Skip to main content
Log in

Marked by association: techniques for proximity-dependent labeling of proteins in eukaryotic cells

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Various methods have been established for the purpose of identifying and characterizing protein–protein interactions (PPIs). This diverse toolbox provides researchers with options to overcome challenges specific to the nature of the proteins under investigation. Among these techniques is a category based on proximity-dependent labeling of proteins in living cells. These can be further partitioned into either hypothesis-based or unbiased screening methods, each with its own advantages and limitations. Approaches in which proteins of interest are fused to either modifying enzymes or receptor sequences allow for hypothesis-based testing of protein proximity. Protein crosslinking and BioID (proximity-dependent biotin identification) permit unbiased screening of protein proximity for a protein of interest. Here, we evaluate these approaches and their applications in living eukaryotic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BAT:

Biotin acceptor tag

BioID:

Proximity-dependent biotin identification

BLINC:

Biotin labeling of intercellular contacts

ChIP:

Chromatin immuno-precipitation

FRET:

Forster (fluorescence) resonance energy transfer

ID-PRIME:

Interaction-dependent probe incorporation mediated by enzymes

LAP:

LplA acceptor peptide

PIR:

Protein interaction reporter

PPI:

Protein–protein interaction

PUB-MS:

Proximity utilizing biotinylation and mass spectrometry

PUB-NChIP:

Proximity utilizing biotinylation with native ChIP

TRAP:

Targeted releasable affinity probe

Y2H:

Yeast-2-hybrid

References

  1. Dunham WH, Mullin M, Gingras AC (2012) Affinity-purification coupled to mass spectrometry: basic principles and strategies. Proteomics 12(10):1576–1590

    Article  PubMed  CAS  Google Scholar 

  2. Fields S, Song O (1989) A novel genetic system to detect protein–protein interactions. Nature 340(6230):245–246

    Article  PubMed  CAS  Google Scholar 

  3. Weibrecht I et al (2010) Proximity ligation assays: a recent addition to the proteomics toolbox. Expert Rev Proteomics 7(3):401–409

    Article  PubMed  CAS  Google Scholar 

  4. Chapman-Smith A, Cronan JE Jr (1999) Molecular biology of biotin attachment to proteins. J Nutr 129((2S Suppl)):477S–484S

    PubMed  CAS  Google Scholar 

  5. Cronan JE Jr, Reed KE (2000) Biotinylation of proteins in vivo: a useful posttranslational modification for protein analysis. Methods Enzymol 326:440–458

    Article  PubMed  CAS  Google Scholar 

  6. Cronan JE Jr (1990) Biotination of proteins in vivo. A post-translational modification to label, purify, and study proteins. J Biol Chem 265(18):10327–10333

    PubMed  CAS  Google Scholar 

  7. Fernandez-Suarez M, Chen TS, Ting AY (2008) Protein–protein interaction detection in vitro and in cells by proximity biotinylation. J Am Chem Soc 130(29):9251–9253

    Article  PubMed  CAS  Google Scholar 

  8. Kulyyassov A et al (2011) PUB-MS: a mass spectrometry-based method to monitor protein–protein proximity in vivo. J Proteome Res 10(10):4416–4427

    Article  PubMed  CAS  Google Scholar 

  9. Thyagarajan A, Ting AY (2010) Imaging activity-dependent regulation of neurexin-neuroligin interactions using trans-synaptic enzymatic biotinylation. Cell 143(3):456–469

    Article  PubMed  CAS  Google Scholar 

  10. Shoaib M et al. (2013) PUB-NChIP—“in vivo biotinylation” approach to study chromatin in proximity to a protein of interest. Genome Res 23(2):331–340

    Google Scholar 

  11. Thorne AW, Myers FA, Hebbes TR (2004) Native chromatin immunoprecipitation. Methods Mol Biol 287:21–44

    PubMed  CAS  Google Scholar 

  12. Kuroishi T et al (2011) Biotinylation is a natural, albeit rare, modification of human histones. Mol Genet Metab 104(4):537–545

    Article  PubMed  CAS  Google Scholar 

  13. Slavoff SA et al (2011) Imaging protein–protein interactions inside living cells via interaction-dependent fluorophore ligation. J Am Chem Soc 133(49):19769–19776

    Article  PubMed  CAS  Google Scholar 

  14. Royant A, Noirclerc-Savoye M (2011) Stabilizing role of glutamic acid 222 in the structure of enhanced green fluorescent protein. J Struct Biol 174(2):385–390

    Article  PubMed  CAS  Google Scholar 

  15. Weaver LH et al (2001) Corepressor-induced organization and assembly of the biotin repressor: a model for allosteric activation of a transcriptional regulator. Proc Natl Acad Sci USA 98(11):6045–6050

    Article  PubMed  CAS  Google Scholar 

  16. Fujiwara K et al (2010) Global conformational change associated with the two-step reaction catalyzed by Escherichia coli lipoate-protein ligase A. J Biol Chem 285(13):9971–9980

    Article  PubMed  CAS  Google Scholar 

  17. Sutherland BW, Toews J, Kast J (2008) Utility of formaldehyde cross-linking and mass spectrometry in the study of protein–protein interactions. J Mass Spectrom 43(6):699–715

    Article  PubMed  CAS  Google Scholar 

  18. Sinz A (2010) Investigation of protein–protein interactions in living cells by chemical crosslinking and mass spectrometry. Anal Bioanal Chem 397(8):3433–3440

    Article  PubMed  CAS  Google Scholar 

  19. Vasilescu J, Figeys D (2006) Mapping protein–protein interactions by mass spectrometry. Curr Opin Biotechnol 17(4):394–399

