Skip to main content
Log in

Participation of the central melanocortin system in metabolic regulation and energy homeostasis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Obesity and metabolic disorders, such as type 2 diabetes and hypertension, have attracted considerable attention as life-threatening diseases not only in developed countries but also worldwide. Additionally, the rate of obesity in young people all over the world is rapidly increasing. Accumulated evidence suggests that the central nervous system may participate in the development of and/or protection from obesity. For example, in the brain, the hypothalamic melanocortin system senses and integrates central and peripheral metabolic signals and controls the degree of energy expenditure and feeding behavior, in concert with metabolic status, to regulate whole-body energy homeostasis. Currently, researchers are studying the mechanisms by which peripheral metabolic molecules control feeding behavior and energy balance through the central melanocortin system. Accordingly, recent studies have revealed that some inflammatory molecules and transcription factors participate in feeding behavior and energy balance by controlling the central melanocortin pathway, and have thus become new candidates as therapeutic targets to fight metabolic diseases such as obesity and diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, Berkemeier LR, Gu W, Kesterson RA, Boston BA, Cone RD, Smith FJ, Campfield LA, Burn P, Lee F (1997) Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88:131–141

    PubMed  CAS  Google Scholar 

  2. Boden-Albala B, Sacco RL (2000) Lifestyle factors and stroke risk: exercise, alcohol, diet, obesity, smoking, drug use, and stress. Curr Atheroscler Rep 2:160–166

    PubMed  CAS  Google Scholar 

  3. Nguyen T, Lau DC (2012) The obesity epidemic and its impact on hypertension. Can J Cardiol 28:326–333

    PubMed  Google Scholar 

  4. Cone RD (1999) The central melanocortin system and energy homeostasis. Trends Endocrinol Metab 10:211–216

    PubMed  CAS  Google Scholar 

  5. Zimanyi IA, Pelleymounter MA (2003) The role of melanocortin peptides and receptors in regulation of energy balance. Curr Pharm Des 9:627–641

    PubMed  CAS  Google Scholar 

  6. Seeley RJ, Drazen DL, Clegg DJ (2004) The critical role of the melanocortin system in the control of energy balance. Annu Rev Nutr 24:133–149

    PubMed  CAS  Google Scholar 

  7. Ghamari-Langroudi M, Srisai D, Cone RD (2011) Multinodal regulation of the arcuate/paraventricular nucleus circuit by leptin. Proc Natl Acad Sci USA 108:355–360

    PubMed  CAS  PubMed Central  Google Scholar 

  8. Fekete C, Legradi G, Mihaly E, Huang QH, Tatro JB, Rand WM, Emerson CH, Lechan RM (2000) Alpha-melanocyte-stimulating hormone is contained in nerve terminals innervating thyrotropin-releasing hormone-synthesizing neurons in the hypothalamic paraventricular nucleus and prevents fasting-induced suppression of prothyrotropin-releasing hormone gene expression. J Neurosci 20:1550–1558

    PubMed  CAS  Google Scholar 

  9. Bell ME, Bhatnagar S, Akana SF, Choi S, Dallman MF (2000) Disruption of arcuate/paraventricular nucleus connections changes body energy balance and response to acute stress. J Neurosci 20:6707–6713

    PubMed  CAS  Google Scholar 

  10. Baker RA, Herkenham M (1995) Arcuate nucleus neurons that project to the hypothalamic paraventricular nucleus: neuropeptidergic identity and consequences of adrenalectomy on mRNA levels in the rat. J Comp Neurol 358:518–530

    PubMed  CAS  Google Scholar 

  11. Elias CF, Aschkenasi C, Lee C, Kelly J, Ahima RS, Bjorbaek C, Flier JS, Saper CB, Elmquist JK (1999) Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron 23:775–786

    PubMed  CAS  Google Scholar 

  12. Cowley MA, Pronchuk N, Fan W, Dinulescu DM, Colmers WF, Cone RD (1999) Integration of NPY, AGRP, and melanocortin signals in the hypothalamic paraventricular nucleus: evidence of a cellular basis for the adipostat. Neuron 24:155–163

    PubMed  CAS  Google Scholar 

  13. Elmquist JK, Elias CF, Saper CB (1999) From lesions to leptin: hypothalamic control of food intake and body weight. Neuron 22:221–232

    PubMed  CAS  Google Scholar 

  14. Palou M, Sanchez J, Rodriguez AM, Priego T, Pico C, Palou A (2009) Induction of NPY/AgRP orexigenic peptide expression in rat hypothalamus is an early event in fasting: relationship with circulating leptin, insulin and glucose. Cell Physiol Biochem 23:115–124

