Skip to main content

Advertisement

Log in

Gene activation and cell fate control in plants: a chromatin perspective

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

In plants, environment-adaptable organogenesis extends throughout the lifespan, and iterative development requires repetitive rounds of activation and repression of several sets of genes. Eukaryotic genome compaction into chromatin forms a physical barrier for transcription; therefore, induction of gene expression requires alteration in chromatin structure. One of the present great challenges in molecular and developmental biology is to understand how chromatin is brought from a repressive to permissive state on specific loci and in a very specific cluster of cells, as well as how this state is further maintained and propagated through time and cell division in a cell lineage. In this review, we report recent discoveries implementing our knowledge on chromatin dynamics that modulate developmental gene expression. We also discuss how new data sets highlight plant specificities, likely reflecting requirement for a highly dynamic chromatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fornara, F., de Montaigu, A., Coupland, G. (2010) SnapShot: Control of flowering in Arabidopsis. Cell 141:550, 550.e1-550, 550.e2

    Google Scholar 

  2. Kaufmann K, Nagasaki M, Jáuregui R (2010) Modelling the molecular interactions in the flower developmental network of Arabidopsis thaliana. In Silico Biol 10:125–143

    CAS  PubMed  Google Scholar 

  3. Posé D, Yant L, Schmid M (2012) The end of innocence: flowering networks explode in complexity. Curr Opin Plant Biol 15:45–50

    PubMed  Google Scholar 

  4. Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37

    CAS  PubMed  Google Scholar 

  5. Krizek BA, Fletcher JC (2005) Molecular mechanisms of flower development: an armchair guide. Nat Rev Genet 6:688–698

    CAS  PubMed  Google Scholar 

  6. Goodrich J, Puangsomlee P, Martin M, Long D, Meyerowitz EM, Coupland G (1997) A Polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature 386:44–51

    CAS  PubMed  Google Scholar 

  7. Yoshida N, Yanai Y, Chen L, Kato Y, Hiratsuka J, Miwa T, Sung ZR, Takahashi S (2001) EMBRYONIC FLOWER2, a novel polycomb group protein homolog, mediates shoot development and flowering in Arabidopsis. Plant Cell 13:2471–2481

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Wagner D, Meyerowitz EM (2002) SPLAYED, a novel SWI/SNF ATPase homolog, controls reproductive development in Arabidopsis. Curr Biol 12:85–94

    CAS  PubMed  Google Scholar 

  9. Alvarez-Venegas R, Pien S, Sadder M, Witmer X, Grossniklaus U, Avramova Z (2003) ATX-1, an Arabidopsis homolog of trithorax, activates flower homeotic genes. Curr Biol 13:627–637

    CAS  PubMed  Google Scholar 

  10. Chanvivattana Y, Bishopp A, Schubert D, Stock C, Moon Y-H, Sung ZR, Goodrich J (2004) Interaction of Polycomb-group proteins controlling flowering in Arabidopsis. Development 131:5263–5276

    CAS  PubMed  Google Scholar 

  11. Farrona S, Hurtado L, Bowman JL, Reyes JC (2004) The Arabidopsis thaliana SNF2 homolog AtBRM controls shoot development and flowering. Development 131:4965–4975

    CAS  PubMed  Google Scholar 

  12. Turck F, Roudier F, Farrona S, Martin-Magniette M-L, Guillaume E, Buisine N, Gagnot S, Martienssen RA, Coupland G, Colot V (2007) Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27. PLoS Genet 3:e86

    PubMed Central  PubMed  Google Scholar 

  13. Zhang X, Clarenz O, Cokus S, Bernatavichute YV, Pellegrini M, Goodrich J, Jacobsen SE (2007) Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol 5:e129

    PubMed Central  PubMed  Google Scholar 

  14. Lafos M, Kroll P, Hohenstatt ML, Thorpe FL, Clarenz O, Schubert D (2011) Dynamic regulation of H3K27 trimethylation during Arabidopsis differentiation. PLoS Genet 7:e1002040

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Engelhorn J, Reimer JJ, Leuz I, Göbel U, Huettel B, Farrona S, Turck F (2012) Development-related PcG target in the apex 4 controls leaf margin architecture in Arabidopsis thaliana. Development 139:2566–2575

    CAS  PubMed  Google Scholar 

  16. Kim SY, Lee J, Eshed-Williams L, Zilberman D, Sung ZR (2012) EMF1 and PRC2 cooperate to repress key regulators of Arabidopsis development. PLoS Genet 8:e1002512

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Zhang W, Zhang T, Wu Y, Jiang J (2012) Genome-wide identification of regulatory DNA elements and protein-binding footprints using signatures of open chromatin in Arabidopsis. Plant Cell 24:2719–2731

