Article  CAS  PubMed  Google Scholar 

  63. Pui CH, Robison LL, Look AT (2008) Acute lymphoblastic leukaemia. Lancet 371(9617):1030–1043

    Article  CAS  PubMed  Google Scholar 

  64. Pui CH, Pei D, Pappo AS, Howard SC, Cheng C, Sandlund JT, Furman WL, Ribeiro RC, Spunt SL, Rubnitz JE, Jeha S, Hudson MM, Kun LE, Merchant TE, Kocak M, Broniscer A, Metzger ML, Downing JR, Leung W, Evans WE, Gajjar A (2012) Treatment outcomes in black and white children with cancer: results from the SEER database and St Jude Children's Research Hospital, 1992 through 2007. J Clin Oncol 30(16):2005–2012. doi:10.1200/JCO.2011.40.8617

    Article  PubMed Central  PubMed  Google Scholar 

  65. Rubin JB (2009) Chemokine signaling in cancer: one hump or two? Semin Cancer Biol 19(2):116–122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Sahin AO, Buitenhuis M (2012) Molecular mechanisms underlying adhesion and migration of hematopoietic stem cells. Cell Adhes Migr 6(1):39–48

    Article  Google Scholar 

  67. Sbaa-Ketata E, Vasse M, Lenormand B, Schneider P, Soria C, Vannier JP (2001) Fibronectin increases the migration induced by stromal cell-derived factor-1 alpha (SDF-1 alpha) in pre-B acute lymphoblastic leukemia cells. Eur Cytokine Netw 12(2):223–230

    CAS  PubMed  Google Scholar 

  68. Schneider P, Vasse M, Al Bayati A, Lenormand B, Vannier JP (2002) Is high expression of the chemokine receptor CXCR-4 of predictive value for early relapse in childhood acute lymphoblastic leukaemia? Br J Haematol 119(2):579–580

    Article  PubMed  Google Scholar 

  69. Scupoli MT, Donadelli M, Cioffi F, Rossi M, Perbellini O, Malpeli G, Corbioli S, Vinante F, Krampera M, Palmieri M, Scarpa A, Ariola C, Foa R, Pizzolo G (2008) Bone marrow stromal cells and the upregulation of interleukin-8 production in human T-cell acute lymphoblastic leukemia through the CXCL12/CXCR4 axis and the NF-kappaB and JNK/AP-1 pathways. Haematologica 93(4):524–532

    Article  CAS  PubMed  Google Scholar 

  70. Shen W, Bendall LJ, Gottlieb DJ, Bradstock KF (2001) The chemokine receptor CXCR4 enhances integrin-mediated in vitro adhesion and facilitates engraftment of leukemic precursor-B cells in the bone marrow. Exp Hematol 29(12):1439–1447

    Article  CAS  PubMed  Google Scholar 

  71. Signoret N, Oldridge J, Pelchen-Matthews A, Klasse PJ, Tran T, Brass LF, Rosenkilde MM, Schwartz TW, Holmes W, Dallas W, Luther MA, Wells TN, Hoxie JA, Marsh M (1997) Phorbol esters and SDF-1 induce rapid endocytosis and down modulation of the chemokine receptor CXCR4. J Cell Biol 139(3):651–664

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Silverman LB, Gelber RD, Dalton VK, Asselin BL, Barr RD, Clavell LA, Hurwitz CA, Moghrabi A, Samson Y, Schorin MA, Arkin S, Declerck L, Cohen HJ, Sallan SE (2001) Improved outcome for children with acute lymphoblastic leukemia: results of Dana-Farber Consortium Protocol 91-01. Blood 97(5):1211–1218

    Article  CAS  PubMed  Google Scholar 

  73. Society AC (2012) American Cancer Society: Cancer Facts and Figures 2012. American Cancer Society, Atlanta

    Google Scholar 

  74. Spiegel A, Kollet O, Peled A, Abel L, Nagler A, Bielorai B, Rechavi G, Vormoor J, Lapidot T (2004) Unique SDF-1-induced activation of human precursor-B ALL cells as a result of altered CXCR4 expression and signaling. Blood 103(8):2900–2907

    Article  CAS  PubMed  Google Scholar 

  75. Staudt LM (2002) It’s ALL in the diagnosis. Cancer Cell 1(2):109–110

    Article  CAS  PubMed  Google Scholar 

  76. Sun X, Cheng G, Hao M, Zheng J, Zhou X, Zhang J, Taichman RS, Pienta KJ, Wang J (2010) CXCL12/CXCR4/CXCR7 chemokine axis and cancer progression. Cancer Metastasis Rev 29(4):709–722