    PubMed  CAS  Google Scholar 

  15. Goto K, Inui A, Takimoto Y, Yuzuriha H, Asakawa A, Kawamura Y, Tsuji H, Takahara Y, Takeyama C, Katsuura G, Kasuga M (2003) Acute intracerebroventricular administration of either carboxyl-terminal or amino-terminal fragments of agouti-related peptide produces a long-term decrease in energy expenditure in rats. Int J Mol Med 12:379–383

    PubMed  CAS  Google Scholar 

  16. Aponte Y, Atasoy D, Sternson SM (2011) AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat Neurosci 14:351–355

    PubMed  CAS  PubMed Central  Google Scholar 

  17. Williams DL, Kaplan JM, Grill HJ (2000) The role of the dorsal vagal complex and the vagus nerve in feeding effects of melanocortin-3/4 receptor stimulation. Endocrinology 141:1332–1337

    PubMed  CAS  Google Scholar 

  18. Richardson J, Cruz MT, Majumdar U, Lewin A, Kingsbury KA, Dezfuli G, Vicini S, Verbalis JG, Dretchen KL, Gillis RA, Sahibzada N (2013) Melanocortin signaling in the brainstem influences vagal outflow to the stomach. J Neurosci 33:13286–13299

    PubMed  CAS  PubMed Central  Google Scholar 

  19. Zhan C, Zhou J, Feng Q, Zhang JE, Lin S, Bao J, Wu P, Luo M (2013) Acute and long-term suppression of feeding behavior by POMC neurons in the brainstem and hypothalamus, respectively. J Neurosci 33:3624–3632

    PubMed  CAS  Google Scholar 

  20. Padilla SL, Reef D, Zeltser LM (2012) Defining POMC neurons using transgenic reagents: impact of transient Pomc expression in diverse immature neuronal populations. Endocrinology 153:1219–1231

    PubMed  CAS  PubMed Central  Google Scholar 

  21. Garfield AS, Patterson C, Skora S, Gribble FM, Reimann F, Evans ML, Myers MG Jr, Heisler LK (2012) Neurochemical characterization of body weight-regulating leptin receptor neurons in the nucleus of the solitary tract. Endocrinology 153:4600–4607

    PubMed  CAS  PubMed Central  Google Scholar 

  22. Wu Q, Howell MP, Palmiter RD (2008) Ablation of neurons expressing agouti-related protein activates fos and gliosis in postsynaptic target regions. J Neurosci 28:9218–9226

    PubMed  CAS  PubMed Central  Google Scholar 

  23. Wu Q, Boyle MP, Palmiter RD (2009) Loss of GABAergic signaling by AgRP neurons to the parabrachial nucleus leads to starvation. Cell 137:1225–1234

    PubMed  PubMed Central  Google Scholar 

  24. Wu Q, Zheng R, Srisai D, McKnight GS, Palmiter RD (2013) NR2B subunit of the NMDA glutamate receptor regulates appetite in the parabrachial nucleus. Proc Natl Acad Sci USA 110:14765–14770

    PubMed  CAS  PubMed Central  Google Scholar 

  25. Wu Q, Palmiter RD (2011) GABAergic signaling by AgRP neurons prevents anorexia via a melanocortin-independent mechanism. Eur J Pharmacol 660:21–27

    PubMed  CAS  PubMed Central  Google Scholar 

  26. Korner J, Wissig S, Kim A, Conwell IM, Wardlaw SL (2003) Effects of agouti-related protein on metabolism and hypothalamic neuropeptide gene expression. J Neuroendocrinol 15:1116–1121

    PubMed  CAS  Google Scholar 

  27. Small CJ, Kim MS, Stanley SA, Mitchell JR, Murphy K, Morgan DG, Ghatei MA, Bloom SR (2001) Effects of chronic central nervous system administration of agouti-related protein in pair-fed animals. Diabetes 50:248–254

    PubMed  CAS  Google Scholar 

  28. Tolle V, Low MJ (2008) In vivo evidence for inverse agonism of agouti-related peptide in the central nervous system of proopiomelanocortin-deficient mice. Diabetes 57:86–94

    PubMed  CAS  Google Scholar 

  29. Parton LE, Ye CP, Coppari R, Enriori PJ, Choi B, Zhang CY, Xu C, Vianna CR, Balthasar N, Lee CE, Elmquist JK, Cowley MA, Lowell BB (2007) Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature 449:228–232

    PubMed  CAS  Google Scholar 

  30. Xu Y, Elmquist JK, Fukuda M (2011) Central nervous control of energy and glucose balance: focus on the central melanocortin system. Ann NY Acad Sci 1243:1–14

