Skip to main content

Advertisement

Log in

The ZIC gene family encodes multi-functional proteins essential for patterning and morphogenesis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The zinc finger of the cerebellum gene (ZIC) discovered in Drosophila melanogaster (odd-paired) has five homologs in Xenopus, chicken, mice, and humans, and seven in zebrafish. This pattern of gene copy expansion is accompanied by a divergence in gene and protein structure, suggesting that Zic family members share some, but not all, functions. ZIC genes are implicated in neuroectodermal development and neural crest cell induction. All share conserved regions encoding zinc finger domains, however their heterogeneity and specification remain unexplained. In this review, the evolution, structure, and expression patterns of the ZIC homologs are described; specific functions attributable to individual family members are supported. A review of data from functional studies in Xenopus and murine models suggest that ZIC genes encode multifunctional proteins operating in a context-specific manner to drive critical events during embryogenesis. The identification of ZIC mutations in congenital syndromes highlights the relevance of these genes in human development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aruga J, Yokota N, Hashimoto M, Furuichi T, Fukuda M, Mikoshiba K (1994) A novel zinc finger protein, zic, is involved in neurogenesis, especially in the cell lineage of cerebellar granule cells. J Neurochem 63:1880–1890

    Article  PubMed  CAS  Google Scholar 

  2. Aruga J, Nagai T, Tokuyama T, Hayashizaki Y, Okazaki Y, Chapman V, Mikoshiba K (1996) The mouse Zic gene family. Biol Chem 271:1043–1047

    Article  CAS  Google Scholar 

  3. Nakata K, Nagai T, Aruga J, Mikoshiba K (1997) Xenopus Zic3, a primary regulator both in neural and neural crest development. Proc Natl Acad Sci USA 94:11980–11985

    Article  PubMed  CAS  Google Scholar 

  4. Rohr K, Schulte-Merker S, Tautz D (1999) Zebrafish zic1 expression in brain and somites is affected by BMP and Hedgehog signalling. Mech Dev 85:147–159

    Article  PubMed  CAS  Google Scholar 

  5. Satou Y, Yagi K, Imai K, Yamada L, Nishida H, Satoh N (2002) macho-1-related genes in Ciona embryos. Dev Genes Evol 212:87–92

    Article  PubMed  CAS  Google Scholar 

  6. Aruga J, Kamiya A, Takahashi H, Fujimi TJ, Shimizu Y, Ohkawa K, Yazawa S, Umesono Y, Noguchi H, Shimizu T, Saitou N, Mikoshiba K, Sakaki Y, Agata K, Toyoda A (2006) A wide-range phylogenetic analysis of Zic proteins: implications for correlations between protein structure conservation and body plan complexity. Genomics 87:783–792

    Article  PubMed  CAS  Google Scholar 

  7. Layden MJ, Meyer NP, Pang K, Seaver EC, Martindale MQ (2010) Expression and phylogenetic analysis of the zic gene family in the evolution and development of metazoans. Evodevo 1:12

    Article  PubMed  CAS  Google Scholar 

  8. Salero E, Pérez-Sen R, Aruga J, Giménez C, Zafra F (2001) Transcription factors Zic1 and Zic2 bind and transactivate the apolipoprotein E gene promoter. J Biol Chem 19:1881–1888

    Article  Google Scholar 

  9. Lim LS, Hong FH, Kunarso G, Stanton LW (2010) The pluripotency regulator Zic3 is a direct activator of the Nanog promoter in ESCs. Stem Cells 28:1961–1969

    Article  PubMed  CAS  Google Scholar 

  10. Pourebrahim R, Houtmeyers R, Ghogomu S, Janssens S, Thelie A, Tran HT, Langenberg T, Vleminckx K, Bellefroid E, Cassiman JJ, Tejpar S (2011) Transcription factor Zic2 inhibits Wnt/beta-catenin protein signaling. J Biol Chem 286:37732–37740

    Article  PubMed  CAS  Google Scholar 

  11. Mizugishi K, Aruga J, Nakata K, Mikoshiba K (2001) Molecular properties of Zic proteins as transcriptional regulators and their relationship to GLI proteins. J Biol Chem 276:2180–2188

