Skip to main content

Advertisement

Log in

Temozolomide down-regulates P-glycoprotein in human blood–brain barrier cells by disrupting Wnt3 signaling

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Low delivery of many anticancer drugs across the blood–brain barrier (BBB) is a limitation to the success of chemotherapy in glioblastoma. This is because of the high levels of ATP-binding cassette transporters like P-glycoprotein (Pgp/ABCB1), which effluxes drugs back to the bloodstream. Temozolomide is one of the few agents able to cross the BBB; its effects on BBB cells permeability and Pgp activity are not known. We found that temozolomide, at therapeutic concentration, increased the transport of Pgp substrates across human brain microvascular endothelial cells and decreased the expression of Pgp. By methylating the promoter of Wnt3 gene, temozolomide lowers the endogenous synthesis of Wnt3 in BBB cells, disrupts the Wnt3/glycogen synthase kinase 3/β-catenin signaling, and reduces the binding of β-catenin on the promoter of mdr1 gene, which encodes for Pgp. In co-culture models of BBB cells and human glioblastoma cells, pre-treatment with temozolomide increases the delivery, cytotoxicity, and antiproliferative effects of doxorubicin, vinblastine, and topotecan, three substrates of Pgp that are usually poorly delivered across BBB. Our work suggests that temozolomide increases the BBB permeability of drugs that are normally effluxed by Pgp back to the bloodstream. These findings may pave the way to new combinatorial chemotherapy schemes in glioblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

GBM:

Glioblastoma multiforme

CNS:

Central nervous system

BBB:

Blood–brain barrier

TMZ:

Temozolomide

ABC:

ATP-binding cassette

BAT:

Brain-adjacent to tumor

Pgp:

P-glycoprotein

MRP:

Multidrug resistance-related protein

BCRP:

Breast cancer resistance protein

LRP:

Low-density lipoprotein receptor-related protein

GSK3:

Glycogen synthase kinase 3

TCF/lEF:

T cell factor/lymphoid enhancer factor

Dkk-1:

Dickkopf-1

HBMECs:

Human brain microvascular endothelial cells

FCS:

Fetal calf serum

BSA:

Bovine serum albumin

FITC:

Fluorescein isothiocyanate

ZO-1:

Zonula occludens-1

TBP:

TATA-box binding protein

qRT-PCR:

Quantitative real-time PCR

ChIP:

Chromatin immunoprecipitation

MSP:

Methylation-specific PCR

DAPI:

4′,6-Diamidino-2-phenylindole dihydrochloride

LDH:

Lactate dehydrogenase

References

  1. Bai RY, Staedke V, Riggins GJ (2011) Molecular targeting of GBM: drug discovery and therapies. Trends Mol Med 17:301–332

    Article  CAS  PubMed  Google Scholar 

  2. Serwer LP, James CD (2012) Challenges in drug delivery to tumors of the central nervous system: an overview of pharmacological and surgical considerations. Adv Drug Deliv Rev 64:590–597

    Article  CAS  PubMed  Google Scholar 

  3. Saleem A, Brown GD, Brady F, Aboagye EO, Osman S, Luthra SK, Ranicar AS, Brock CS, Stevens MF, Newlands E, Jones T, Price P (2003) Metabolic activation of temozolomide measured in vivo using positron emission tomography. Cancer Res 63:2409–2415

    CAS  PubMed  Google Scholar 

  4. Wick W, Plattan M, Weller M (2009) New (alternative) temozolomide regimens fort he treatment of glioma. Neuro Oncol 11:69–79

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Vredenburgh JJ, Desjardins A, Reardon DA, Peters KB, Herndon JE 2nd, Marcello J, Kirkpatrick JP, Sampson JH, Bailey L, Threatt S, Friedman AH, Bigner DD, Friedman HS (2011) The addition of bevacizumab to standard radiation therapy and temozolomide followed by bevacizumab, temozolomide, and irinotecan for newly diagnosed glioblastoma. Clin Cancer Res 17:4119–4124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Lopez KA, Tannenbaum AM, Assanah MC, Linskey K, Yun J, Kangarlu A, Gil OD, Canoli P, Bruce JN (2011) Convection-enhanced delivery of topotecan into PDGF-driven model of glioblastoma prolongs survival and ablates both tumor-initiating cells recruited glial progenitors. Cancer Res 71:3963–3971

