Skip to main content

Advertisement

Log in

Single-cell analysis of the transcriptome and its application in the characterization of stem cells and early embryos

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Cellular heterogeneity within a cell population is a common phenomenon in multicellular organisms, tissues, cultured cells, and even FACS-sorted subpopulations. Important information may be masked if the cells are studied as a mass. Transcriptome profiling is a parameter that has been intensively studied, and relatively easier to address than protein composition. To understand the basis and importance of heterogeneity and stochastic aspects of the cell function and its mechanisms, it is essential to examine transcriptomes of a panel of single cells. High-throughput technologies, starting from microarrays and now RNA-seq, provide a full view of the expression of transcriptomes but are limited by the amount of RNA for analysis. Recently, several new approaches for amplification and sequencing the transcriptome of single cells or a limited low number of cells have been developed and applied. In this review, we summarize these major strategies, such as PCR-based methods, IVT-based methods, phi29-DNA polymerase-based methods, and several other methods, including their principles, characteristics, advantages, and limitations, with representative applications in cancer stem cells, early development, and embryonic stem cells. The prospects for development of future technology and application of transcriptome analysis in a single cell are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Irish JM, Kotecha N, Nolan GP (2006) Mapping normal and cancer cell signalling networks: towards single-cell proteomics. Nat Rev Cancer 6(2):146–155

    Article  CAS  PubMed  Google Scholar 

  2. Graf T, Stadtfeld M (2008) Heterogeneity of embryonic and adult stem cells. Cell Stem Cell 3(5):480–483

    Article  CAS  PubMed  Google Scholar 

  3. Huang S (2009) Non-genetic heterogeneity of cells in development: more than just noise. Development 136(23):3853–3862

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Shackleton M et al (2009) Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138(5):822–829

    Article  CAS  PubMed  Google Scholar 

  5. Turner NC, Reis-Filho JS (2012) Genetic heterogeneity and cancer drug resistance. Lancet Oncol 13(4):e178–e185

    Article  PubMed  Google Scholar 

  6. Clarke MF et al (2006) Cancer stem cells—perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res 66(19):9339–9344

    Article  CAS  PubMed  Google Scholar 

  7. Buganim Y et al (2012) Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell 150(6):1209–1222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Wang D, Bodovitz S (2010) Single cell analysis: the new frontier in ‘omics’. Trends Biotechnol 28(6):281–290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Tang F, Lao K, Surani MA (2011) Development and applications of single-cell transcriptome analysis. Nat Methods 8(4 Suppl):S6–11

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Tang F et al (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6(5):377–382

    Article  CAS  PubMed  Google Scholar 

  11. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Warren L et al (2006) Transcription factor profiling in individual hematopoietic progenitors by digital RT-PCR. Proc Natl Acad Sci USA 103(47):17807–17812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Raj A et al (2008) Imaging individual mRNA molecules using multiple singly labeled probes. Nat Methods 5(10):877–879

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Wang F et al (2013) Robust measurement of telomere length in single cells. Proc Natl Acad Sci USA 110(21):E1906–E1912

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Hou Y et al (2012) Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell 148(5):873–885

    Article  CAS  PubMed  Google Scholar 

  16. Navin N et al (2011) Tumour evolution inferred by single-cell sequencing. Nature 472(7341):90–94

    Article  CAS  PubMed  Google Scholar 

  17. Xu X et al (2012) Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 148(5):886–895

    Article  CAS  PubMed  Google Scholar 

  18. Islam S et al (2011) Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res 21(7):1160–1167

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Kurimoto K et al (2006) An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis. Nucleic Acids Res 34(5):e42

    Article  PubMed Central  PubMed  Google Scholar 

  20. Saitou M, Barton SC, Surani MA (2002) A molecular programme for the specification of germ cell fate in mice. Nature 418(6895):293–300