    Article  PubMed  CAS  Google Scholar 

  12. Hatayama M, Tomizawa T, Sakai-Kato K, Bouvagnet P, Kose S, Imamoto N, Yokoyama S, Utsunomiya-Tate N, Mikoshiba K, Kigawa T, Aruga J (2008) Functional and structural basis of the nuclear localization signal in the ZIC3 zinc finger domain. Hum Mol Genet 17:3459–3473

    Article  PubMed  CAS  Google Scholar 

  13. Bedard JE, Haaning AM, Ware SM (2012) Identification of a novel ZIC3 isoform and mutation screening in patients with heterotaxy and congenital heart disease. PLoS ONE 6:23755

    Article  Google Scholar 

  14. Ali RG, Bellchambers H, Arkell RM (2012) Zinc fingers of the cerebellum (Zic): transcription factors and co-factors. Int. J Biochem Cell Biol (ahead of publication)

  15. Elms P, Siggers P, Napper D, Greenfield A, Arkell R (2003) Zic2 is required for neural crest formation and hindbrain patterning during mouse development. Dev Biol 264:391–406

    Article  PubMed  CAS  Google Scholar 

  16. Brown L, Paraso M, Arkell R, Brown S (2005) In vitro analysis of partial loss-of-function ZIC2 mutations in holoprosencephaly: alanine tract expansion modulates DNA binding and transactivation. Hum Mol Genet 14:411–420

    Article  PubMed  CAS  Google Scholar 

  17. Hatayama M, Aruga J (2010) Characterization of the tandem CWCH2 sequence motif: a hallmark of inter-zinc finger interactions. BMC Evol Biol 10:53

    Article  PubMed  Google Scholar 

  18. Chhin B, Hatayama M, Bozon D, Ogawa M, Schön P, Tohmonda T, Sassolas F, Aruga J, Valard AG, Chen SC, Bouvagnet P (2007) Elucidation of penetrance variability of a ZIC3 mutation in a family with complex heart defects and functional analysis of ZIC3 mutations in the first zinc finger domain. Hum Mutat 28:563–570

    Article  PubMed  CAS  Google Scholar 

  19. Mizugishi K, Hatayama M, Tohmonda T, Ogawa M, Inoue T, Mikoshiba K, Aruga J (2004) Myogenic repressor I-mfa interferes with the function of Zic family proteins. Biochem Biophys Res Commun 320:233–240

    Article  PubMed  CAS  Google Scholar 

  20. Brown LY, Odent S, David V, Blayau M, Apacik C, Delgado MA, Hall BD, Reynolds JF, Sommer A, Wieczorek D, Brown SA, Muenke M (2001) Holoprosencephaly due to mutations in ZIC2: alanine tract expansion mutations may be caused by parental somatic recombination. Hum Mol Genet 10:791–796

    Article  PubMed  CAS  Google Scholar 

  21. Wessels MW, Kuchinka B, Heydanus R, Smit BJ, Dooijes D, de Krijger RR, Lequin MH, de Jong EM, Husen M, Willems PJ, Casey B (2010) Polyalanine expansion in the ZIC3 gene leading to X-linked heterotaxy with VACTERL association: a new polyalanine disorder? J Med Genet 47:351–355

    Article  PubMed  CAS  Google Scholar 

  22. Fujimi TJ, Hatayama M, Aruga J (2012) Xenopus Zic3 controls notochord and organizer development through suppression of the Wnt/beta-catenin signaling pathway. Dev Biol 361:220–231

    Article  PubMed  CAS  Google Scholar 

  23. Koyabu Y, Nakata K, Mizugishi K, Aruga J, Mikoshiba K (2001) Physical and functional interactions between Zic and Gli proteins. J Biol Chem 276:6889–6892

    Article  PubMed  CAS  Google Scholar 

  24. Keller MJ, Chitnis AB (2007) Insights into the evolutionary history of the vertebrate zic3 locus from a teleost-specific zic6 gene in the zebrafish, Danio rerio. Dev Genes Evol 217:541–547