    PubMed  CAS  PubMed Central  Google Scholar 

  31. Greenman Y, Kuperman Y, Drori Y, Asa SL, Navon I, Forkosh O, Gil S, Stern N, Chen A (2013) Postnatal ablation of POMC neurons induces an obese phenotype characterized by decreased food intake and enhanced anxiety-like behavior. Mol Endocrinol 27:1091–1102

    PubMed  CAS  Google Scholar 

  32. Challis BG, Coll AP, Yeo GS, Pinnock SB, Dickson SL, Thresher RR, Dixon J, Zahn D, Rochford JJ, White A, Oliver RL, Millington G, Aparicio SA, Colledge WH, Russ AP, Carlton MB, O’Rahilly S (2004) Mice lacking pro-opiomelanocortin are sensitive to high-fat feeding but respond normally to the acute anorectic effects of peptide-YY (3–36). Proc Natl Acad Sci USA 101:4695–4700

    PubMed  CAS  PubMed Central  Google Scholar 

  33. Yaswen L, Diehl N, Brennan MB, Hochgeschwender U (1999) Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. Nat Med 5:1066–1070

    PubMed  CAS  Google Scholar 

  34. Krude H, Biebermann H, Luck W, Horn R, Brabant G, Gruters A (1998) Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet 19:155–157

    PubMed  CAS  Google Scholar 

  35. Clement K, Dubern B, Mencarelli M, Czernichow P, Ito S, Wakamatsu K, Barsh GS, Vaisse C, Leger J (2008) Unexpected endocrine features and normal pigmentation in a young adult patient carrying a novel homozygous mutation in the POMC gene. J Clin Endocrinol Metab 93:4955–4962

    PubMed  CAS  PubMed Central  Google Scholar 

  36. Dubern B, Lubrano-Berthelier C, Mencarelli M, Ersoy B, Frelut ML, Bougle D, Costes B, Simon C, Tounian P, Vaisse C, Clement K (2008) Mutational analysis of the pro-opiomelanocortin gene in French obese children led to the identification of a novel deleterious heterozygous mutation located in the alpha-melanocyte stimulating hormone domain. Pediatr Res 63:211–216

    PubMed  CAS  Google Scholar 

  37. Mizuno TM, Kelley KA, Pasinetti GM, Roberts JL, Mobbs CV (2003) Transgenic neuronal expression of proopiomelanocortin attenuates hyperphagic response to fasting and reverses metabolic impairments in leptin-deficient obese mice. Diabetes 52:2675–2683

    PubMed  CAS  Google Scholar 

  38. Li G, Mobbs CV, Scarpace PJ (2003) Central pro-opiomelanocortin gene delivery results in hypophagia, reduced visceral adiposity, and improved insulin sensitivity in genetically obese Zucker rats. Diabetes 52:1951–1957

    PubMed  CAS  Google Scholar 

  39. Savontaus E, Breen TL, Kim A, Yang LM, Chua SC Jr, Wardlaw SL (2004) Metabolic effects of transgenic melanocyte-stimulating hormone overexpression in lean and obese mice. Endocrinology 145:3881–3891

    PubMed  CAS  Google Scholar 

  40. Sohn JW, Xu Y, Jones JE, Wickman K, Williams KW, Elmquist JK (2011) Serotonin 2C receptor activates a distinct population of arcuate pro-opiomelanocortin neurons via TRPC channels. Neuron 71:488–497

    PubMed  CAS  PubMed Central  Google Scholar 

  41. Sohn JW, Williams KW (2012) Functional heterogeneity of arcuate nucleus pro-opiomelanocortin neurons: implications for diverging melanocortin pathways. Mol Neurobiol 45:225–233

    PubMed  CAS  PubMed Central  Google Scholar 

  42. Huo L, Grill HJ, Bjorbaek C (2006) Divergent regulation of proopiomelanocortin neurons by leptin in the nucleus of the solitary tract and in the arcuate hypothalamic nucleus. Diabetes 55:567–573

    PubMed  CAS  Google Scholar 

  43. Kim MS, Pak YK, Jang PG, Namkoong C, Choi YS, Won JC, Kim KS, Kim SW, Kim HS, Park JY, Kim YB, Lee KU (2006) Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis. Nat Neurosci 9:901–906

    PubMed  CAS  Google Scholar 

  44. Kitamura T, Feng Y, Kitamura YI, Chua SC Jr, Xu AW, Barsh GS, Rossetti L, Accili D (2006) Forkhead protein FoxO1 mediates agrp-dependent effects of leptin on food intake. Nat Med 12:534–540

    PubMed  CAS  Google Scholar 

  45. Xu AW, Ste-Marie L, Kaelin CB, Barsh GS (2007) Inactivation of signal transducer and activator of transcription 3 in proopiomelanocortin (Pomc) neurons causes decreased pomc expression, mild obesity, and defects in compensatory refeeding. Endocrinology 148:72–80