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Hau P, Fabel K, Baumgart U, Rummele P, Grauer O, Bock A, Dietmaier C, Dietmaier W, Dietrich J, Dudel C, Hubner F, Jaucj T, Drechsel E, Kleiter I, Wismeth C, Zellner A, Brawanski A, Steinbrecher A, Marienhagen J, Bogdahan U (2004) PEGylated liposomal doxorubicin-efficacy in patients with recurrent high-grade glioma. Cancer 100:1199–1207

    Article  CAS  PubMed  Google Scholar 

  8. Agarwal S, Sane R, Oberoi R, Ohlfest JR, Elmquist WF (2011) Delivery of molecularly targeted therapy to malignant glioma, a disease of the whole brain. Expert Rev Mol Med 13:e17

    Article  PubMed  Google Scholar 

  9. Guillaume DJ, Doolittle ND, Gahramanov S, Hedrick NA, Delashaw JB, Neuwelt EA (2010) Intra-arterial chemotherapy with osmotic blood–brain barrier disruption for aggressive oligodendroglial tumors: results of a phase I study. Neurosurgery 66:48–58

    Article  PubMed Central  PubMed  Google Scholar 

  10. Liu H-L, Hua M-Y, Chen P-Y, Chu P-C, Pan C-H, Yang H-W, Wuang C-Y, Wang J-J, Yen T-C, Wei K-C (2010) Blood–brain barrier disruption with focused ultrasound enhanced delivery of chemotherapeutic drugs for glioblastoma treatment. Radiology 255:415–425

    Article  PubMed  Google Scholar 

  11. Agarwal S, Hartz AM, Elmquist WF, Bauer B (2011) Breast cancer resistance protein and P-glycoprotein in brain cancer: two gatekeepers team up. Curr Pharm Des 17:2793–2802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Poller B, Drewe J, Krähenbühl S, Huwyler J, Gutmann H (2010) Regulation of BCRP (ABCG2) and P-glycoprotein (ABCB1) by cytokines in a model of the human blood–brain barrier. Cell Mol Neurobiol 30:63–70

    Article  CAS  PubMed  Google Scholar 

  13. Chan GNY, Hoque MT, Cummins CL, Bendayan R (2011) Regulation of P-glycoprotein by orphan nuclear receptors in human brain microvessel endothelial cells. J Neurochem 118:163–175

    Article  CAS  PubMed  Google Scholar 

  14. Wang X, Hawkins BT, Miller DS (2011) Aryl hydrocarbon receptor-mediated up-regulation of ATP-driven xenobiotic efflux transporters at the blood–brain barrier. FASEB J 25:644–652

    Article  CAS  PubMed  Google Scholar 

  15. Daneman R, Agalliu D, Zhoy L, Kuhnert F, Kuo CJ, Barres BA (2009) Wnt/β-catenin signalling is required for CNS, but not non-CNS, angiogenesis. Proc Natl Acad Sci USA 106:641–646

    Article  CAS  PubMed  Google Scholar 

  16. Liebner S, Plate KH (2010) Differentiation of the brain vasculature: the answer came blowing by the Wnt. J Angiogenes Res 2:1–10

    Article  PubMed Central  PubMed  Google Scholar 

  17. Lim JC, Kania KD, Wijesuriya H, Chawla S, Sethi JK, Pulaski L, Romero IA, Couraud PO, Weksler BB, Hladky SB, Barrand MA (2008) Activation of β-catenin signalling by GSK-3 inhibition increases p-glycoprotein expression in brain endothelial cells. J Neurochem 106:1855–1865

    CAS  PubMed  Google Scholar 

  18. Kania KD, Wijesuriya HC, Hladky SB, Barrand MA (2011) Beta amyloid effects on expression of multidrug efflux transporters in brain endothelial cells. Brain Res 1418:1–11

    Article  CAS  PubMed  Google Scholar 

  19. Flahaut M, Meier R, Coulon A, Nardou KA, Niggli FK, Martinet D, Beckmann JS, Joseph J-M, Muhlethaler-Mottet A, Gross N (2009) The Wnt receptor FZD1 mediates chemoresistance in neuroblastoma through activation of the Wnt/b-catenin pathway. Oncogene 28:2245–2256

    Article  CAS  PubMed  Google Scholar 

  20. Schaich M, Kestel L, Pfirrmann M, Robel K, Illmer T, Kramer M, Dill C, Ehninger G, Schackert G, Krex D (2009) A MDR1 (ABCB1) gene single nucleotide polymorphism predicts outcome of temozolomide treatment in GBM patients. Ann Oncol 20:175–181