    Article  PubMed  CAS  Google Scholar 

  25. Nyholm MK, Wu SF, Dorsky RI, Grinblat Y (2007) The zebrafish zic2a-zic5 gene pair acts downstream of canonical Wnt signaling to control cell proliferation in the developing tectum. Development 134:735–746

    Article  PubMed  CAS  Google Scholar 

  26. Warr N, Powles-Glover N, Chappell A, Robson J, Norris D, Arkell RM (2008) Zic2-associated holoprosencephaly is caused by a transient defect in the organizer region during gastrulation. Hum Mol Genet 17:2986–2996

    Article  PubMed  CAS  Google Scholar 

  27. Merzdorf CS (2007) Emerging roles for zic genes in early development. Dev Dyn 236:922–940

    Article  PubMed  CAS  Google Scholar 

  28. Grinberg I, Millen KJ (2005) The ZIC gene family in development and disease. Clin Genet 67:290–296

    Article  PubMed  CAS  Google Scholar 

  29. Aruga J (2004) The role of Zic genes in neural development. Mol Cell Neurosci 26:205–221

    Article  PubMed  CAS  Google Scholar 

  30. Brown L, Brown S (2009) Zic2 is expressed in pluripotent cells in the blastocyst and adult brain expression overlaps with makers of neurogenesis. Gene Expr Patterns 9:43–49

    Article  PubMed  CAS  Google Scholar 

  31. Inoue T, Hatayama M, Tohmonda T, Itohara S, Aruga J, Mikoshiba K (2004) Mouse Zic5 deficiency results in neural tube defects and hypoplasia of cephalic neural crest derivatives. Dev Biol 270:146–162

    Article  PubMed  CAS  Google Scholar 

  32. Elms P, Scurry A, Davies J, Willoughby C, Hacker T, Bogani D, Arkell R (2004) Overlapping and distinct expression domains of Zic2 and Zic3 during mouse gastrulation. Gene Expr Patterns 4:505–511

    Article  PubMed  CAS  Google Scholar 

  33. Furushima K, Murata T, Matsuo I, Aizawa S (2000) A new murine zinc finger gene, Opr. Mech Dev 98:161–164

    Article  PubMed  CAS  Google Scholar 

  34. Nagai T, Aruga J, Takada S, Gunther T, Sporle R, Schughart K, Mikoshiba K (1997) The expression of the mouse Zic1, Zic2, and Zic3 gene suggests an essential role for Zic genes in body pattern formation. Dev Biol 182:299–313

    Article  PubMed  CAS  Google Scholar 

  35. Gaston-Massuet C, Henderson DJ, Greene ND, Copp AJ (2005) Zic4, a zinc-finger transcription factor, is expressed in the developing mouse nervous system. Dev Dyn 233:1110–1115

    Article  PubMed  CAS  Google Scholar 

  36. Inoue T, Ogawa M, Mikoshiba K, Aruga J (2008) Zic deficiency in the cortical marginal zone and meninges results in cortical lamination defects resembling those in type II lissencephaly. J Neurosci 28:4712–4725

    Article  PubMed  CAS  Google Scholar 

  37. Watabe Y, Baba Y, Nakauchi H, Mizota A, Watanabe S (2012) The role of Zic family zinc finger transcription factors in the proliferation and differentiation of retinal progenitor cells. Biochem Biophys Res Commun 415:42–47

    Article  Google Scholar 

  38. Toyama R, Gomez DM, Mana MD, Dawid IB (2004) Sequence relationships and expression patterns of zebrafish zic2 and zic5 genes. Gene Expr Patterns 4:345–350

    Article  PubMed  CAS  Google Scholar 

  39. Zhang J, Jin Z, Bao ZZ (2004) Disruption of gradient expression of Zic3 resulted in abnormal intra-retinal axon projection. Development 131:1553–1562

    Article  PubMed  CAS  Google Scholar 

  40. Fujimi TJ, Mikoshiba K, Aruga J (2006) Xenopus Zic4: conservation and diversification of expression profiles and protein function among the Xenopus Zic family. Dev Dyn 235:3379–3386

    Article  PubMed  CAS  Google Scholar 

  41. Houston DW, Wylie C (2005) Maternal Xenopus Zic2 negatively regulates nodal-related gene expression during anteroposterior patterning. Development 132:4845–4855