    PubMed  CAS  Google Scholar 

  46. Ernst MB, Wunderlich CM, Hess S, Paehler M, Mesaros A, Koralov SB, Kleinridders A, Husch A, Munzberg H, Hampel B, Alber J, Kloppenburg P, Bruning JC, Wunderlich FT (2009) Enhanced Stat3 activation in POMC neurons provokes negative feedback inhibition of leptin and insulin signaling in obesity. J Neurosci 29:11582–11593

    PubMed  CAS  Google Scholar 

  47. Kim JG, Nam-Goong IS, Yun CH, Jeong JK, Kim ES, Park JJ, Lee YC, Kim YI, Lee BJ (2006) TTF-1, a homeodomain-containing transcription factor, regulates feeding behavior in the rat hypothalamus. Biochem Biophys Res Commun 349:969–975

    PubMed  CAS  Google Scholar 

  48. Kim JG, Park BS, Yun CH, Kim HJ, Kang SS, D’Elia AV, Damante G, Lee KU, Park JW, Kim ES, Namgoong IS, Kim YI, Lee BJ (2011) Thyroid transcription factor-1 regulates feeding behavior via melanocortin pathway in the hypothalamus. Diabetes 60:710–719

    PubMed  CAS  PubMed Central  Google Scholar 

  49. Sakkou M, Wiedmer P, Anlag K, Hamm A, Seuntjens E, Ettwiller L, Tschop MH, Treier M (2007) A role for brain-specific homeobox factor Bsx in the control of hyperphagia and locomotory behavior. Cell Metab 5:450–463

    PubMed  CAS  Google Scholar 

  50. Thaler JP, Yi CX, Schur EA, Guyenet SJ, Hwang BH, Dietrich MO, Zhao X, Sarruf DA, Izgur V, Maravilla KR, Nguyen HT, Fischer JD, Matsen ME, Wisse BE, Morton GJ, Horvath TL, Baskin DG, Tschop MH, Schwartz MW (2012) Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest 122:153–162

    PubMed  CAS  PubMed Central  Google Scholar 

  51. Sergeyev V, Broberger C, Hokfelt T (2001) Effect of LPS administration on the expression of POMC, NPY, galanin, CART and MCH mRNAs in the rat hypothalamus. Brain Res Mol Brain Res 90:93–100

    PubMed  CAS  Google Scholar 

  52. Scarlett JM, Jobst EE, Enriori PJ, Bowe DD, Batra AK, Grant WF, Cowley MA, Marks DL (2007) Regulation of central melanocortin signaling by interleukin-1 beta. Endocrinology 148:4217–4225

    PubMed  CAS  Google Scholar 

  53. DeBoer MD, Scarlett JM, Levasseur PR, Grant WF, Marks DL (2009) Administration of IL-1beta to the 4th ventricle causes anorexia that is blocked by agouti-related peptide and that coincides with activation of tyrosine-hydroxylase neurons in the nucleus of the solitary tract. Peptides 30:210–218

    PubMed  CAS  PubMed Central  Google Scholar 

  54. Marks DL, Ling N, Cone RD (2001) Role of the central melanocortin system in cachexia. Cancer Res 61:1432–1438

    PubMed  CAS  Google Scholar 

  55. Huang QH, Hruby VJ, Tatro JB (1999) Role of central melanocortins in endotoxin-induced anorexia. Am J Physiol 276:R864–R871

    PubMed  CAS  Google Scholar 

  56. Wisse BE, Frayo RS, Schwartz MW, Cummings DE (2001) Reversal of cancer anorexia by blockade of central melanocortin receptors in rats. Endocrinology 142:3292–3301

    PubMed  CAS  Google Scholar 

  57. Qi Y, Takahashi N, Hileman SM, Patel HR, Berg AH, Pajvani UB, Scherer PE, Ahima RS (2004) Adiponectin acts in the brain to decrease body weight. Nat Med 10:524–529

    PubMed  CAS  Google Scholar 

  58. Guillod-Maximin E, Roy AF, Vacher CM, Aubourg A, Bailleux V, Lorsignol A, Penicaud L, Parquet M, Taouis M (2009) Adiponectin receptors are expressed in hypothalamus and colocalized with proopiomelanocortin and neuropeptide Y in rodent arcuate neurons. J Endocrinol 200:93–105

    PubMed  CAS  Google Scholar 

  59. Park BS, Jin SH, Park JJ, Park JW, Namgoong IS, Kim YI, Lee BJ, Kim JG (2011) Visfatin induces sickness responses in the brain. PLoS One 6:e15981