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Tavor S, Petit I (2010) Can inhibition of the SDF-1/CXCR4 axis eradicate acute leukemia? Seminars in cancer biology 20(3):178–185. doi:10.1016/j.semcancer.2010.07.001

    Article  CAS  PubMed  Google Scholar 

  78. Teicher BA, Fricker SP (2010) CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res 16(11):2927–2931

    Article  CAS  PubMed  Google Scholar 

  79. Tokoyoda K, Egawa T, Sugiyama T, Choi BI, Nagasawa T (2004) Cellular niches controlling B lymphocyte behavior within bone marrow during development. Immunity 20(6):707–718

    Article  CAS  PubMed  Google Scholar 

  80. Tzeng YS, Li H, Kang YL, Chen WC, Cheng WC, Lai DM (2011) Loss of Cxcl12/Sdf-1 in adult mice decreases the quiescent state of hematopoietic stem/progenitor cells and alters the pattern of hematopoietic regeneration after myelosuppression. Blood 117(2):429–439

    Article  CAS  PubMed  Google Scholar 

  81. Van Etten RA (2007) Aberrant cytokine signaling in leukemia. Oncogene 26(47):6738–6749

    Article  PubMed Central  PubMed  Google Scholar 

  82. Van Vlierberghe P, Ferrando A (2012) The molecular basis of T cell acute lymphoblastic leukemia. J Clin Invest 122(10):3398–3406

    Article  PubMed Central  PubMed  Google Scholar 

  83. Vila-Coro AJ, Rodriguez-Frade JM, Martin De Ana A, Moreno-Ortiz MC, Martinez AC, Mellado M (1999) The chemokine SDF-1alpha triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway. FASEB J 13(13):1699–1710

    CAS  PubMed  Google Scholar 

  84. Vilimas T, Mascarenhas J, Palomero T, Mandal M, Buonamici S, Meng F, Thompson B, Spaulding C, Macaroun S, Alegre ML, Kee BL, Ferrando A, Miele L, Aifantis I (2007) Targeting the NF-kappaB signaling pathway in Notch1-induced T-cell leukemia. Nat Med 13(1):70–77

    Article  CAS  PubMed  Google Scholar 

  85. Wang JF, Park IW, Groopman JE (2000) Stromal cell-derived factor-1alpha stimulates tyrosine phosphorylation of multiple focal adhesion proteins and induces migration of hematopoietic progenitor cells: roles of phosphoinositide-3 kinase and protein kinase C. Blood 95(8):2505–2513

    CAS  PubMed  Google Scholar 

  86. Welschinger R, Liedtke F, Basnett J, Dela Pena A, Juarez JG, Bradstock KF, Bendall LJ (2013) Plerixafor (AMD3100) induces prolonged mobilization of acute lymphoblastic leukemia cells and increases the proportion of cycling cells in the blood in mice. Exp Hematol 41(3):293–302 (e291)

    Article  CAS  PubMed  Google Scholar 

  87. Weng AP, Aster JC (2004) Multiple niches for Notch in cancer: context is everything. Curr Opin Genet Dev 14(1):48–54

    Article  CAS  PubMed  Google Scholar 

  88. Wysoczynski M, Reca R, Ratajczak J, Kucia M, Shirvaikar N, Honczarenko M, Mills M, Wanzeck J, Janowska-Wieczorek A, Ratajczak MZ (2005) Incorporation of CXCR4 into membrane lipid rafts primes homing-related responses of hematopoietic stem/progenitor cells to an SDF-1 gradient. Blood 105(1):40–48

    Article  CAS  PubMed  Google Scholar 

  89. Yeoh EJ, Ross ME, Shurtleff SA, Williams WK, Patel D, Mahfouz R, Behm FG, Raimondi SC, Relling MV, Patel A, Cheng C, Campana D, Wilkins D, Zhou X, Li J, Liu H, Pui CH, Evans WE, Naeve C, Wong L, Downing JR (2002) Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1(2):133–143

    Article  CAS  PubMed  Google Scholar 

  90. Zhang XF, Wang JF, Matczak E, Proper JA, Groopman JE (2001) Janus kinase 2 is involved in stromal cell-derived factor-1alpha-induced tyrosine phosphorylation of focal adhesion proteins and migration of hematopoietic progenitor cells. Blood 97(11):3342–3348

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marla Karine Amarante.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Lourdes Perim, A., Amarante, M.K., Guembarovski, R.L. et al. CXCL12/CXCR4 axis in the pathogenesis of acute lymphoblastic leukemia (ALL): a possible therapeutic target. Cell. Mol. Life Sci. 72, 1715–1723 (2015). https://doi.org/10.1007/s00018-014-1830-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1830-x

Keywords

Navigation