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Gan E-S, Huang J, Ito T (2013) Functional roles of histone modification, chromatin remodeling and microRNAs in Arabidopsis flower development. Int Rev Cell Mol Biol 305:115–161

    CAS  PubMed  Google Scholar 

  19. Lauria M, Rossi V (2011) Epigenetic control of gene regulation in plants. Biochim Biophys Acta 1809:369–378

    CAS  PubMed  Google Scholar 

  20. Bai L, Morozov AV (2010) Gene regulation by nucleosome positioning. Trends Genet 26:476–483

    CAS  PubMed  Google Scholar 

  21. Grewal SIS, Elgin SCR (2007) Transcription and RNA interference in the formation of heterochromatin. Nature 447:399–406

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Chodavarapu RK, Feng S, Bernatavichute YV, Chen P-Y, Stroud H, Yu Y, Hetzel JA, Kuo F, Kim J, Cokus SJ, Casero D, Bernal M, Huijser P, Clark AT, Krämer U, Merchant SS, Zhang X, Jacobsen SE, Pellegrini M (2010) Relationship between nucleosome positioning and DNA methylation. Nature 466:388–392

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Andersson R, Enroth S, Rada-Iglesias A, Wadelius C, Komorowski J (2009) Nucleosomes are well positioned in exons and carry characteristic histone modifications. Genome Res 19:1732–1741

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Schwartz S, Meshorer E, Ast G (2009) Chromatin organization marks exon-intron structure. Nat Struct Mol Biol 16:990–995

    CAS  PubMed  Google Scholar 

  25. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    CAS  PubMed  Google Scholar 

  26. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    CAS  PubMed  Google Scholar 

  27. Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260

    CAS  PubMed  Google Scholar 

  28. Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447:407–412

    CAS  PubMed  Google Scholar 

  29. Cubeñas-Potts C, Matunis MJ (2013) SUMO: a multifaceted modifier of chromatin structure and function. Dev Cell 24:1–12

    PubMed Central  PubMed  Google Scholar 

  30. Kraus WL, Hottiger MO (2013) PARP-1 and gene regulation: progress and puzzles. Mol Asp Med 34:1109–1123

    CAS  Google Scholar 

  31. Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128:707–719

    CAS  PubMed  Google Scholar 

  32. Miller MJ, Vierstra RD (2011) Mass spectrometric identification of SUMO substrates provides insights into heat stress-induced SUMOylation in plants. Plant Signal Behav 6:130–133

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Roudier F, Ahmed I, Bérard C, Sarazin A, Mary-Huard T, Cortijo S, Bouyer D, Caillieux E, Duvernois-Berthet E, Al-Shikhley L, Giraut L, Després B, Drevensek S, Barneche F, Dèrozier S, Brunaud V, Aubourg S, Schnittger A, Bowler C, Martin-Magniette M-L, Robin S, Caboche M, Colot V (2011) Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO J 30:1928–1938

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Hennig L, Derkacheva M (2009) Diversity of polycomb group complexes in plants: same rules, different players? Trends Genet 25:414–423

    CAS  PubMed  Google Scholar 

  35. Bemer M, Grossniklaus U (2012) Dynamic regulation of Polycomb group activity during plant development. Curr Opin Plant Biol 15:523–529

    CAS  PubMed  Google Scholar 

  36. Morey L, Helin K (2010) Polycomb group protein-mediated repression of transcription. Trends Biochem Sci 35:323–332

    CAS  PubMed  Google Scholar 

  37. Molitor A, Shen W-H (2013) The polycomb complex PRC1: composition and function in plants. J Genet Genomics 40:231–238

    CAS  PubMed  Google Scholar 

  38. Calonje M, Sanchez R, Chen L, Sung ZR (2008) EMBRYONIC FLOWER1 participates in polycomb group-mediated AG gene silencing in Arabidopsis. Plant Cell 20:277–291

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Calonje M (2013) PRC1 marks the difference in plant PcG repression. Mol Plant 7:459–471

    PubMed  Google Scholar 

  40. Schwartz YB, Pirrotta V (2013) A new world of Polycombs: unexpected partnerships and emerging functions. Nat Rev Genet 14:853–864

    CAS  PubMed  Google Scholar 

  41. Yang C, Bratzel F, Hohmann N, Koch M, Turck F, Calonje M (2013) VAL- and AtBMI1-mediated H2Aub initiate the switch from embryonic to postgerminative growth in Arabidopsis. Curr Biol 23:1324–1329