    PubMed  CAS  PubMed Central  Google Scholar 

  60. Brunetti L, Di Nisio C, Recinella L, Chiavaroli A, Leone S, Ferrante C, Orlando G, Vacca M (2011) Effects of vaspin, chemerin and omentin-1 on feeding behavior and hypothalamic peptide gene expression in the rat. Peptides 32:1866–1871

    PubMed  CAS  Google Scholar 

  61. Kloting N, Kovacs P, Kern M, Heiker JT, Fasshauer M, Schon MR, Stumvoll M, Beck-Sickinger AG, Bluher M (2011) Central vaspin administration acutely reduces food intake and has sustained blood glucose-lowering effects. Diabetologia 54:1819–1823

    PubMed  CAS  Google Scholar 

  62. Reaux-Le Goazigo A, Bodineau L, De Mota N, Jeandel L, Chartrel N, Knauf C, Raad C, Valet P, Llorens-Cortes C (2011) Apelin and the proopiomelanocortin system: a new regulatory pathway of hypothalamic alpha-MSH release. Am J Physiol Endocrinol Metab 301:E955–E966

    PubMed  CAS  Google Scholar 

  63. Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395:763–770

    PubMed  CAS  Google Scholar 

  64. Chua SC Jr, Chung WK, Wu-Peng XS, Zhang Y, Liu SM, Tartaglia L, Leibel RL (1996) Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science 271:994–996

    PubMed  CAS  Google Scholar 

  65. Ahima RS, Kelly J, Elmquist JK, Flier JS (1999) Distinct physiologic and neuronal responses to decreased leptin and mild hyperleptinemia. Endocrinology 140:4923–4931

    PubMed  CAS  Google Scholar 

  66. Lee GH, Proenca R, Montez JM, Carroll KM, Darvishzadeh JG, Lee JI, Friedman JM (1996) Abnormal splicing of the leptin receptor in diabetic mice. Nature 379:632–635

    PubMed  CAS  Google Scholar 

  67. Balthasar N, Coppari R, McMinn J, Liu SM, Lee CE, Tang V, Kenny CD, McGovern RA, Chua SC Jr, Elmquist JK, Lowell BB (2004) Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron 42:983–991

    PubMed  CAS  Google Scholar 

  68. Dhillon H, Zigman JM, Ye C, Lee CE, McGovern RA, Tang V, Kenny CD, Christiansen LM, White RD, Edelstein EA, Coppari R, Balthasar N, Cowley MA, Chua SC Jr, Elmquist JK, Lowell BB (2006) Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron 49:191–203

    PubMed  CAS  Google Scholar 

  69. Bingham NC, Anderson KK, Reuter AL, Stallings NR, Parker KL (2008) Selective loss of leptin receptors in the ventromedial hypothalamic nucleus results in increased adiposity and a metabolic syndrome. Endocrinology 149:2138–2148

    PubMed  CAS  PubMed Central  Google Scholar 

  70. Halaas JL, Boozer C, Blair-West J, Fidahusein N, Denton DA, Friedman JM (1997) Physiological response to long-term peripheral and central leptin infusion in lean and obese mice. Proc Natl Acad Sci USA 94:8878–8883

    PubMed  CAS  PubMed Central  Google Scholar 

  71. Bates SH, Dundon TA, Seifert M, Carlson M, Maratos-Flier E, Myers MG Jr (2004) LRb-STAT3 signaling is required for the neuroendocrine regulation of energy expenditure by leptin. Diabetes 53:3067–3073

    PubMed  CAS  Google Scholar 

  72. Elmquist JK, Maratos-Flier E, Saper CB, Flier JS (1998) Unraveling the central nervous system pathways underlying responses to leptin. Nat Neurosci 1:445–450

    PubMed  CAS  Google Scholar 

  73. Scott MM, Lachey JL, Sternson SM, Lee CE, Elias CF, Friedman JM, Elmquist JK (2009) Leptin targets in the mouse brain. J Comp Neurol 514:518–532

    PubMed  CAS  PubMed Central  Google Scholar 

  74. Patterson CM, Leshan RL, Jones JC, Myers MG Jr (2011) Molecular mapping of mouse brain regions innervated by leptin receptor-expressing cells. Brain Res 1378:18–28

    PubMed  CAS  Google Scholar 

  75. Caron E, Sachot C, Prevot V, Bouret SG (2010) Distribution of leptin-sensitive cells in the postnatal and adult mouse brain. J Comp Neurol 518:459–476

    PubMed  CAS  Google Scholar 

  76. van de Wall E, Leshan R, Xu AW, Balthasar N, Coppari R, Liu SM, Jo YH, MacKenzie RG, Allison DB, Dun NJ, Elmquist J, Lowell BB, Barsh GS, de Luca C, Myers MG Jr, Schwartz GJ, Chua SC Jr (2008) Collective and individual functions of leptin receptor modulated neurons controlling metabolism and ingestion. Endocrinology 149:1773–1785

