Skip to main content

Advertisement

Log in

Dystrophin deficiency leads to disturbance of LAMP1-vesicle-associated protein secretion

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Duchenne muscular dystrophy results from loss of the protein dystrophin, which links the intracellular cytoskeletal network with the extracellular matrix, but deficiency in this function does not fully explain the onset or progression of the disease. While some intracellular events involved in the degeneration of dystrophin-deficient muscle fibers have been well characterized, changes in their secretory profile are undescribed. To analyze the secretome profile of mdx myotubes independently of myonecrosis, we labeled the proteins of mdx and wild-type myotubes with stable isotope-labeled amino acids (SILAC), finding marked enrichment of vesicular markers in the mdx secretome. These included the lysosomal-associated membrane protein, LAMP1, that co-localized in vesicles with an over-secreted cytoskeletal protein, myosin light chain 1. These LAMP1/MLC1-3-positive vesicles accumulated in the cytosol of mdx myotubes and were secreted into the culture medium in a range of abnormal densities. Restitution of dystrophin expression, by exon skipping, to some 30 % of the control value, partially normalized the secretome profile and the excess LAMP1 accumulation. Together, our results suggest that a lack of dystrophin leads to a general dysregulation of vesicle trafficking. We hypothesize that disturbance of the export of proteins through vesicles occurs before, and then concurrently with, the myonecrotic cascade and contributes chronically to the pathophysiology of DMD, thereby presenting us with a range of new potential therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

LAMP1:

Lysosome-associated membrane protein 1

MLC1:

Myosin light chain 1

MLC1-3:

Myosin light chain 1 and 3

PARP1:

Poly ADP-ribose polymerase 1

SILAC:

Stable isotope labeling with amino acids in cell culture

References

  1. Hoffman EP, Brown RH Jr, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51(6):919–928

    Article  PubMed  CAS  Google Scholar 

  2. Ohlendieck K, Ervasti JM, Snook JB, Campbell KP (1991) Dystrophin-glycoprotein complex is highly enriched in isolated skeletal muscle sarcolemma. J Cell Biol 112(1):135–148

    Article  PubMed  CAS  Google Scholar 

  3. Williams MW, Bloch RJ (1999) Extensive but coordinated reorganization of the membrane skeleton in myofibers of dystrophic (mdx) mice. J Cell Biol 144(6):1259–1270

    Article  PubMed  CAS  Google Scholar 

  4. Engel A, Arahata K, Biesecker G (1984) Mechanisms of muscle fiber destruction. In: Serratrice G (ed) Neuromuscular diseases. Raven Press, New York, pp 137–141

    Google Scholar 

  5. Matsuda R, Nishikawa A, Tanaka H (1995) Visualization of dystrophic muscle fibers in mdx mouse by vital staining with Evans Blue: evidence of apoptosis in dystrophin-deficient muscle. J Biochem 118(5):959–964

    Article  PubMed  CAS  Google Scholar 

  6. Straub V, Rafael JA, Chamberlain JS, Campbell KP (1997) Animal models for muscular dystrophy show different patterns of sarcolemmal disruption. J Cell Biol 139(2):375–385

    Article  PubMed  CAS  Google Scholar 

  7. Deconinck N, Dan B (2007) Pathophysiology of Duchenne muscular dystrophy: current hypotheses. Pediatr Neurol 36(1):1–7. doi:10.1016/j.pediatrneurol.2006.09.016

    Article  PubMed  Google Scholar 

  8. Wooddell CI, Zhang G, Griffin JB, Hegge JO, Huss T, Wolff JA (2010) Use of Evans Blue dye to compare limb muscles in exercised young and old mdx mice. Muscle Nerve 41(4):487–499. doi:10.1002/mus.21527

    Article  PubMed  Google Scholar 

  9. Millay DP, Goonasekera SA, Sargent MA, Maillet M, Aronow BJ, Molkentin JD (2009) Calcium influx is sufficient to induce muscular dystrophy through a TRPC-dependent mechanism. Proc Natl Acad Sci USA 106(45):19023–19028. doi:10.1073/pnas.0906591106

    Article  PubMed  CAS  Google Scholar 

  10. Sabourin J, Lamiche C, Vandebrouck A, Magaud C, Rivet J, Cognard C, Bourmeyster N, Constantin B (2009) Regulation of TRPC1 and TRPC4 cation channels requires an alpha1-syntrophin-dependent complex in skeletal mouse myotubes. J Biol Chem 284(52):36248–36261. doi:10.1074/jbc.M109.012872