    Article  PubMed  CAS  Google Scholar 

  42. Nakata K, Koyabu Y, Aruga J, Mikoshiba K (2000) A novel member of the Xenopus Zic family, Zic5, mediates neural crest development. Mech Dev 99:83–91

    Article  PubMed  CAS  Google Scholar 

  43. Nakata K, Nagai T, Aruga J, Mikoshiba K (1998) Xenopus Zic family and its role in neural and neural crest development. Mech Dev 75:43–51

    Article  PubMed  CAS  Google Scholar 

  44. Klootwijk R, Franke B, van der Zee CE, de Boer RT, Wilms W, Hol FA, Mariman EC (2000) A deletion encompassing Zic3 in bent tail, a mouse model for X-linked neural tube defects. Hum Mol Genet 9:1615–1622

    Article  PubMed  CAS  Google Scholar 

  45. Purandare SM, Ware SM, Kwan KM, Gebbia M, Bassi MT, Deng JM, Vogel H, Behringer RR, Belmont JW, Casey B (2002) A complex syndrome of left–right axis, central nervous system and axial skeleton defects in Zic3 mutant mice. Development 129:2293–2302

    PubMed  CAS  Google Scholar 

  46. Ware SM, Harutyunyan KG, Belmont JW (2006) Zic3 is critical for early embryonic patterning during gastrulation. Dev Dyn 235:776–785

    Article  PubMed  CAS  Google Scholar 

  47. Cast AE, Gao C, Amack JD, Ware SM (2012) An essential and highly conserved role for Zic3 in left–right patterning, gastrulation and convergent extension morphogenesis. Dev Biol 364:22–31

    Article  PubMed  CAS  Google Scholar 

  48. Ware SM, Harutyunyan KG, Belmont JW (2006) Heart defects in X-linked heterotaxy: evidence for a genetic interaction of Zic3 with the nodal signaling pathway. Dev Dyn 235:1631–1637

    Article  PubMed  CAS  Google Scholar 

  49. Arkell RM, Tam PP (2012) Initiating head development in mouse embryos: integrating signalling and transcriptional activity. Open Biol 2:120030

    Article  PubMed  Google Scholar 

  50. Dubourg C, Bendavid C, Pasquier L, Henry C, Odent S, David V (2007) Holoprosencephaly. Orphanet J Rare Dis 2:8

    Article  PubMed  Google Scholar 

  51. Roessler E, Lacbawan F, Dubourg C, Paulussen A, Herbergs J, Hehr U, Bendavid C, Zhou N, Ouspenskaia M, Bale S, Odent S, David V, Muenke M (2009) The full spectrum of holoprosencephaly-associated mutations within the ZIC2 gene in humans predicts loss-of-function as the predominant disease mechanism. Hum Mutat 30:E541–E554

    Article  PubMed  Google Scholar 

  52. Gruneberg H (1955) Heterosis and variability in the mouse. Proc R Soc Lond B Biol Sci 144:220–221

    Article  PubMed  CAS  Google Scholar 

  53. Franke B, Klootwijk R, Lemmers B, de Kovel CG, Steegers-Theunissen RP, Mariman EC (2003) Phenotype of the neural tube defect mouse model bent tail is not sensitive to maternal folinic acid, myo-inositol, or zinc supplementation. Birth Defects Res A Clin Mol Teratol 67:979–984

    Article  PubMed  CAS  Google Scholar 

  54. Chung B, Shaffer LG, Keating S, Johnson J, Casey B, Chitayat D (2011) From VACTERL-H to heterotaxy: variable expressivity of ZIC3-related disorders. Am J Med Genet A 155A:1123–1128

    Article  PubMed  Google Scholar 

  55. Carrel T, Purandare SM, Harrison W, Elder F, Fox T, Casey B, Herman GE (2000) The X-linked mouse mutation Bent tail is associated with a deletion of the Zic3 locus. Hum Mol Genet 9:1937–1942

    Article  PubMed  CAS  Google Scholar 

  56. Klootwijk R, Schijvenaars MM, Mariman EC, Franke B (2004) Further characterization of the genetic defect of the Bent tail mouse, a mouse model for human neural tube defects. Birth Defects Res A Clin Mol Teratol 70:880–884