    PubMed  PubMed Central  Google Scholar 

  77. Korner J, Chua SC Jr, Williams JA, Leibel RL, Wardlaw SL (1999) Regulation of hypothalamic proopiomelanocortin by leptin in lean and obese rats. Neuroendocrinology 70:377–383

    PubMed  CAS  Google Scholar 

  78. Munzberg H, Huo L, Nillni EA, Hollenberg AN, Bjorbaek C (2003) Role of signal transducer and activator of transcription 3 in regulation of hypothalamic proopiomelanocortin gene expression by leptin. Endocrinology 144:2121–2131

    PubMed  CAS  Google Scholar 

  79. Cowley MA, Smart JL, Rubinstein M, Cerdan MG, Diano S, Horvath TL, Cone RD, Low MJ (2001) Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411:480–484

    PubMed  CAS  Google Scholar 

  80. Schwartz MW, Seeley RJ, Woods SC, Weigle DS, Campfield LA, Burn P, Baskin DG (1997) Leptin increases hypothalamic pro-opiomelanocortin mRNA expression in the rostral arcuate nucleus. Diabetes 46:2119–2123

    PubMed  CAS  Google Scholar 

  81. Benoit SC, Air EL, Coolen LM, Strauss R, Jackman A, Clegg DJ, Seeley RJ, Woods SC (2002) The catabolic action of insulin in the brain is mediated by melanocortins. J Neurosci 22:9048–9052

    PubMed  CAS  Google Scholar 

  82. Xu AW, Kaelin CB, Takeda K, Akira S, Schwartz MW, Barsh GS (2005) PI3K integrates the action of insulin and leptin on hypothalamic neurons. J Clin Invest 115:951–958

    PubMed  CAS  PubMed Central  Google Scholar 

  83. Williams KW, Margatho LO, Lee CE, Choi M, Lee S, Scott MM, Elias CF, Elmquist JK (2010) Segregation of acute leptin and insulin effects in distinct populations of arcuate proopiomelanocortin neurons. J Neurosci 30:2472–2479

    PubMed  CAS  PubMed Central  Google Scholar 

  84. Smith AI, Funder JW (1988) Proopiomelanocortin processing in the pituitary, central nervous system, and peripheral tissues. Endocr Rev 9:159–179

    PubMed  CAS  Google Scholar 

  85. Castro MG, Morrison E (1997) Post-translational processing of proopiomelanocortin in the pituitary and in the brain. Crit Rev Neurobiol 11:35–57

    PubMed  CAS  Google Scholar 

  86. Wardlaw SL (2011) Hypothalamic proopiomelanocortin processing and the regulation of energy balance. Eur J Pharmacol 660:213–219

    PubMed  CAS  PubMed Central  Google Scholar 

  87. Lee M, Kim A, Chua SC Jr, Obici S, Wardlaw SL (2007) Transgenic MSH overexpression attenuates the metabolic effects of a high-fat diet. Am J Physiol Endocrinol Metab 293:E121–E131

    PubMed  CAS  Google Scholar 

  88. Wallingford N, Perroud B, Gao Q, Coppola A, Gyengesi E, Liu ZW, Gao XB, Diament A, Haus KA, Shariat-Madar Z, Mahdi F, Wardlaw SL, Schmaier AH, Warden CH, Diano S (2009) Prolylcarboxypeptidase regulates food intake by inactivating alpha-MSH in rodents. J Clin Invest 119:2291–2303

    PubMed  CAS  PubMed Central  Google Scholar 

  89. Jeong JK, Szabo G, Raso GM, Meli R, Diano S (2012) Deletion of prolyl carboxypeptidase attenuates the metabolic effects of diet-induced obesity. Am J Physiol Endocrinol Metab 302:E1502–E1510

    PubMed  CAS  PubMed Central  Google Scholar 

  90. Jeong JK, Szabo G, Kelly K, Diano S (2012) Prolyl carboxypeptidase regulates energy expenditure and the thyroid axis. Endocrinology 153:683–689

    PubMed  CAS  PubMed Central  Google Scholar 

  91. Jeong JK, Diano S (2013) Prolyl carboxypeptidase and its inhibitors in metabolism. Trends Endocrinol Metab 24:61–67

    PubMed  CAS  PubMed Central  Google Scholar 

  92. Jeong JK, Kim JD, Diano S (2013) Ghrelin regulates hypothalamic prolyl carboxypeptidase expression in mice. Mol Metab 2:23–30

    CAS  Google Scholar 

  93. Mountjoy KG, Wild JM (1998) Melanocortin-4 receptor mRNA expression in the developing autonomic and central nervous systems. Brain Res Dev Brain Res 107:309–314