    CAS  PubMed  Google Scholar 

  42. Zheng B, Chen X (2011) Dynamics of histone H3 lysine 27 trimethylation in plant development. Curr Opin Plant Biol 14:123–129

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Aichinger E, Villar CBR, Farrona S, Reyes JC, Hennig L, Köhler C (2009) CHD3 proteins and polycomb group proteins antagonistically determine cell identity in Arabidopsis. PLoS Genet 5:e1000605

    PubMed Central  PubMed  Google Scholar 

  44. He C, Chen X, Huang H, Xu L (2012) Reprogramming of H3K27me3 is critical for acquisition of pluripotency from cultured Arabidopsis tissues. PLoS Genet 8:e1002911

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Grimaud C, Nègre N, Cavalli G (2006) From genetics to epigenetics: the tale of Polycomb group and trithorax group genes. Chromosome Res 14:363–375

    CAS  PubMed  Google Scholar 

  46. Schuettengruber B, Martinez A-M, Iovino N, Cavalli G (2011) Trithorax group proteins: switching genes on and keeping them active. Nat Rev Mol Cell Biol 12:799–814

    CAS  PubMed  Google Scholar 

  47. Berr A, Shafiq S, Shen W-H (2011) Histone modifications in transcriptional activation during plant development. Biochim Biophys Acta 1809:567–576

    CAS  PubMed  Google Scholar 

  48. Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW-L, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, Ecker JR (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell 126:1189–1201

    CAS  PubMed  Google Scholar 

  49. Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39:61–69

    CAS  PubMed  Google Scholar 

  50. Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Hsieh T-F, Ibarra CA, Silva P, Zemach A, Eshed-Williams L, Fischer RL, Zilberman D (2009) Genome-wide demethylation of Arabidopsis endosperm. Science 324:1451–1454

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Zemach A, Kim MY, Silva P, Rodrigues JA, Dotson B, Brooks MD, Zilberman D (2010) Local DNA hypomethylation activates genes in rice endosperm. Proc Natl Acad Sci USA 107:18729–18734

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Feng S, Cokus SJ, Zhang X, Chen P-Y, Bostick M, Goll MG, Hetzel J, Jain J, Strauss SH, Halpern ME, Ukomadu C, Sadler KC, Pradhan S, Pellegrini M, Jacobsen SE (2010) Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci USA 107:8689–8694

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Laurent L, Wong E, Li G, Huynh T, Tsirigos A, Ong CT, Low HM, Sung KWK, Rigoutsos I, Loring J, Wei C-L (2010) Dynamic changes in the human methylome during differentiation. Genome Res 20:320–331

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Zemach A, Grafi G (2007) Methyl-CpG-binding domain proteins in plants: interpreters of DNA methylation. Trends Plant Sci 12:80–85

    CAS  PubMed  Google Scholar 

  57. Zemach A, Grafi G (2003) Characterization of Arabidopsis thaliana methyl-CpG-binding domain (MBD) proteins. Plant J 34:565–572

    CAS  PubMed  Google Scholar 

  58. Zemach A, Li Y, Wayburn B, Ben-Meir H, Kiss V, Avivi Y, Kalchenko V, Jacobsen SE, Grafi G (2005) DDM1 binds Arabidopsis methyl-CpG binding domain proteins and affects their subnuclear localization. Plant Cell 17:1549–1558

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Huff JT, Zilberman D (2012) Regulation of biological accuracy, precision, and memory by plant chromatin organization. Curr Opin Genet Dev 22:132–138

    CAS  PubMed  Google Scholar 

  60. Bernatavichute YV, Zhang X, Cokus S, Pellegrini M, Jacobsen SE (2008) Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana. PLoS One 3:e3156

    PubMed Central  PubMed  Google Scholar 

  61. Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Hsieh T-F, Fischer RL (2005) Biology of chromatin dynamics. Annu Rev Plant Biol 56:327–351

    CAS  PubMed  Google Scholar 

  63. Zhang H, Zhu J-K (2012) Active DNA demethylation in plants and animals. Cold Spring Harb Symp Quant Biol 77:161–173

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Jullien PE, Mosquna A, Ingouff M, Sakata T, Ohad N, Berger F (2008) Retinoblastoma and its binding partner MSI1 control imprinting in Arabidopsis. PLoS Biol 6:e194

    PubMed Central  PubMed  Google Scholar 

  65. Clapier CR, Cairns BR (2009) The biology of chromatin remodeling complexes. Annu Rev Biochem 78:273–304

    CAS  PubMed  Google Scholar 

  66. Hargreaves DC, Crabtree GR (2011) ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res 21:396–420

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Narlikar GJ, Sundaramoorthy R, Owen-Hughes T (2013) Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell 154:490–503