    Article  PubMed  CAS  Google Scholar 

  11. Turner PR, Fong PY, Denetclaw WF, Steinhardt RA (1991) Increased calcium influx in dystrophic muscle. J Cell Biol 115(6):1701–1712

    Article  PubMed  CAS  Google Scholar 

  12. Constantin B, Sebille S, Cognard C (2006) New insights in the regulation of calcium transfers by muscle dystrophin-based cytoskeleton: implications in DMD. J Muscle Res Cell Motil 27(5–7):375–386. doi:10.1007/s10974-006-9085-2

    Article  PubMed  CAS  Google Scholar 

  13. Alderton JM, Steinhardt RA (2000) Calcium influx through calcium leak channels is responsible for the elevated levels of calcium-dependent proteolysis in dystrophic myotubes. J Biol Chem 275(13):9452–9460

    Article  PubMed  CAS  Google Scholar 

  14. Spencer MJ, Croall DE, Tidball JG (1995) Calpains are activated in necrotic fibers from mdx dystrophic mice. J Biol Chem 270(18):10909–10914

    Article  PubMed  CAS  Google Scholar 

  15. Renault V, Piron-Hamelin G, Forestier C, DiDonna S, Decary S, Hentati F, Saillant G, Butler-Browne GS, Mouly V (2000) Skeletal muscle regeneration and the mitotic clock. Exp Gerontol 35(6–7):711–719

    Article  PubMed  CAS  Google Scholar 

  16. Chan CY, Masui O, Krakovska O, Belozerov VE, Voisin S, Ghanny S, Chen J, Moyez D, Zhu P, Evans KR, McDermott JC, Siu KW (2011) Identification of differentially regulated secretome components during skeletal myogenesis. Mol Cell Proteomics 10 (5):M110 004804. doi:10.1074/mcp.M110.004804

    Google Scholar 

  17. Henningsen J, Rigbolt KT, Blagoev B, Pedersen BK, Kratchmarova I (2010) Dynamics of the skeletal muscle secretome during myoblast differentiation. Mol Cell Proteomics 9(11):2482–2496. doi:10.1074/mcp.M110.002113

    Article  PubMed  CAS  Google Scholar 

  18. Pedersen BK, Febbraio MA (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 88(4):1379–1406. doi:10.1152/physrev.90100.2007

    Article  PubMed  CAS  Google Scholar 

  19. Engler D (2007) Hypothesis: musculin is a hormone secreted by skeletal muscle, the body’s largest endocrine organ. Evidence for actions on the endocrine pancreas to restrain the beta-cell mass and to inhibit insulin secretion and on the hypothalamus to co-ordinate the neuroendocrine and appetite responses to exercise. Acta Biomed 78(1):156–206

    PubMed  Google Scholar 

  20. Morgan JE, Beauchamp JR, Pagel CN, Peckham M, Ataliotis P, Jat PS, Noble MD, Farmer K, Partridge TA (1994) Myogenic cell lines derived from transgenic mice carrying a thermolabile T antigen: a model system for the derivation of tissue-specific and mutation-specific cell lines. Dev Biol 162(2):486–498. doi:10.1006/dbio.1994.1103

    Article  PubMed  CAS  Google Scholar 

  21. An E, Gordish-Dressman H, Hathout Y (2008) Effect of TNF-alpha on human ARPE-19-secreted proteins. Mol Vis 14:2292–2303

    PubMed  CAS  Google Scholar 

  22. Park SK, Venable JD, Xu T, Yates JR 3rd (2008) A quantitative analysis software tool for mass spectrometry-based proteomics. Nat Methods 5(4):319–322. doi:10.1038/nmeth.1195

    PubMed  CAS  Google Scholar 

  23. Rosenblatt JD, Lunt AI, Parry DJ, Partridge TA (1995) Culturing satellite cells from living single muscle fiber explants. In Vitro Cell Dev Biol Anim 31(10):773–779. doi:10.1007/bf02634119

    Article  PubMed  CAS  Google Scholar 

  24. Duddy WJ, Cohen T, Duguez S, Partridge TA (2011) The isolated muscle fibre as a model of disuse atrophy: characterization using PhAct, a method to quantify F-actin. Exp Cell Res 317(14):1979–1993. doi:10.1016/j.yexcr.2011.05.013

    Article  PubMed  CAS  Google Scholar 

  25. da Huang W, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1):1–13. doi:10.1093/nar/gkn923

    Article  Google Scholar 

  26. da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57. doi:10.1038/nprot.2008.211