    PubMed  CAS  Google Scholar 

  94. Tatro JB (1990) Melanotropin receptors in the brain are differentially distributed and recognize both corticotropin and alpha-melanocyte stimulating hormone. Brain Res 536:124–132

    PubMed  CAS  Google Scholar 

  95. Xia Y, Wikberg JE, Chhajlani V (1995) Expression of melanocortin 1 receptor in periaqueductal gray matter. NeuroReport 6:2193–2196

    PubMed  CAS  Google Scholar 

  96. Mountjoy KG (2010) Distribution and function of melanocortin receptors within the brain. Adv Exp Med Biol 681:29–48

    PubMed  CAS  Google Scholar 

  97. Cone RD, Mountjoy KG (1993) Molecular genetics of the ACTH and melanocyte-stimulating hormone receptors. Trends Endocrinol Metab 4:242–247

    PubMed  CAS  Google Scholar 

  98. Butler AA, Kesterson RA, Khong K, Cullen MJ, Pelleymounter MA, Dekoning J, Baetscher M, Cone RD (2000) A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mouse. Endocrinology 141:3518–3521

    PubMed  CAS  Google Scholar 

  99. Chen AS, Metzger JM, Trumbauer ME, Guan XM, Yu H, Frazier EG, Marsh DJ, Forrest MJ, Gopal-Truter S, Fisher J, Camacho RE, Strack AM, Mellin TN, Maclntyre DE, Chen HY, Van der Ploeg LH (2000) Role of the melanocortin-4 receptor in metabolic rate and food intake in mice. Transgenic Res 9:145–154

    PubMed  CAS  Google Scholar 

  100. Roselli-Rehfuss L, Mountjoy KG, Robbins LS, Mortrud MT, Low MJ, Tatro JB, Entwistle ML, Simerly RB, Cone RD (1993) Identification of a receptor for gamma melanotropin and other proopiomelanocortin peptides in the hypothalamus and limbic system. Proc Natl Acad Sci USA 90:8856–8860

    PubMed  CAS  PubMed Central  Google Scholar 

  101. Gantz I, Konda Y, Tashiro T, Shimoto Y, Miwa H, Munzert G, Watson SJ, DelValle J, Yamada T (1993) Molecular cloning of a novel melanocortin receptor. J Biol Chem 268:8246–8250

    PubMed  CAS  Google Scholar 

  102. Jegou S, Boutelet I, Vaudry H (2000) Melanocortin-3 receptor mRNA expression in pro-opiomelanocortin neurones of the rat arcuate nucleus. J Neuroendocrinol 12:501–505

    PubMed  CAS  Google Scholar 

  103. Bagnol D, Lu XY, Kaelin CB, Day HE, Ollmann M, Gantz I, Akil H, Barsh GS, Watson SJ (1999) Anatomy of an endogenous antagonist: relationship between Agouti-related protein and proopiomelanocortin in brain. J Neurosci 19:RC26

    PubMed  CAS  Google Scholar 

  104. Li WD, Joo EJ, Furlong EB, Galvin M, Abel K, Bell CJ, Price RA (2000) Melanocortin 3 receptor (MC3R) gene variants in extremely obese women. Int J Obes Relat Metab Disord 24:206–210

    PubMed  CAS  Google Scholar 

  105. Calton MA, Ersoy BA, Zhang S, Kane JP, Malloy MJ, Pullinger CR, Bromberg Y, Pennacchio LA, Dent R, McPherson R, Ahituv N, Vaisse C (2009) Association of functionally significant melanocortin-4 but not melanocortin-3 receptor mutations with severe adult obesity in a large North American case-control study. Hum Mol Genet 18:1140–1147

    PubMed  CAS  PubMed Central  Google Scholar 

  106. Begriche K, Marston OJ, Rossi J, Burke LK, McDonald P, Heisler LK, Butler AA (2012) Melanocortin-3 receptors are involved in adaptation to restricted feeding. Genes Brain Behav 11:291–302

    PubMed  CAS  PubMed Central  Google Scholar 

  107. Fan W, Boston BA, Kesterson RA, Hruby VJ, Cone RD (1997) Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 385:165–168

    PubMed  CAS  Google Scholar 

  108. Yeo GS, Farooqi IS, Aminian S, Halsall DJ, Stanhope RG, O’Rahilly S (1998) A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat Genet 20:111–112

    PubMed  CAS  Google Scholar 

  109. Cone RD (2006) Studies on the physiological functions of the melanocortin system. Endocr Rev 27:736–749

    PubMed  CAS  Google Scholar 

  110. Mountjoy KG, Mortrud MT, Low MJ, Simerly RB, Cone RD (1994) Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brain. Mol Endocrinol 8:1298–1308