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Gentry M, Hennig L (2014) Remodelling chromatin to shape development of plants. Exp Cell Res 321:40–46

    CAS  PubMed  Google Scholar 

  69. Kwon CS, Chen C, Wagner D (2005) WUSCHEL is a primary target for transcriptional regulation by SPLAYED in dynamic control of stem cell fate in Arabidopsis. Genes Dev 19:992–1003

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Hurtado L, Farrona S, Reyes JC (2006) The putative SWI/SNF complex subunit BRAHMA activates flower homeotic genes in Arabidopsis thaliana. Plant Mol Biol 62:291–304

    CAS  PubMed  Google Scholar 

  71. Wu M-F, Sang Y, Bezhani S, Yamaguchi N, Han S-K, Li Z, Su Y, Slewinski TL, Wagner D (2012) SWI2/SNF2 chromatin remodeling ATPases overcome polycomb repression and control floral organ identity with the LEAFY and SEPALLATA3 transcription factors. Proc Natl Acad Sci USA 109:3576–3581

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Sang Y, Silva-Ortega CO, Wu S, Yamaguchi N, Wu M-F, Pfluger J, Gillmor CS, Gallagher KL, Wagner D (2012) Mutations in two non-canonical Arabidopsis SWI2/SNF2 chromatin remodeling ATPases cause embryogenesis and stem cell maintenance defects. Plant J 72:1000–1014

    CAS  Google Scholar 

  73. Aichinger E, Villar CBR, Mambro RD, Sabatini S, Köhler C (2011) The CHD3 chromatin remodeler PICKLE and polycomb group proteins antagonistically regulate meristem activity in the Arabidopsis root. Plant Cell 23:1047–1060

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Deal RB, Henikoff S (2010) Catching a glimpse of nucleosome dynamics. Cell Cycle 9:3389–3390

    CAS  PubMed  Google Scholar 

  75. Deal RB, Henikoff JG, Henikoff S (2010) Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones. Science 328:1161–1164

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Teves SS, Deal RB, Henikoff S (2012) Measuring genome-wide nucleosome turnover using CATCH-IT. Methods Enzymol 513:169–184

    CAS  PubMed  Google Scholar 

  77. Ingouff M, Berger F (2010) Histone3 variants in plants. Chromosoma 119:27–33

    CAS  PubMed  Google Scholar 

  78. Ahmad K, Henikoff S (2002) Histone H3 variants specify modes of chromatin assembly. Proc Natl Acad Sci USA 99(Suppl 4):16477–16484

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Johnson L, Mollah S, Garcia BA, Muratore TL, Shabanowitz J, Hunt DF, Jacobsen SE (2004) Mass spectrometry analysis of Arabidopsis histone H3 reveals distinct combinations of post-translational modifications. Nucleic Acids Res 32:6511–6518

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Stroud H, Otero S, Desvoyes B, Ramírez-Parra E, Jacobsen SE, Gutierrez C (2012) Genome-wide analysis of histone H3.1 and H3.3 variants in Arabidopsis thaliana. Proc Natl Acad Sci USA 109:5370–5375

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Wollmann H, Holec S, Alden K, Clarke ND, Jacques P-É, Berger F (2012) Dynamic deposition of histone variant H3.3 accompanies developmental remodeling of the Arabidopsis transcriptome. PLoS Genet 8:e1002658

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Mito Y, Henikoff JG, Henikoff S (2005) Genome-scale profiling of histone H3.3 replacement patterns. Nat Genet 37:1090–1097

    CAS  PubMed  Google Scholar 

  83. Henikoff S (2008) Nucleosome destabilization in the epigenetic regulation of gene expression. Nat Rev Genet 9:15–26

    CAS  PubMed  Google Scholar 

  84. Ray-Gallet D, Woolfe A, Vassias I, Pellentz C, Lacoste N, Puri A, Schultz DC, Pchelintsev NA, Adams PD, Jansen LET, Almouzni G (2011) Dynamics of histone H3 deposition in vivo reveal a nucleosome gap-filling mechanism for H3.3 to maintain chromatin integrity. Mol Cell 44:928–941

    CAS  PubMed  Google Scholar 

  85. Noh Y-S, Amasino RM (2003) PIE1, an ISWI family gene, is required for FLC activation and floral repression in Arabidopsis. Plant Cell 15:1671–1682

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Zilberman D, Coleman-Derr D, Ballinger T, Henikoff S (2008) Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks. Nature 456:125–129

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Bogliotti YS, Ross PJ (2012) Mechanisms of histone H3 lysine 27 trimethylation remodeling during early mammalian development. Epigenetics 7:976–981

