Skip to main content

Advertisement

Log in

Neutrophil uptake of nitrogen-bisphosphonates leads to the suppression of human peripheral blood γδ T cells

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Nitrogen-bisphosphonates (n-BP), such as zoledronate, are the main class of drugs used for the prevention of osteoporotic fractures and the management of cancer-associated bone disease. However, long-term or high-dose use has been associated with certain adverse drug effects, such as osteonecrosis of the jaw and the loss of peripheral of blood Vγ9Vδ2 T cells, which appear to be linked to drug-induced immune dysfunction. In this report we show that neutrophils present in human peripheral blood readily take up zoledronate, and this phenomenon is associated with the potent immune suppression of human peripheral blood Vγ9Vδ2 T cells. Furthermore, we found this zoledronate-mediated inhibition by neutrophils could be overcome to fully reconstitute Vγ9Vδ2 T cell proliferation by concomitantly targeting neutrophil-derived hydrogen peroxide, serine proteases, and arginase I activity. These findings will enable the development of targeted strategies to mitigate some of the adverse effects of n-BP treatment on immune homeostasis and to improve the success of immunotherapy trials based on harnessing the anticancer potential of peripheral blood γδ T cells in the context of n-BP treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bouet-Toussaint F, Cabillic F, Toutirais O, Le Gallo M, Thomas de la Pintiere C, Daniel P, Genetet N, Meunier B, Dupont-Bierre E, Boudjema K, Catros V (2008) Vgamma9Vdelta2 T cell-mediated recognition of human solid tumors. Potential for immunotherapy of hepatocellular and colorectal carcinomas. Cancer Immunol Immunother 57:531–539

    Article  CAS  PubMed  Google Scholar 

  2. Cabillic F, Toutirais O, Lavoue V, de La Pintiere CT, Daniel P, Rioux-Leclerc N, Turlin B, Monkkonen H, Monkkonen J, Boudjema K, Catros V, Bouet-Toussaint F (2010) Aminobisphosphonate-pretreated dendritic cells trigger successful Vgamma9Vdelta2 T cell amplification for immunotherapy in advanced cancer patients. Cancer Immunol Immunother 59:1611–1619

    Article  CAS  PubMed  Google Scholar 

  3. Constant P, Davodeau F, Peyrat MA, Poquet Y, Puzo G, Bonneville M, Fournie JJ (1994) Stimulation of human gamma delta T cells by nonpeptidic mycobacterial ligands. Science 264:267–270

    Article  CAS  PubMed  Google Scholar 

  4. Davey MS, Lin CY, Roberts GW, Heuston S, Brown AC, Chess JA, Toleman MA, Gahan CG, Hill C, Parish T, Williams JD, Davies SJ, Johnson DW, Topley N, Moser B, Eberl M (2011) Human neutrophil clearance of bacterial pathogens triggers anti-microbial gammadelta T cell responses in early infection. PLoS Pathog 7:e1002040

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. el-Hag A, Clark RA (1987) Immunosuppression by activated human neutrophils. Dependence on the myeloperoxidase system. J Immunol 139:2406–2413

    CAS  PubMed  Google Scholar 

  6. el-Hag A, Lipsky PE, Bennett M, Clark RA (1986) Immunomodulation by neutrophil myeloperoxidase and hydrogen peroxide: differential susceptibility of human lymphocyte functions. J Immunol 136:3420–3426

    CAS  PubMed  Google Scholar 

  7. Harly C, Guillaume Y, Nedellec S, Peigne CM, Monkkonen H, Monkkonen J, Li J, Kuball J, Adams EJ, Netzer S, Dechanet-Merville J, Leger A, Herrmann T, Breathnach R, Olive D, Bonneville M, Scotet E (2012) Key implication of CD277/butyrophilin-3 (BTN3A) in cellular stress sensing by a major human gammadelta T cell subset. Blood 120:2269–2279

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Kabelitz D (2008) Small molecules for the activation of human gammadelta T cell responses against infection. Recent Pat Anti-Infect Drug Discov 3:1–9

    Article  CAS  Google Scholar 

  9. Kalyan S, Kabelitz D (2013) Defining the nature of human gammadelta T cells: a biographical sketch of the highly empathetic. Cell Mol Immunol 10:21–29

    Article  CAS  PubMed  Google Scholar 

  10. Kalyan S, Quabius ES, Wiltfang J, Monig H, Kabelitz D (2013) Can peripheral blood gammadelta T cells predict osteonecrosis of the jaw? An immunological perspective on the adverse drug-effects of aminobisphosphonate therapy. J Bone Miner Res 28:728–735