    Article  CAS  Google Scholar 

  27. Yin H, Moulton HM, Seow Y, Boyd C, Boutilier J, Iverson P, Wood MJ (2008) Cell-penetrating peptide-conjugated antisense oligonucleotides restore systemic muscle and cardiac dystrophin expression and function. Hum Mol Genet 17(24):3909–3918. doi:10.1093/hmg/ddn293

    Article  PubMed  CAS  Google Scholar 

  28. Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Current protocols in cell biology/editorial board, Juan S Bonifacino et al. Chapter 3: Unit 3 22. doi:10.1002/0471143030.cb0322s30

  29. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386

    Article  PubMed  CAS  Google Scholar 

  30. McGeachie JK, Grounds MD, Partridge TA, Morgan JE (1993) Age-related changes in replication of myogenic cells in mdx mice: quantitative autoradiographic studies. J Neurol Sci 119(2):169–179

    Article  PubMed  CAS  Google Scholar 

  31. Coulton GR, Morgan JE, Partridge TA, Sloper JC (1988) The mdx mouse skeletal muscle myopathy: I. A histological, morphometric and biochemical investigation. Neuropathol Appl Neurobiol 14(1):53–70

    Article  PubMed  CAS  Google Scholar 

  32. McArdle A, Edwards RH, Jackson MJ (1994) Time course of changes in plasma membrane permeability in the dystrophin-deficient mdx mouse. Muscle Nerve 17(12):1378–1384. doi:10.1002/mus.880171206

    Article  PubMed  CAS  Google Scholar 

  33. Gyorgy B, Szabo TG, Pasztoi M, Pal Z, Misjak P, Aradi B, Laszlo V, Pallinger E, Pap E, Kittel A, Nagy G, Falus A, Buzas EI (2011) Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life 68(16):2667–2688. doi:10.1007/s00018-011-0689-3

    Article  CAS  Google Scholar 

  34. Dreyfus JC, Schapira G, Demos J (1960) Study of serum creatine kinase in myopathic patients and their families. Revue francaise d’etudes cliniques et biologiques 5:384–386

    PubMed  CAS  Google Scholar 

  35. Schapira F, Dreyfus JC (1963) Serum creatine kinase in myopathic mice. Enzymologia biologica et clinica 79:53–57

    PubMed  CAS  Google Scholar 

  36. Schapira F, Dreyfus JC, Allard D (1968) Isozymes of creatine kinase and adolase in fetal and pathological muscle. Clinica chimica acta 20(3):439–447

    Article  CAS  Google Scholar 

  37. Laulagnier K, Schieber NL, Maritzen T, Haucke V, Parton RG, Gruenberg J (2011) Role of AP1 and Gadkin in the traffic of secretory endo-lysosomes. Mol Biol Cell 22(12):2068–2082. doi:10.1091/mbc.E11-03-0193

    Article  PubMed  CAS  Google Scholar 

  38. Taylor MP, Kirkegaard K (2008) Potential subversion of autophagosomal pathway by picornaviruses. Autophagy 4(3):286–289

    PubMed  CAS  Google Scholar 

  39. Nishino I, Fu J, Tanji K, Yamada T, Shimojo S, Koori T, Mora M, Riggs JE, Oh SJ, Koga Y, Sue CM, Yamamoto A, Murakami N, Shanske S, Byrne E, Bonilla E, Nonaka I, DiMauro S, Hirano M (2000) Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature 406(6798):906–910. doi:10.1038/35022604

    Article  PubMed  CAS  Google Scholar 

  40. Chabrol B, Figarella-Branger D, Coquet M, Mancini J, Fontan D, Pedespan JM, Francannet C, Pouget J, Beaufrere AM, Pellissier JF (2001) X-linked myopathy with excessive autophagy: a clinicopathological study of five new families. Neuromuscul Disord 11(4):376–388

    Article  PubMed  CAS  Google Scholar 

  41. Taylor MR, Ku L, Slavov D, Cavanaugh J, Boucek M, Zhu X, Graw S, Carniel E, Barnes C, Quan D, Prall R, Lovell MA, Mierau G, Ruegg P, Mandava N, Bristow MR, Towbin JA, Mestroni L (2007) Danon disease presenting with dilated cardiomyopathy and a complex phenotype. J Hum Genet 52(10):830–835. doi:10.1007/s10038-007-0184-8

    Article  PubMed  Google Scholar 

  42. Fernandez C, Figarella-Branger D, Alla P, Harle JR, Pellissier JF (2002) Colchicine myopathy: a vacuolar myopathy with selective type I muscle fiber involvement. An immunohistochemical and electron microscopic study of two cases. Acta Neuropathol 103(2):100–106. doi:10.1007/s004010100434