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Lu F, Cui X, Zhang S, Jenuwein T, Cao X (2011) Arabidopsis REF6 is a histone H3 lysine 27 demethylase. Nat Genet 43:715–719

    CAS  PubMed  Google Scholar 

  89. Smith ER, Lee MG, Winter B, Droz NM, Eissenberg JC, Shiekhattar R, Shilatifard A (2008) Drosophila UTX is a histone H3 Lys27 demethylase that colocalizes with the elongating form of RNA polymerase II. Mol Cell Biol 28:1041–1046

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Sakai A, Schwartz BE, Goldstein S, Ahmad K (2009) Transcriptional and developmental functions of the H3.3 histone variant in Drosophila. Curr Biol 19:1816–1820

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Santos-Rosa H, Kirmizis A, Nelson C, Bartke T, Saksouk N, Cote J, Kouzarides T (2009) Histone H3 tail clipping regulates gene expression. Nat Struct Mol Biol 16:17–22

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Buzas DM, Robertson M, Finnegan EJ, Helliwell CA (2011) Transcription-dependence of histone H3 lysine 27 trimethylation at the Arabidopsis polycomb target gene FLC. Plant J 65:872–881

    CAS  PubMed  Google Scholar 

  93. Doyle MR, Amasino RM (2009) A single amino acid change in the enhancer of zeste ortholog CURLY LEAF results in vernalization-independent, rapid flowering in Arabidopsis. Plant Physiol 151:1688–1697

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Yu X, Michaels SD (2010) The Arabidopsis Paf1c complex component CDC73 participates in the modification of FLOWERING LOCUS C chromatin. Plant Physiol 153:1074–1084

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Adrian J, Farrona S, Reimer JJ, Albani MC, Coupland G, Turck F (2010) cis-Regulatory elements and chromatin state coordinately control temporal and spatial expression of FLOWERING LOCUS T in Arabidopsis. Plant Cell 22:1425–1440

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Smale ST (2010) Pioneer factors in embryonic stem cells and differentiation. Curr Opin Genet Dev 20:519–526

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Magnani L, Eeckhoute J, Lupien M (2011) Pioneer factors: directing transcriptional regulators within the chromatin environment. Trends Genet 27:465–474

    CAS  PubMed  Google Scholar 

  98. Zaret KS, Carroll JS (2011) Pioneer transcription factors: establishing competence for gene expression. Genes Dev 25:2227–2241

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Payne T, Johnson SD, Koltunow AM (2004) KNUCKLES (KNU) encodes a C2H2 zinc-finger protein that regulates development of basal pattern elements of the Arabidopsis gynoecium. Development 131:3737–3749

    CAS  PubMed  Google Scholar 

  100. Sun B, Xu Y, Ng K-H, Ito T (2009) A timing mechanism for stem cell maintenance and differentiation in the Arabidopsis floral meristem. Genes Dev 23:1791–1804

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Sun B, Looi L-S, Guo S, He Z, Gan E-S, Huang J, Xu Y, Wee W-Y, Ito T (2014) Timing mechanism dependent on cell division is invoked by Polycomb eviction in plant stem cells. Science 343:1248559

    PubMed  Google Scholar 

  102. Smaczniak C, Immink RGH, Muiño JM, Blanvillain R, Busscher M, Busscher-Lange J, Dinh QDP, Liu S, Westphal AH, Boeren S, Parcy F, Xu L, Carles CC, Angenent GC, Kaufmann K (2012) Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development. Proc Natl Acad Sci USA 109:1560–1565

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Pajoro A, Madrigal P, Muiño JM, Matus JT, Jin J, Mecchia MA, Debernardi JM, Palatnik JF, Balazadeh S, Arif M, O Maoiléidigh DS, Wellmer F, Krajewski P, Riechmann J-L, Angenent GC, Kaufmann K (2014) Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factors in flower development. Genome Biol 15:R41

    PubMed Central  PubMed  Google Scholar 

  104. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326

    CAS  PubMed  Google Scholar 

  105. Zhao XD, Han X, Chew JL, Liu J, Chiu KP, Choo A, Orlov YL, Sung W-K, Shahab A, Kuznetsov VA, Bourque G, Oh S, Ruan Y, Ng H–H, Wei C-L (2007) Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell 1:286–298

    CAS  PubMed  Google Scholar 

  106. Jiang H, Shukla A, Wang X, yi Chen W, Bernstein BE, Roeder RG (2011) Role for Dpy-30 in ES cell-fate specification by regulation of H3K4 methylation within bivalent domains. Cell 144:513–525

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Pietersen AM, van Lohuizen M (2008) Stem cell regulation by polycomb repressors: postponing commitment. Curr Opin Cell Biol 20:201–207