    Article  CAS  PubMed  Google Scholar 

  21. Weksler BB, Subileau EA, Perrière N, Charneau P, Holloway K, Leveque M, Tricoire-Leignel H, Nicotra A, Bourdoulous S, Turowski P, Male DK, Roux F, Greenwood J, Romero IA, Couraud PO (2005) Blood–brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J 19:1872–1874

    CAS  PubMed  Google Scholar 

  22. Monnaert V, Betbeder D, Fenart L, Bricout H, Lenfant AM, Landry C, Cecchelli R, Monflier E, Tilloy S (2004) Effects of γ- and hydroxy propyl- γ -cyclodextrins on the transport of doxorubicin across an in vitro model of blood–brain barrier. J Pharmacol Exp Ther 311:1115–1120

    Article  CAS  PubMed  Google Scholar 

  23. Siflinger-Birnboim A, Del Vecchio PJ, Cooper JA, Blumenstock FA, Shepard JM, Malik AB (1987) Molecular sieving characteristics of the cultured endothelial monolayer. J Cell Physiol 132:111–117

    Article  CAS  PubMed  Google Scholar 

  24. Campia I, Gazzano E, Pescarmona G, Ghigo D, Bosia A, Riganti C (2009) Digoxin and ouabain increase the synthesis of cholesterol in human liver cells. Cell Mol Life Sci 66:1580–1594

    Article  CAS  PubMed  Google Scholar 

  25. Broadley KW, Hunn MK, Farrand KJ, Price KM, Grasso C, Miller RJ, Hermans IF, McConnell MJ (2011) Side population is not necessary or sufficient for a cancer stem cell phenotype in glioblastoma multiforme. Stem Cells 29:452–461

    Article  CAS  PubMed  Google Scholar 

  26. Liu Y, Yang G, Bu X, Liu G, Ding J, Li P, Jia W (2011) Cell-type-specific regulation of raft-associated Akt signalling. Cell Death Dis 2:e145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Carcaboso AM, Elmeliegy MA, Shen J, Juel SJ, Zhang ZM, Calabrese C, Tracey L, Waters CM, Stewart CF (2010) Tyrosine kinase inhibitor gefitinib enhances topotecan penetration of gliomas. Cancer Res 70:4499–4508

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Kopecka J, Campia I, Olivero P, Pescarmona G, Ghigo D, Bosia A, Riganti C (2011) A LDL-masked liposomal-doxorubicin reverses drug resistance in human cancer cells. J Contr Rel 149:196–205

    Article  CAS  Google Scholar 

  29. Pinzón-Daza ML, Garzón R, Couraud PO, Romero IA, Weksler B, Ghigo D, Bosia A, Riganti C (2012) The association of statins plus LDL receptor-targeted liposome-encapsulated doxorubicin increases the in vitro drug delivery across blood–brain barrier cells. Brit J Pharmacol 167:1431–1447

    Article  Google Scholar 

  30. Portnow J, Badie B, Chen M, Liu A, Blanchard S, Synold TW (2009) The neuro-pharmacokinetics of temozolomide in patients with resectable brain tumors: potential implications for the current approach to chemoradiation. Clin Cancer Res 15:7092–7098

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Dalmark M, Storm HH (1981) A Fickian diffusion transport process with features of transport catalysis. Doxorubicin transport in human red blood cells. J Gen Physiol 78:349–364

    Article  CAS  PubMed  Google Scholar 

  32. Ito S, Woodland C, Sarkadi B, Hockmann G, Walker SE, Koren G (1999) Modeling of P-glycoprotein-involved epithelial drug transport in MDCK cells. Am J Physiol 277:F84–F96

    CAS  PubMed  Google Scholar 

  33. Goodwin AM, Sullivan KM, D’Amore PA (2006) Cultured endothelial cells display endogenous activation of the canonical Wnt signalling pathway and express multiple ligands, receptors, and secreted modulators of Wnt signalling. Dev Dyn 235:3110–3120

    Article  CAS  PubMed  Google Scholar 

  34. Fu L, Zhang C, Zhang LY, Dong SS, Lu LH, Chen J, Dai Y, Li Y, Kong KL, Kwong DL, Guan XY (2011) Wnt2 secreted by tumor fibroblasts promotes tumor progression in oesophageal cancer by activation of the Wnt/β-catenin signalling pathway. Gut 60:1635–1643