    Article  CAS  PubMed  Google Scholar 

  21. Tang F et al (2010) RNA-Seq analysis to capture the transcriptome landscape of a single cell. Nat Protoc 5(3):516–535

    Article  CAS  PubMed  Google Scholar 

  22. Tougan T, Okuzaki D, Nojima H (2008) Chum-RNA allows preparation of a high-quality cDNA library from a single-cell quantity of mRNA without PCR amplification. Nucleic Acids Res 36(15):e92

    Article  PubMed Central  PubMed  Google Scholar 

  23. Li L, Clevers H (2010) Coexistence of quiescent and active adult stem cells in mammals. Science 327(5965):542–545

    Article  CAS  PubMed  Google Scholar 

  24. Hood L et al (2004) Systems biology and new technologies enable predictive and preventative medicine. Science 306(5696):640–643

    Article  CAS  PubMed  Google Scholar 

  25. Velculescu VE et al (1997) Characterization of the yeast transcriptome. Cell 88(2):243–251

    Article  CAS  PubMed  Google Scholar 

  26. Royce TE, Rozowsky JS, Gerstein MB (2007) Toward a universal microarray: prediction of gene expression through nearest-neighbor probe sequence identification. Nucleic Acids Res 35(15):e99

    Article  PubMed Central  PubMed  Google Scholar 

  27. Bainbridge MN et al (2006) Analysis of the prostate cancer cell line LNCaP transcriptome using a sequencing-by-synthesis approach. BMC Genom 7:246

    Article  Google Scholar 

  28. Morin R et al (2008) Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. Biotechniques 45(1):81–94

    Article  CAS  PubMed  Google Scholar 

  29. Sultan M et al (2008) A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 321(5891):956–960

    Article  CAS  PubMed  Google Scholar 

  30. Ozsolak F, Milos PM (2011) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12(2):87–98

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Mortazavi A et al (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628

    Article  CAS  PubMed  Google Scholar 

  32. Wang ET et al (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456(7221):470–476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Eberwine J et al (1992) Analysis of gene expression in single live neurons. Proc Natl Acad Sci USA 89(7):3010–3014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Van Gelder RN et al (1990) Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc Natl Acad Sci USA 87(5):1663–1667

    Article  PubMed Central  PubMed  Google Scholar 

  35. Brady G, Iscove NN (1993) Construction of cDNA libraries from single cells. Methods Enzymol 225:611–623

    Article  CAS  PubMed  Google Scholar 

  36. Dixon AK et al (1998) Expression profiling of single cells using 3 prime end amplification (TPEA) PCR. Nucleic Acids Res 26(19):4426–4431

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Islam S et al (2012) Highly multiplexed and strand-specific single-cell RNA 5′ end sequencing. Nat Protoc 7(5):813–828

    Article  CAS  PubMed  Google Scholar 

  38. Pan X et al (2013) Two methods for full-length RNA sequencing for low quantities of cells and single cells. Proc Natl Acad Sci USA 110(2):594–599

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Iscove NN et al (2002) Representation is faithfully preserved in global cDNA amplified exponentially from sub-picogram quantities of mRNA. Nat Biotechnol 20(9):940–943

    Article  CAS  PubMed  Google Scholar 

  40. Matz M et al (1999) Amplification of cDNA ends based on template-switching effect and step-out PCR. Nucleic Acids Res 27(6):1558–1560

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Zhu YY et al (2001) Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction. Biotechniques 30(4):892–897

    CAS  PubMed  Google Scholar 

  42. Kurimoto K et al (2007) Global single-cell cDNA amplification to provide a template for representative high-density oligonucleotide microarray analysis. Nat Protoc 2(3):739–752

    Article  CAS  PubMed  Google Scholar 

  43. Tang F et al (2010) Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNA-Seq analysis. Cell Stem Cell 6(5):468–478

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Lecault V et al (2012) Microfluidic single cell analysis: from promise to practice. Curr Opin Chem Biol 16(3–4):381–390