    CAS  PubMed  Google Scholar 

  108. Karpiuk O, Najafova Z, Kramer F, Hennion M, Galonska C, König A, Snaidero N, Vogel T, Shchebet A, Begus-Nahrmann Y, Kassem M, Simons M, Shcherbata H, Beissbarth T, Johnsen SA (2012) The histone H2B monoubiquitination regulatory pathway is required for differentiation of multipotent stem cells. Mol Cell 46:705–713

    CAS  PubMed  Google Scholar 

  109. Bourbousse C, Ahmed I, Roudier F, Zabulon G, Blondet E, Balzergue S, Colot V, Bowler C, Barneche F (2012) Histone H2B monoubiquitination facilitates the rapid modulation of gene expression during Arabidopsis photomorphogenesis. PLoS Genet 8:e1002825

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Saleh A, Al-Abdallat A, Ndamukong I, Alvarez-Venegas R, Avramova Z (2007) The Arabidopsis homologs of trithorax (ATX1) and enhancer of zeste (CLF) establish ‘bivalent chromatin marks’ at the silent AGAMOUS locus. Nucleic Acids Res 35:6290–6296

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Pien S, Fleury D, Mylne JS, Crevillen P, Inzé D, Avramova Z, Dean C, Grossniklaus U (2008) ARABIDOPSIS TRITHORAX1 dynamically regulates FLOWERING LOCUS C activation via histone 3 lysine 4 trimethylation. Plant Cell 20:580–588

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Deal RB, Henikoff S (2011) The INTACT method for cell type-specific gene expression and chromatin profiling in Arabidopsis thaliana. Nat Protoc 6:56–68

    CAS  PubMed  Google Scholar 

  113. Jiang D, Wang Y, Wang Y, He Y (2008) Repression of FLOWERING LOCUS C and FLOWERING LOCUS T by the Arabidopsis Polycomb repressive complex 2 components. PLoS One 3:e3404

    PubMed Central  PubMed  Google Scholar 

  114. Finnegan EJ, Bond DM, Buzas DM, Goodrich J, Helliwell CA, Tamada Y, Yun J-Y, Amasino RM, Dennis ES (2011) Polycomb proteins regulate the quantitative induction of VERNALIZATION INSENSITIVE 3 in response to low temperatures. Plant J 65:382–391

    CAS  Google Scholar 

  115. Luo C, Sidote DJ, Zhang Y, Kerstetter RA, Michael TP, Lam E (2012) Integrative analysis of chromatin states in Arabidopsis identified potential regulatory mechanisms for natural antisense transcript production. Plant J 73:77–90

    Google Scholar 

  116. Kim D-H, Zografos BR, Sung S (2010) Vernalization-mediated VIN3 Induction Overcomes the LIKE-HETEROCHROMATIN PROTEIN1/POLYCOMB REPRESSION COMPLEX2-mediated epigenetic repression. Plant Physiol 154:949–957

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Vastenhouw NL, Schier AF (2012) Bivalent histone modifications in early embryogenesis. Curr Opin Cell Biol 24:374–386

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Wysocka J, Swigut T, Xiao H, Milne TA, Kwon SY, Landry J, Kauer M, Tackett AJ, Chait BT, Badenhorst P, Wu C, Allis CD (2006) A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442:86–90

    CAS  PubMed  Google Scholar 

  119. Ng HH, Robert F, Young RA, Struhl K (2003) Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol Cell 11:709–719

    CAS  PubMed  Google Scholar 

  120. Zhang H, van Nocker S (2002) The VERNALIZATION INDEPENDENCE 4 gene encodes a novel regulator of FLOWERING LOCUS C. Plant J 31:663–673

    CAS  PubMed  Google Scholar 

  121. Zhang H, Ransom C, Ludwig P, van Nocker S (2003) Genetic analysis of early flowering mutants in Arabidopsis defines a class of pleiotropic developmental regulator required for expression of the flowering-time switch flowering locus C. Genetics 164:347–358

    CAS  PubMed Central  PubMed  Google Scholar 

  122. He Y, Doyle MR, Amasino RM (2004) PAF1-complex-mediated histone methylation of FLOWERING LOCUS C chromatin is required for the vernalization-responsive, winter-annual habit in Arabidopsis. Genes Dev 18:2774–2784

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Oh S, Park S, van Nocker S (2008) Genic and global functions for Paf1C in chromatin modification and gene expression in Arabidopsis. PLoS Genet 4:e1000077