    Article  PubMed  CAS  Google Scholar 

  57. Furushima K, Murata T, Kiyonari H, Aizawa S (2005) Characterization of Opr deficiency in mouse brain: subtle defects in dorsomedial telencephalon and medioventral forebrain. Dev Dyn 232:1056–1061

    Article  PubMed  CAS  Google Scholar 

  58. Ybot-Gonzalez P, Gaston-Massuet C, Girdler G, Klingensmith J, Arkell R, Greene ND, Copp AJ (2007) Neural plate morphogenesis during mouse neurulation is regulated by antagonism of Bmp signalling. Development 134:3203–3211

    Article  PubMed  CAS  Google Scholar 

  59. Chan WY, Tam PP (1988) A morphological and experimental study of the mesencephalic neural crest cells in the mouse embryo using wheat germ agglutinin-gold conjugate as the cell marker. Development 102:427–442

    PubMed  CAS  Google Scholar 

  60. Sela-Donenfeld D, Kalcheim C (1999) Regulation of the onset of neural crest migration by coordinated activity of BMP4 and Noggin in the dorsal neural tube. Development 126:4749–4762

    PubMed  CAS  Google Scholar 

  61. Nagai T, Aruga J, Minowa O, Sugimoto T, Ohno Y, Noda T, Mikoshiba K (2000) Zic2 regulates the kinetics of neurulation. Proc Natl Acad Sci USA 97:1618–1623

    Article  PubMed  CAS  Google Scholar 

  62. Cheng X, Hsu CM, Currle DS, Hu JS, Barkovich AJ, Monuki ES (2006) Central roles of the roof plate in telencephalic development and holoprosencephaly. J Neurosci 26:7640–7649

    Article  PubMed  CAS  Google Scholar 

  63. Gruneberg H (1963) The pathology of development, a study of inherited skeletal disorders in animals. Wiley, New York

    Google Scholar 

  64. Inoue T, Ota M, Mikoshiba K, Aruga J (2007) Zic2 and Zic3 synergistically control neurulation and segmentation of paraxial mesoderm in mouse embryo. Dev Biol 306:669–684

    Article  PubMed  CAS  Google Scholar 

  65. Aruga J, Minowa O, Yaginuma H, Kuno J, Nagai T, Noda T, Mikoshiba K (1998) Mouse Zic1 is involved in cerebellar development. J Neurosci 18:284–293

    PubMed  CAS  Google Scholar 

  66. Blank MC, Grinberg I, Aryee E, Laliberte C, Chizhikov VV, Henkelman RM, Millen KJ (2011) Multiple developmental programs are altered by loss of Zic1 and Zic4 to cause Dandy-Walker malformation cerebellar pathogenesis. Development 138:1207–1216

    Article  PubMed  CAS  Google Scholar 

  67. Grinberg I, Northrup H, Ardinger H, Prasad C, Dobyns WB, Millen KJ (2004) Heterozygous deletion of the linked genes ZIC1 and ZIC4 is involved in Dandy-Walker malformation. Nat Genet 36:1053–1055

    Article  PubMed  CAS  Google Scholar 

  68. Ogura H, Aruga J, Mikoshiba K (2001) Behavioral abnormalities of Zic1 and Zic2 mutant mice: implications as models for human neurological disorders. Behav Genet 31:317–324

    Article  PubMed  CAS  Google Scholar 

  69. Herrera E, Brown L, Aruga J, Rachel RA, Dolen G, Mikoshiba K, Brown S, Mason CA (2003) Zic2 patterns binocular vision by specifying the uncrossed retinal projection. Cell 114:545–557

    Article  PubMed  CAS  Google Scholar 

  70. Garcia-Frigola C, Carreres MI, Vegar C, Mason C, Herrera E (2008) Zic2 promotes axonal divergence at the optic chiasm midline by EphB1-dependent and -independent mechanisms. Development 135:1833–1841

    Article  PubMed  CAS  Google Scholar 

  71. Lee R, Petros TJ, Mason CA (2008) Zic2 regulates retinal ganglion cell axon avoidance of ephrinB2 through inducing expression of the guidance receptor EphB1. J Neurosci 28:5910–5919