    Article  CAS  PubMed  Google Scholar 

  35. Liebner S, Corada M, Bangsow T, Babbage J, Taddei A, Czupalla CJ, Reis M, Felici A, Wolburg H, Fruttiger M, Taketo MM, von Melchner H, Plate KH, Gerhardt H, Dejana E (2008) Wnt/beta-catenin signalling controls development of the blood–brain barrier. J Cell Biol 183:409–417

    Article  CAS  PubMed  Google Scholar 

  36. Bernardi H, Gay S, Fedon Y, Vernus B, Bonnieu A, Bacou F (2011) Wnt4 activates the canonical β-catenin pathway and regulates negatively myostatin: functional implication in myogenesis. Am J Physiol Cell Physiol 300:C1122–C1138

    Article  CAS  PubMed  Google Scholar 

  37. Tai LM, Loughlin AJ, Male DK, Romero IA (2009) P-glycoprotein and breast cancer resistance protein restrict apical-to-basolateral permeability of human brain endothelium to amyloid-β. J Cereb Blood Flow Metab 29:1079–1083

    Article  CAS  PubMed  Google Scholar 

  38. Park CH, Chang JY, Hahn ER, Park S, Kim HK, Yang CH (2005) Quercetin, a potent inhibitor against beta-catenin/Tcf signalling in SW480 colon cancer cells. Biochem Biophys Res Commun 328:227–234

    Article  CAS  PubMed  Google Scholar 

  39. Zhang H, Zhang Z, Wu X, Li W, Su W, Su P, Cheng H, Xiang L, Gao P, Zhou G (2012) Interference of Frizzled 1 (FD1) reverses multidrug resistance in breast cancer cells through the Wnt/β-catenin pathway. Cancer Lett 323:106–113

    Article  CAS  PubMed  Google Scholar 

  40. Ananda S, Nowak AK, Cher L, Dowling A, Brown C, Simes J, Rosenthal MA, Cooperative Trials Group for Neuro-Oncology (COGNO) (2011) Phase 2 trial of temozolomide and PEGylated liposomal doxorubicin in the treatment of patients with glioblastoma multiforme following concurrent radiotherapy and chemotherapy. J Clin Neurosci 18:1444–1448

    Article  CAS  PubMed  Google Scholar 

  41. Steiniger SC, Kreuter J, Khalansky AS, Skidan IN, Bobruskin AI, Smirnova ZS, Severin SE, Uhl R, Kock M, Geiger KD, Gelperina SE (2004) Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. Int J Cancer 109:759–767

    Article  CAS  PubMed  Google Scholar 

  42. Wohlfart S, Khalansky AS, Gelperina S, Begley D, Kreuter J (2011) Kinetics of transport of doxorubicin bound to nanoparticles across the blood–brain barrier. J Control Rel 154:103–107

    Article  CAS  Google Scholar 

  43. Yount G, Yang Y, Wong B, Wang H-J, Yang L-X (2007) A novel camptothecin analog with enhanced antitumor activity. Anticancer Res 27:3173–3178

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to Prof. Michele Lanotte (Department of Neuroscience, Neurosurgical Unit, University of Turin) and to Dr. Rossella Galli (San Raffaele Scientific Institute, Milan) for providing the primary glioblastoma samples. We are grateful to Costanzo Costamagna (Department of Oncology, University of Turin) for the technical assistance and to Dr. Oriana Monzeglio (Neuro-bio-oncology Center, Policlinico di Monza Foundation) for the technical suggestions with methylation promoter assay. This work has been supported by grants from Compagnia di San Paolo, Italy (Neuroscience Program; grant 2008.1136) and Italian Association for Cancer Research (AIRC; MFAG 11475) to Chiara Riganti. Martha Leonor Pinzón-Daza is recipient of a ERACOL Erasmus Mundus fellowship. Joanna Kopecka is recipient of a “Mario and Valeria Rindi” fellowship provided by Italian Foundation for Cancer Research (FIRC).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Riganti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5950 kb)

Supplementary material 2 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riganti, C., Salaroglio, I.C., Pinzòn-Daza, M.L. et al. Temozolomide down-regulates P-glycoprotein in human blood–brain barrier cells by disrupting Wnt3 signaling. Cell. Mol. Life Sci. 71, 499–516 (2014). https://doi.org/10.1007/s00018-013-1397-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1397-y

Keywords

Navigation