    PubMed Central  PubMed  Google Scholar 

  124. Xu L, Zhao Z, Dong A, Soubigou-Taconnat L, Renou J-P, Steinmetz A, Shen W-H (2008) Di- and tri- but not monomethylation on histone H3 lysine 36 marks active transcription of genes involved in flowering time regulation and other processes in Arabidopsis thaliana. Mol Cell Biol 28:1348–1360

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Park S, Oh S, Ek-Ramos J, van Nocker S (2010) PLANT HOMOLOGOUS TO PARAFIBROMIN is a component of the PAF1 complex and assists in regulating expression of genes within H3K27ME3-enriched chromatin. Plant Physiol 153:821–831

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Zhao Z, Yu Y, Meyer D, Wu C, Shen W-H (2005) Prevention of early flowering by expression of FLOWERING LOCUS C requires methylation of histone H3 K36. Nat Cell Biol 7:1256–1260

    PubMed  Google Scholar 

  127. Cartagena JA, Matsunaga S, Seki M, Kurihara D, Yokoyama M, Shinozaki K, Fujimoto S, Azumi Y, Uchiyama S, Fukui K (2008) The Arabidopsis SDG4 contributes to the regulation of pollen tube growth by methylation of histone H3 lysines 4 and 36 in mature pollen. Dev Biol 315:355–368

    CAS  PubMed  Google Scholar 

  128. Jiang D, Kong NC, Gu X, Li Z, He Y (2011) Arabidopsis COMPASS-like complexes mediate histone H3 lysine-4 trimethylation to control floral transition and plant development. PLoS Genet 7:e1001330

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Guo L, Yu Y, Law JA, Zhang X (2010) SET DOMAIN GROUP2 is the major histone H3 lysine (corrected) 4 trimethyltransferase in Arabidopsis. Proc Natl Acad Sci USA 107:18557–18562

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Berr A, McCallum EJ, Ménard R, Meyer D, Fuchs J, Dong A, Shen W-H (2010) Arabidopsis SET DOMAIN GROUP2 is required for H3K4 trimethylation and is crucial for both sporophyte and gametophyte development. Plant Cell 22:3232–3248

    CAS  PubMed Central  PubMed  Google Scholar 

  131. She W, Grimanelli D, Rutowicz K, Whitehead MWJ, Puzio M, Kotlinski M, Jerzmanowski A, Baroux C (2013) Chromatin reprogramming during the somatic-to-reproductive cell fate transition in plants. Development 140:4008–4019

    CAS  PubMed  Google Scholar 

  132. Yao X, Feng H, Yu Y, Dong A, Shen W-H (2013) SDG2-mediated H3K4 methylation is required for proper Arabidopsis root growth and development. PLoS One 8:e56537

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Ding Y, Avramova Z, Fromm M (2011) Two distinct roles of ARABIDOPSIS HOMOLOG OF TRITHORAX1 (ATX1) at promoters and within transcribed regions of ATX1-regulated genes. Plant Cell 23:350–363

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Ding Y, Ndamukong I, Xu Z, Lapko H, Fromm M, Avramova Z (2012) ATX1-generated H3K4me3 is required for efficient elongation of transcription, not initiation, at ATX1-regulated genes. PLoS Genet 8:e1003111

    PubMed Central  PubMed  Google Scholar 

  135. Carles CC, Fletcher JC (2009) The SAND domain protein ULTRAPETALA1 acts as a trithorax group factor to regulate cell fate in plants. Genes Dev 23:2723–2728

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Carles CC, Fletcher JC (2010) Missing links between histones and RNA Pol II arising from SAND? Epigenetics 5:381–385

    CAS  PubMed  Google Scholar 

  137. Pu L, Liu M-S, Kim SY, Chen L-FO, Fletcher JC, Sung ZR (2013) EMBRYONIC FLOWER1 and ULTRAPETALA1 act antagonistically on Arabidopsis development and stress response. Plant Physiol 162:812–830

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Sanmartín M, Sauer M, Muñoz A, Zouhar J, Ordóñez A, van de Ven WTG, Caro E, de la Paz Sánchez M, Raikhel NV, Gutiérrez C, Sánchez-Serrano JJ, Rojo E (2011) A molecular switch for initiating cell differentiation in Arabidopsis. Curr Biol 21:999–1008

    PubMed  Google Scholar 

  139. Nelissen H, Groeve SD, Fleury D, Neyt P, Bruno L, Bitonti MB, Vandenbussche F, der Straeten DV, Yamaguchi T, Tsukaya H, Witters E, Jaeger GD, Houben A, Lijsebettens MV (2010) Plant Elongator regulates auxin-related genes during RNA polymerase II transcription elongation. Proc Natl Acad Sci USA 107:1678–1683