    Article  PubMed  CAS  Google Scholar 

  20. Downard KM (2006) Ions of the interactome: the role of MS in the study of protein interactions in proteomics and structural biology. Proteomics 6(20):5374–5384

    Article  PubMed  CAS  Google Scholar 

  21. Kluger R, Alagic A (2004) Chemical cross-linking and protein–protein interactions-a review with illustrative protocols. Bioorg Chem 32(6):451–472

    Article  PubMed  CAS  Google Scholar 

  22. Trakselis MA, Alley SC, Ishmael FT (2005) Identification and mapping of protein–protein interactions by a combination of cross-linking, cleavage, and proteomics. Bioconjug Chem 16(4):741–750

    Article  PubMed  CAS  Google Scholar 

  23. Melcher K (2004) New chemical crosslinking methods for the identification of transient protein–protein interactions with multiprotein complexes. Curr Protein Pept Sci 5(4):287–296

    Article  PubMed  CAS  Google Scholar 

  24. Fancy DA (2000) Elucidation of protein–protein interactions using chemical cross-linking or label transfer techniques. Curr Opin Chem Biol 4(1):28–33

    Article  PubMed  CAS  Google Scholar 

  25. Petrotchenko EV, Borchers CH (2010) Crosslinking combined with mass spectrometry for structural proteomics. Mass Spectrom Rev 29(6):862–876

    Article  PubMed  CAS  Google Scholar 

  26. Rappsilber J (2011) The beginning of a beautiful friendship: cross-linking/mass spectrometry and modelling of proteins and multi-protein complexes. J Struct Biol 173(3):530–540

    Article  PubMed  CAS  Google Scholar 

  27. Leitner A et al (2010) Probing native protein structures by chemical cross-linking, mass spectrometry, and bioinformatics. Mol Cell Proteomics 9(8):1634–1649

    Article  PubMed  CAS  Google Scholar 

  28. Sinz A (2006) Chemical cross-linking and mass spectrometry to map three-dimensional protein structures and protein–protein interactions. Mass Spectrom Rev 25(4):663–682

    Article  PubMed  CAS  Google Scholar 

  29. Jin Lee Y (2008) Mass spectrometric analysis of cross-linking sites for the structure of proteins and protein complexes. Mol Biosyst 4(8):816–823

    Article  PubMed  Google Scholar 

  30. Bruce JE (2012) In vivo protein complex topologies: sights through a cross-linking lens. Proteomics 12(10):1565–1575

    Article  PubMed  CAS  Google Scholar 

  31. Suchanek M, Radzikowska A, Thiele C (2005) Photo-leucine and photo-methionine allow identification of protein–protein interactions in living cells. Nat Methods 2(4):261–267

    Article  PubMed  CAS  Google Scholar 

  32. Tang X, Bruce JE (2010) A new cross-linking strategy: protein interaction reporter (PIR) technology for protein–protein interaction studies. Mol Biosyst 6(6):939–947

    Article  PubMed  CAS  Google Scholar 

  33. Yan P et al (2009) A targeted releasable affinity probe (TRAP) for in vivo photocrosslinking. Chembiochem: Eur J Chem Biol 10(9):1507–1518

    Article  CAS  Google Scholar 

  34. Martin BR et al (2005) Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity. Nat Biotechnol 23(10):1308–1314

    Article  PubMed  CAS  Google Scholar 

  35. Roux KJ et al (2012) A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J Cell Biol 196(6):801–810

    Article  PubMed  CAS  Google Scholar 

  36. Choi-Rhee E, Schulman H, Cronan JE (2004) Promiscuous protein biotinylation by Escherichia coli biotin protein ligase. Protein Sci : Publ Protein Soc 13(11):3043–3050

    Article  CAS  Google Scholar 

  37. Cronan JE (2005) Targeted and proximity-dependent promiscuous protein biotinylation by a mutant Escherichia coli biotin protein ligase. J Nutr Biochem 16(7):416–418

    Article  PubMed  CAS  Google Scholar 

  38. Green NM (1963) Avidin. 1. The Use of (14-C)Biotin for Kinetic Studies and for Assay. Biochem J 89:585–591

    PubMed  CAS  Google Scholar 

  39. Morriswood B et al. (2013) Novel bilobe components in Trypanosoma brucei identified using proximity-dependent biotinylation. Eukaryotic Cell 12(2):356–367

    Google Scholar 

  40. Roux K.J., D.I. Kim and B. Burke (2013) BioID: A screen for protein–protein interactions. Curr Protoc Protein Sci (in press)

  41. Lane MD et al (1964) The Enzymatic Synthesis of Holotranscarboxylase from Apotranscarboxylase and (+)-Biotin. Ii. Investigation of the Reaction Mechanism. J Biol Chem 239:2865–2871

    PubMed  CAS  Google Scholar 

  42. Kwon K, Beckett D (2000) Function of a conserved sequence motif in biotin holoenzyme synthetases. Protein Sci 9(8):1530–1539

    Article  PubMed  CAS  Google Scholar 

  43. Gruic-Sovulj I et al (2005) tRNA-dependent aminoacyl-adenylate hydrolysis by a nonediting class I aminoacyl-tRNA synthetase. J Biol Chem 280(25):23978–23986

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by Sanford Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle J. Roux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roux, K.J. Marked by association: techniques for proximity-dependent labeling of proteins in eukaryotic cells. Cell. Mol. Life Sci. 70, 3657–3664 (2013). https://doi.org/10.1007/s00018-013-1287-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1287-3

Keywords

Navigation