    PubMed  CAS  Google Scholar 

  111. Mountjoy KG, Jenny Wu CS, Dumont LM, Wild JM (2003) Melanocortin-4 receptor messenger ribonucleic acid expression in rat cardiorespiratory, musculoskeletal, and integumentary systems. Endocrinology 144:5488–5496

    PubMed  CAS  Google Scholar 

  112. Kishi T, Aschkenasi CJ, Lee CE, Mountjoy KG, Saper CB, Elmquist JK (2003) Expression of melanocortin 4 receptor mRNA in the central nervous system of the rat. J Comp Neurol 457:213–235

    PubMed  CAS  Google Scholar 

  113. Daniel PB, Fernando C, Wu CS, Marnane R, Broadhurst R, Mountjoy KG (2005) 1 kb of 5′ flanking sequence from mouse MC4R gene is sufficient for tissue specific expression in a transgenic mouse. Mol Cell Endocrinol 239:63–71

    PubMed  CAS  Google Scholar 

  114. Liu H, Kishi T, Roseberry AG, Cai X, Lee CE, Montez JM, Friedman JM, Elmquist JK (2003) Transgenic mice expressing green fluorescent protein under the control of the melanocortin-4 receptor promoter. J Neurosci 23:7143–7154

    PubMed  CAS  Google Scholar 

  115. Geller F, Reichwald K, Dempfle A, Illig T, Vollmert C, Herpertz S, Siffert W, Platzer M, Hess C, Gudermann T, Biebermann H, Wichmann HE, Schafer H, Hinney A, Hebebrand J (2004) Melanocortin-4 receptor gene variant I103 is negatively associated with obesity. Am J Hum Genet 74:572–581

    PubMed  CAS  PubMed Central  Google Scholar 

  116. Stutzmann F, Vatin V, Cauchi S, Morandi A, Jouret B, Landt O, Tounian P, Levy-Marchal C, Buzzetti R, Pinelli L, Balkau B, Horber F, Bougneres P, Froguel P, Meyre D (2007) Non-synonymous polymorphisms in melanocortin-4 receptor protect against obesity: the two facets of a Janus obesity gene. Hum Mol Genet 16:1837–1844

    PubMed  CAS  Google Scholar 

  117. Heid IM, Vollmert C, Hinney A, Doring A, Geller F, Lowel H, Wichmann HE, Illig T, Hebebrand J, Kronenberg F, Group K (2005) Association of the 103I MC4R allele with decreased body mass in 7937 participants of two population based surveys. J Med Genet 42:e21

    PubMed  CAS  PubMed Central  Google Scholar 

  118. Chan LF, Webb TR, Chung TT, Meimaridou E, Cooray SN, Guasti L, Chapple JP, Egertova M, Elphick MR, Cheetham ME, Metherell LA, Clark AJ (2009) MRAP and MRAP2 are bidirectional regulators of the melanocortin receptor family. Proc Natl Acad Sci USA 106:6146–6151

    PubMed  CAS  PubMed Central  Google Scholar 

  119. Noon LA, Franklin JM, King PJ, Goulding NJ, Hunyady L, Clark AJ (2002) Failed export of the adrenocorticotrophin receptor from the endoplasmic reticulum in non-adrenal cells: evidence in support of a requirement for a specific adrenal accessory factor. J Endocrinol 174:17–25

    PubMed  CAS  Google Scholar 

  120. Sebag JA, Zhang C, Hinkle PM, Bradshaw AM, Cone RD (2013) Developmental control of the melanocortin-4 receptor by MRAP2 proteins in zebrafish. Science 341:278–281

    PubMed  CAS  Google Scholar 

  121. Asai M, Ramachandrappa S, Joachim M, Shen Y, Zhang R, Nuthalapati N, Ramanathan V, Strochlic DE, Ferket P, Linhart K, Ho C, Novoselova TV, Garg S, Ridderstrale M, Marcus C, Hirschhorn JN, Keogh JM, O’Rahilly S, Chan LF, Clark AJ, Faroogi IS, Majzoub JA (2013) Loss of function of the melanocortin 2 receptor accessory protein 2 is associated with mammalian obesity. Science 341:275–278

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the Research Fund of University of Ulsan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung Ju Lee.

Additional information

Jin Kwon Jeong and Jae Geun Kim have contributed equally to preparation of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, J.K., Kim, J.G. & Lee, B.J. Participation of the central melanocortin system in metabolic regulation and energy homeostasis. Cell. Mol. Life Sci. 71, 3799–3809 (2014). https://doi.org/10.1007/s00018-014-1650-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1650-z

Keywords

Navigation