    CAS  PubMed Central  PubMed  Google Scholar 

  140. de la Paz Sanchez M, Gutierrez C (2009) Arabidopsis ORC1 is a PHD-containing H3K4me3 effector that regulates transcription. Proc Natl Acad Sci USA 106:2065–2070

    PubMed Central  PubMed  Google Scholar 

  141. Song J, Angel A, Howard M, Dean C (2012) Vernalization—a cold-induced epigenetic switch. J Cell Sci 125:3723–3731

    CAS  PubMed  Google Scholar 

  142. Wellmer F, Alves-Ferreira M, Dubois A, Riechmann JL, Meyerowitz EM (2006) Genome-wide analysis of gene expression during early Arabidopsis flower development. PLoS Genet 2:e117

    PubMed Central  PubMed  Google Scholar 

  143. Annunziato AT (2005) Split decision: what happens to nucleosomes during DNA replication? J Biol Chem 280:12065–12068

    CAS  PubMed  Google Scholar 

  144. Corpet A, Almouzni G (2009) Making copies of chromatin: the challenge of nucleosomal organization and epigenetic information. Trends Cell Biol 19:29–41

    CAS  PubMed  Google Scholar 

  145. Francis NJ, Follmer NE, Simon MD, Aghia G, Butler JD (2009) Polycomb proteins remain bound to chromatin and DNA during DNA replication in vitro. Cell 137:110–122

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Petruk S, Sedkov Y, Johnston DM, Hodgson JW, Black KL, Kovermann SK, Beck S, Canaani E, Brock HW, Mazo A (2012) TrxG and PcG proteins but not methylated histones remain associated with DNA through replication. Cell 150:922–933

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Follmer NE, Wani AH, Francis NJ (2012) A polycomb group protein is retained at specific sites on chromatin in mitosis. PLoS Genet 8:e1003135

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Derkacheva M, Steinbach Y, Wildhaber T, Mozgová I, Mahrez W, Nanni P, Bischof S, Gruissem W, Hennig L (2013) Arabidopsis MSI1 connects LHP1 to PRC2 complexes. EMBO J 32:2073–2085

    CAS  PubMed Central  PubMed  Google Scholar 

  149. del Olmo I, López-González L, Martín-Trillo MM, Martínez-Zapater JM, Piñeiro M, Jarillo JA (2010) EARLY IN SHORT DAYS 7 (ESD7) encodes the catalytic subunit of DNA polymerase epsilon and is required for flowering repression through a mechanism involving epigenetic gene silencing. Plant J 61:623–636

    PubMed  Google Scholar 

  150. Hyun Y, Yun H, Park K, Ohr H, Lee O, Kim D-H, Sung S, Choi Y (2013) The catalytic subunit of Arabidopsis DNA polymerase α ensures stable maintenance of histone modification. Development 140:156–166

    CAS  PubMed  Google Scholar 

  151. Müller R, Goodrich J (2011) Sweet memories: epigenetic control in flowering. F1000 Biol Rep 3:13

    PubMed Central  PubMed  Google Scholar 

  152. Holec S, Berger F (2012) Polycomb group complexes mediate developmental transitions in plants. Plant Physiol 158:35–43

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Casson S, Spencer M, Walker K, Lindsey K (2005) Laser capture microdissection for the analysis of gene expression during embryogenesis of Arabidopsis. Plant J 42:111–123

    CAS  PubMed  Google Scholar 

  154. Wee CW, Dinneny JR (2010) Tools for high-spatial and temporal-resolution analysis of environmental responses in plants. Biotechnol Lett 32:1361–1371

    CAS  PubMed  Google Scholar 

  155. Schmid MW, Schmidt A, Klostermeier UC, Barann M, Rosenstiel P, Grossniklaus U (2012) A powerful method for transcriptional profiling of specific cell types in eukaryotes: laser-assisted microdissection and RNA sequencing. PLoS One 7:e29685

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Work in our group is supported by a Marie-Curie Intra-European Fellowship (FP7 ChromAct to J.E.), the French National Agency Young Researcher Grant (ChromFlow ANR JCJC project to C.C.C.), the University Grenoble-Alpes (UGA-UJF) and Centre National de la Recherche Scientifique (CNRS-Higher Education Chair to C.C.C.). The authors thank Leor Eshed Williams, François Parcy and two anonymous reviewers for critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristel C. Carles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engelhorn, J., Blanvillain, R. & Carles, C.C. Gene activation and cell fate control in plants: a chromatin perspective. Cell. Mol. Life Sci. 71, 3119–3137 (2014). https://doi.org/10.1007/s00018-014-1609-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1609-0

Keywords

Navigation