    Article  PubMed  CAS  Google Scholar 

  72. Aruga J, Mizugishi K, Koseki H, Imai K, Balling R, Noda T, Mikoshiba K (1999) Zic1 regulates the patterning of vertebral arches in cooperation with Gli3. Mech Dev 89:141–150

    Article  PubMed  CAS  Google Scholar 

  73. Pan H, Gustafsson MK, Aruga J, Tiedken JJ, Chen JC, Emerson CP Jr (2011) A role for Zic1 and Zic2 in Myf5 regulation and somite myogenesis. Dev Biol 351:120–127

    Article  PubMed  CAS  Google Scholar 

  74. Garber ED (1952) “Bent-Tail,” a dominant, sex-linked mutation in the mouse. Proc Natl Acad Sci USA 38:876–879

    Article  PubMed  CAS  Google Scholar 

  75. Quinn ME, Haaning A, Ware SM (2012) Preaxial polydactyly caused by Gli3 haploinsufficiency is rescued by Zic3 loss of function in mice. Hum Mol Genet 21:1888–1896

    Article  PubMed  CAS  Google Scholar 

  76. Mizuseki K, Kishi M, Matsui M, Nakanishi S, Sasai Y (1998) Xenopus Zic-related-1 and Sox-2, two factors induced by chordin, have distinct activities in the initiation of neural induction. Development 125:579–587

    PubMed  CAS  Google Scholar 

  77. Mizuseki K, Kishi M, Shiota K, Nakanishi S, Sasai Y (1998) SoxD: an essential mediator of induction of anterior neural tissues in Xenopus embryos. Neuron 21:77–85

    Article  PubMed  CAS  Google Scholar 

  78. Kuo JS, Patel M, Gamse J, Merzdorf C, Liu X, Apekin V, Sive H (1998) Opl: a zinc finger protein that regulates neural determination and patterning in Xenopus. Development 125:2867–2882

    PubMed  CAS  Google Scholar 

  79. Brewster R, Lee J, Ruiz i Altaba A (1998) Gli/Zic factors pattern the neural plate by defining domains of cell differentiation. Nature 393:579–583

    Article  PubMed  CAS  Google Scholar 

  80. Aruga J, Mikoshiba K (2011) Role of BMP, FGF, calcium signaling, and Zic proteins in vertebrate neuroectodermal differentiation. Neurochem Res 36:1286–1292

    Article  PubMed  CAS  Google Scholar 

  81. Fernandes M, Gutin G, Alcorn H, McConnell SK, Hebert JM (2007) Mutations in the BMP pathway in mice support the existence of two molecular classes of holoprosencephaly. Development 134:3789–3794

    Article  PubMed  CAS  Google Scholar 

  82. Marchal L, Luxardi G, Thome V, Kodjabachian L (2009) BMP inhibition initiates neural induction via FGF signaling and Zic genes. Proc Natl Acad Sci USA 106:17437–17442

    Article  PubMed  CAS  Google Scholar 

  83. Moreau M, Neant I, Webb SE, Miller AL, Leclerc C (2008) Calcium signalling during neural induction in Xenopus laevis embryos. Philos Trans R Soc Lond B Biol Sci 363:1371–1375

    Article  PubMed  CAS  Google Scholar 

  84. Leclerc C, Webb SE, Daguzan C, Moreau M, Miller AL (2000) Imaging patterns of calcium transients during neural induction in Xenopus laevis embryos. J Cell Sci 113(Pt 19):3519–3529

    PubMed  CAS  Google Scholar 

  85. Leclerc C, Lee M, Webb SE, Moreau M, Miller AL (2003) Calcium transients triggered by planar signals induce the expression of ZIC3 gene during neural induction in Xenopus. Dev Biol 261:381–390

    Article  PubMed  CAS  Google Scholar 

  86. Gutkovich YE, Ofir R, Elkouby YM, Dibner C, Gefen A, Elias S, Frank D (2010) Xenopus Meis3 protein lies at a nexus downstream to Zic1 and Pax3 proteins, regulating multiple cell-fates during early nervous system development. Dev Biol 338:50–62