    Article  CAS  PubMed  Google Scholar 

  11. Kalyan S, Wesch D, Kabelitz D (2011) Aminobisphosphonates and Toll-like receptor ligands: recruiting Vgamma9Vdelta2 T cells for the treatment of hematologic malignancy. Curr Med Chem 18:5206–5216

    Article  CAS  PubMed  Google Scholar 

  12. Kashemirov BA, Bala JL, Chen X, Ebetino FH, Xia Z, Russell RG, Coxon FP, Roelofs AJ, Rogers MJ, McKenna CE (2008) Fluorescently labeled risedronate and related analogues: “magic linker” synthesis. Bioconjugate Chem 19:2308–2310

    Article  CAS  Google Scholar 

  13. Kobayashi H, Tanaka Y, Yagi J, Minato N, Tanabe K (2011) Phase I/II study of adoptive transfer of gammadelta T cells in combination with zoledronic acid and IL-2 to patients with advanced renal cell carcinoma. Cancer Immunol Immunother 60:1075–1084

    Article  CAS  PubMed  Google Scholar 

  14. Kondo M, Sakuta K, Noguchi A, Ariyoshi N, Sato K, Sato S, Sato K, Hosoi A, Nakajima J, Yoshida Y, Shiraishi K, Nakagawa K, Kakimi K (2008) Zoledronate facilitates large-scale ex vivo expansion of functional gammadelta T cells from cancer patients for use in adoptive immunotherapy. Cytotherapy 10:842–856

    Article  CAS  PubMed  Google Scholar 

  15. Korkmaz B, Horwitz MS, Jenne DE, Gauthier F (2010) Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacol Rev 62:726–759

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Kuiper JW, Forster C, Sun C, Peel S, Glogauer M (2012) Zoledronate and pamidronate depress neutrophil functions and survival in mice. Br J Pharmacol 165:532–539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Kunzmann V, Bauer E, Wilhelm M (1999) Gamma/delta T-cell stimulation by pamidronate. N Engl J Med 340:737–738

    Article  CAS  PubMed  Google Scholar 

  18. Lang JM, Kaikobad MR, Wallace M, Staab MJ, Horvath DL, Wilding G, Liu G, Eickhoff JC, McNeel DG, Malkovsky M (2011) Pilot trial of interleukin-2 and zoledronic acid to augment gammadelta T cells as treatment for patients with refractory renal cell carcinoma. Cancer Immunol Immunother 60:1447–1460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Mattarollo SR, Kenna T, Nieda M, Nicol AJ (2007) Chemotherapy and zoledronate sensitize solid tumour cells to Vgamma9Vdelta2 T cell cytotoxicity. Cancer Immunol Immunother 56:1285–1297

    Article  CAS  PubMed  Google Scholar 

  20. Meraviglia S, Eberl M, Vermijlen D, Todaro M, Buccheri S, Cicero G, La Mendola C, Guggino G, D’Asaro M, Orlando V, Scarpa F, Roberts A, Caccamo N, Stassi G, Dieli F, Hayday AC (2010) In vivo manipulation of Vgamma9Vdelta2 T cells with zoledronate and low-dose interleukin-2 for immunotherapy of advanced breast cancer patients. Clin Exp Immunol 161:290–297

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Miyagawa F, Tanaka Y, Yamashita S, Minato N (2001) Essential requirement of antigen presentation by monocyte lineage cells for the activation of primary human gamma delta T cells by aminobisphosphonate antigen. J Immunol 166:5508–5514

    Article  CAS  PubMed  Google Scholar 

  22. Morita CT, Jin C, Sarikonda G, Wang H (2007) Nonpeptide antigens, presentation mechanisms, and immunological memory of human Vgamma2Vdelta2 T cells: discriminating friend from foe through the recognition of prenyl pyrophosphate antigens. Immunol Rev 215:59–76

    Article  CAS  PubMed  Google Scholar 

  23. Munder M, Schneider H, Luckner C, Giese T, Langhans CD, Fuentes JM, Kropf P, Mueller I, Kolb A, Modolell M, Ho AD (2006) Suppression of T-cell functions by human granulocyte arginase. Blood 108:1627–1634

    Article  CAS  PubMed  Google Scholar 

  24. Nolan T, Hands RE, Bustin SA (2006) Quantification of mRNA using real-time RT-PCR. Nat Protoc 1:1559–1582

    Article  CAS  PubMed  Google Scholar 

  25. Patterson DA, Rapoport R, Patterson MA, Freed BM, Lempert N (1988) Hydrogen peroxide-mediated inhibition of T-cell response to mitogens is a result of direct action on T cells. Arch Surg 123:300–304