    Article  CAS  PubMed  Google Scholar 

  45. Hebenstreit D (2012) Methods, challenges and potentials of single Cell RNA-seq. Biology 1(3):658–667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Ramskold D et al (2012) Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol 30(8):777–782

    Article  PubMed Central  PubMed  Google Scholar 

  47. Qiu S et al (2012) Single-neuron RNA-Seq: technical feasibility and reproducibility. Front Genet 3:124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Picelli S et al (2013) Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods 10:1096–1098

    Article  CAS  PubMed  Google Scholar 

  49. Patel OV et al (2005) Validation and application of a high-fidelity mRNA linear amplification procedure for profiling gene expression. Vet Immunol Immunopathol 105(3–4):331–342

    Article  CAS  PubMed  Google Scholar 

  50. Hashimshony T et al (2012) CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep 2(3):666–673

    Article  CAS  PubMed  Google Scholar 

  51. Sasagawa Y et al (2013) Quartz-Seq: a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity. Genome Biol 14(4):R31

    Article  PubMed Central  PubMed  Google Scholar 

  52. Blanco L, Salas M (1984) Characterization and purification of a phage phi 29-encoded DNA polymerase required for the initiation of replication. Proc Natl Acad Sci USA 81(17):5325–5329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Dean FB et al (2002) Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci USA 99(8):5261–5266

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Kang Y et al (2011) Transcript amplification from single bacterium for transcriptome analysis. Genome Res 21(6):925–935

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Dalerba P et al (2011) Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat Biotechnol 29(12):1120–1127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Toloudi M et al (2011) Correlation between cancer stem cells and circulating tumor cells and their value. Case Rep Oncol 4(1):44–54

    Article  PubMed Central  PubMed  Google Scholar 

  57. Cann GM et al (2012) mRNA-Seq of single prostate cancer circulating tumor cells reveals recapitulation of gene expression and pathways found in prostate cancer. PLoS One 7(11):e49144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Xue Z et al (2013) Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature 500(7464):593–597

    Article  CAS  PubMed  Google Scholar 

  59. Aghajanova L et al (2012) Comparative transcriptome analysis of human trophectoderm and embryonic stem cell-derived trophoblasts reveal key participants in early implantation. Biol Reprod 86(1):1–21

    Article  PubMed  Google Scholar 

  60. Dobson AT et al (2004) The unique transcriptome through day 3 of human preimplantation development. Hum Mol Genet 13(14):1461–1470

    Article  CAS  PubMed  Google Scholar 

  61. Guo G et al (2010) Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev Cell 18(4):675–685

    Article  CAS  PubMed  Google Scholar 

  62. Tang F et al (2011) Deterministic and stochastic allele-specific gene expression in single mouse blastomeres. PLoS One 6(6):e21208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Yan L et al (2013) Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol 20(9):1131–1139

    Article  CAS  PubMed  Google Scholar 

  64. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156

    Article  CAS  PubMed  Google Scholar 

  65. Niwa H (2007) How is pluripotency determined and maintained? Development 134(4):635–646

    Article  CAS  PubMed  Google Scholar 

  66. Zong C et al (2012) Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 338(6114):1622–1626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Moroz LL, Kohn AB (2013) Single-neuron transcriptome and methylome sequencing for epigenomic analysis of aging. Methods Mol Biol 1048:323–352

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Sherman Weissman for his valuable comments during the composition of this review. This work was supported by China MOST National Major Basic Research Program (973 Program) (2012CB911202), National Natural Science Foundation of China (31000651), China Scholarship Council (201208120050), MOST International Cooperation Grant (2014DFA30450), and National Institutes of Health Grants 1P01GM099130-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, N., Liu, L. & Pan, X. Single-cell analysis of the transcriptome and its application in the characterization of stem cells and early embryos. Cell. Mol. Life Sci. 71, 2707–2715 (2014). https://doi.org/10.1007/s00018-014-1601-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1601-8

Keywords

Navigation