    Article  PubMed  CAS  Google Scholar 

  87. Monsoro-Burq AH, Wang E, Harland R (2005) Msx1 and Pax3 cooperate to mediate FGF8 and WNT signals during Xenopus neural crest induction. Dev Cell 8:167–178

    Article  PubMed  CAS  Google Scholar 

  88. Ishiguro A, Inoue T, Mikoshiba K, Aruga J (2004) Molecular properties of Zic4 and Zic5 proteins: functional diversity within Zic family. Biochem Biophys Res Commun 324:302–307

    Article  PubMed  CAS  Google Scholar 

  89. Coletta A, Pinney JW, Solis DY, Marsh J, Pettifer SR, Attwood TK (2010) Low-complexity regions within protein sequences have position-dependent roles. BMC Syst Biol 13:43

    Article  Google Scholar 

  90. Pérez-Pérez JM, Candela H, Micol JL (2009) Understanding synergy in genetic interactions. Trends Genet 25:368–376

    Article  PubMed  Google Scholar 

  91. Zhu L, Zhou G, Poole S, Belmont JW (2008) Characterization of the interactions of human ZIC3 mutants with GLI3. Hum Mutat 29:99–105

    Article  PubMed  CAS  Google Scholar 

  92. Lim LS, Hong FH, Kunarso G, Stanton LW (2010) The pluripotency regulator Zic3 is a direct activator of the Nanog promoter in ESCs. Stem Cells 28:1961–1969

    Article  PubMed  CAS  Google Scholar 

  93. Robasky K, Bulyk ML (2011) UniPROBE, update 2011: expanded content and search tools in the online database of protein-binding microarray data on protein–DNA interactions. Nucleic Acids Res 39:124–128

    Article  Google Scholar 

  94. Fujimi TJ, Hatayama M, Aruga J (2012) Xenopus Zic3 controls notochord and organizer development through suppression of the Wnt/beta-catenin signaling pathway. Dev Biol 361:220–231

    Article  PubMed  CAS  Google Scholar 

  95. Zhu L, Harutyunyan KG, Peng JL, Wang J, Schwartz RJ, Belmont JW (2007) Identification of a novel role of ZIC3 in regulating cardiac development. Hum Mol Genet 16:1649–1660

    Article  PubMed  CAS  Google Scholar 

  96. Johnson DR (1976) The interfrontal bone and mutant genes in the mouse. J Anat 121:507–513

    PubMed  CAS  Google Scholar 

  97. Aruga J, Mizugishi K, Koseki H, Imai K, Balling R, Noda T, Mikoshiba K (1999) Zic1 regulates the patterning of vertebral arches in cooperation with Gli3. Mech Dev 89:141–150

    Article  PubMed  CAS  Google Scholar 

  98. Aruga J, Tohmonda T, Homma S, Mikoshiba K (2002) Zic1 promotes the expansion of dorsal neural progenitors in spinal cord by inhibiting neuronal differentiation. Dev Biol 244:329–341

    Google Scholar 

  99. Richardson L, Venkataraman S, Stevenson P, Yang Y, Burton N, Rao J, Fisher M, Baldock RA, Davidson DR, Christiansen JH (2010) EMAGE mouse embryo spatial gene expression database: 2010 update. Nucl Acids Res 38:703–709

    Google Scholar 

Download references

Acknowledgments

Prof. Sabine Tejpar is senior investigator of the fund for Scientific Research-Flanders, Belgium (Fonds Wetenschappelijk Onderzoek-Vlaanderen). Rob Houtmeyers is supported by a PhD grant from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen).

The templates in Fig. 6 were rendered from the EMAGE gene expression database (http://www.emouseatlas.org/emage/); EMA:17 (TS11) and EMA:36 (TS15) [99].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rob Houtmeyers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Houtmeyers, R., Souopgui, J., Tejpar, S. et al. The ZIC gene family encodes multi-functional proteins essential for patterning and morphogenesis. Cell. Mol. Life Sci. 70, 3791–3811 (2013). https://doi.org/10.1007/s00018-013-1285-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1285-5

Keywords

Navigation