    Article  CAS  PubMed  Google Scholar 

  26. Pham CT (2008) Neutrophil serine proteases fine-tune the inflammatory response. Int J Biochem Cell Biol 40:1317–1333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Pillay J, Kamp VM, van Hoffen E, Visser T, Tak T, Lammers JW, Ulfman LH, Leenen LP, Pickkers P, Koenderman L (2012) A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1. J Clin Invest 122:327–336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Poccia F, Gioia C, Martini F, Sacchi A, Piacentini P, Tempestilli M, Agrati C, Amendola A, Abdeddaim A, Vlassi C, Malkovsky M, D’Offizi G (2009) Zoledronic acid and interleukin-2 treatment improves immunocompetence in HIV-infected persons by activating Vgamma9Vdelta2 T cells. AIDS 23:555–565

    Article  CAS  PubMed  Google Scholar 

  29. Roelofs AJ, Jauhiainen M, Monkkonen H, Rogers MJ, Monkkonen J, Thompson K (2009) Peripheral blood monocytes are responsible for gammadelta T cell activation induced by zoledronic acid through accumulation of IPP/DMAPP. Br J Haematol 144:245–250

    Article  PubMed Central  PubMed  Google Scholar 

  30. Roelofs AJ, Thompson K, Gordon S, Rogers MJ (2006) Molecular mechanisms of action of bisphosphonates: current status. Clin Cancer Res 12:6222s–6230s

    Article  CAS  PubMed  Google Scholar 

  31. Rotondo R, Bertolotto M, Barisione G, Astigiano S, Mandruzzato S, Ottonello L, Dallegri F, Bronte V, Ferrini S, Barbieri O (2011) Exocytosis of azurophil and arginase 1-containing granules by activated polymorphonuclear neutrophils is required to inhibit T lymphocyte proliferation. J Leukoc Biol 89:721–727

    Article  CAS  PubMed  Google Scholar 

  32. Russell RG (2011) Bisphosphonates: the first 40 years. Bone 49:2–19

    Article  CAS  PubMed  Google Scholar 

  33. Sippel TR, White J, Nag K, Tsvankin V, Klaassen M, Kleinschmidt-DeMasters BK, Waziri A (2011) Neutrophil degranulation and immunosuppression in patients with GBM: restoration of cellular immune function by targeting arginase I. Clin Cancer Res 17:6992–7002

    Article  CAS  PubMed  Google Scholar 

  34. Wang H, Lee HK, Bukowski JF, Li H, Mariuzza RA, Chen ZW, Nam KH, Morita CT (2003) Conservation of nonpeptide antigen recognition by rhesus monkey V gamma 2 V delta 2 T cells. J Immunol 170:3696–3706

    Article  CAS  PubMed  Google Scholar 

  35. Welton JL, Morgan MP, Marti S, Stone MD, Moser B, Sewell AK, Turton J, Eberl M (2013) Monocytes and γδ T cells control the acute phase response to intravenous zoledronate: insights from a phase IV safety trial. J Bone Miner Res 28:464–471

    Article  CAS  PubMed  Google Scholar 

  36. Wimalawansa SJ (2008) Insight into bisphosphonate-associated osteomyelitis of the jaw: pathophysiology, mechanisms and clinical management. Expert Opin Drug Saf 7:491–512

    Article  CAS  PubMed  Google Scholar 

  37. Zmijewski JW, Lorne E, Zhao X, Tsuruta Y, Sha Y, Liu G, Abraham E (2009) Antiinflammatory effects of hydrogen peroxide in neutrophil activation and acute lung injury. Am J Respir Crit Care Med 179:694–704

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

SK was supported by a Fellowship from the Alexander von Humboldt Foundation of Germany and a Faculty of Medicine Grant from Christian-Albrechts University of Kiel. DK acknowledges grant support from the Deutsche Forschungsgemeinschaft (Ka 502/10-2 and “Inflammation-at-Interfaces” Cluster of Excellence). We would like to thank Hilke Clasen (Department of Immunology) for technical assistance, and Dr. Millan Patel (University of British Columbia) for review of the manuscript.

Conflict of interest

All authors state that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shirin Kalyan or Dieter Kabelitz.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalyan, S., Chandrasekaran, V., Quabius, E.S. et al. Neutrophil uptake of nitrogen-bisphosphonates leads to the suppression of human peripheral blood γδ T cells. Cell. Mol. Life Sci. 71, 2335–2346 (2014). https://doi.org/10.1007/s00018-013-1495-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1495-x

Keywords

Navigation