    Article  PubMed  CAS  Google Scholar 

  43. Steen MS, Adams ME, Tesch Y, Froehner SC (2009) Amelioration of muscular dystrophy by transgenic expression of Niemann-Pick C1. Mol Biol Cell 20(1):146–152. doi:10.1091/mbc.E08-08-0811

    Article  PubMed  CAS  Google Scholar 

  44. Konagaya M, Konagaya Y, Horikawa H, Takayanagi T (1987) Increased serum myosin light chain 3 level in neuromuscular diseases. Muscle Nerve 10(5):415–421. doi:10.1002/mus.880100507

    Article  PubMed  CAS  Google Scholar 

  45. Anderson HC, Mulhall D, Garimella R (2010) Role of extracellular membrane vesicles in the pathogenesis of various diseases, including cancer, renal diseases, atherosclerosis, and arthritis. Laboratory investigation. J Tech Methods Pathol 90(11):1549–1557. doi:10.1038/labinvest.2010.152

    CAS  Google Scholar 

  46. Guescini M, Guidolin D, Vallorani L, Casadei L, Gioacchini AM, Tibollo P, Battistelli M, Falcieri E, Battistin L, Agnati LF, Stocchi V (2010) C2C12 myoblasts release micro-vesicles containing mtDNA and proteins involved in signal transduction. Exp Cell Res 316(12):1977–1984. doi:10.1016/j.yexcr.2010.04.006

    Article  PubMed  CAS  Google Scholar 

  47. Mathivanan S, Simpson RJ (2009) ExoCarta: a compendium of exosomal proteins and RNA. Proteomics 9(21):4997–5000. doi:10.1002/pmic.200900351

    Article  PubMed  CAS  Google Scholar 

  48. Sadallah S, Eken C, Schifferli JA (2011) Ectosomes as modulators of inflammation and immunity. Clin Exp Immunol 163(1):26–32. doi:10.1111/j.1365-2249.2010.04271.x

    Article  PubMed  CAS  Google Scholar 

  49. Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C (2005) Exosomal-like vesicles are present in human blood plasma. Int Immunol 17(7):879–887. doi:10.1093/intimm/dxh267

    Article  PubMed  CAS  Google Scholar 

  50. Doran P, Wilton SD, Fletcher S, Ohlendieck K (2009) Proteomic profiling of antisense-induced exon skipping reveals reversal of pathobiochemical abnormalities in dystrophic mdx diaphragm. Proteomics 9(3):671–685. doi:10.1002/pmic.200800441

    Article  PubMed  CAS  Google Scholar 

  51. Shkryl VM, Martins AS, Ullrich ND, Nowycky MC, Niggli E, Shirokova N (2009) Reciprocal amplification of ROS and Ca(2+) signals in stressed mdx dystrophic skeletal muscle fibers. Pflugers Arch 458(5):915–928. doi:10.1007/s00424-009-0670-2

    Article  PubMed  CAS  Google Scholar 

  52. Tidball JG, Wehling-Henricks M (2007) The role of free radicals in the pathophysiology of muscular dystrophy. J Appl Physiol 102(4):1677–1686. doi:10.1152/japplphysiol.01145.2006 (Bethesda, Md: 1985)

    Article  PubMed  CAS  Google Scholar 

  53. Whitehead NP, Yeung EW, Allen DG (2006) Muscle damage in mdx (dystrophic) mice: role of calcium and reactive oxygen species. Clin Exp Pharmacol Physiol 33(7):657–662. doi:10.1111/j.1440-1681.2006.04394.x

    Article  PubMed  CAS  Google Scholar 

  54. Rochet JC (2007) Novel therapeutic strategies for the treatment of protein-misfolding diseases. Expert Rev Mol Med 9(17):1–34. doi:10.1017/s1462399407000385

    Article  PubMed  Google Scholar 

  55. Basaiawmoit RV, Rattan SI (2010) Cellular stress and protein misfolding during aging. Methods Mol Biol 648:107–117. doi:10.1007/978-1-60761-756-3_7

    Article  PubMed  CAS  Google Scholar 

  56. Tyedmers J, Mogk A, Bukau B (2010) Cellular strategies for controlling protein aggregation. Nat Rev Mol Cell Biol 11(11):777–788. doi:10.1038/nrm2993

    Article  PubMed  CAS  Google Scholar 

  57. Briguet A, Erb M, Courdier-Fruh I, Barzaghi P, Santos G, Herzner H, Lescop C, Siendt H, Henneboehle M, Weyermann P, Magyar JP, Dubach-Powell J, Metz G, Meier T (2008) Effect of calpain and proteasome inhibition on Ca2+-dependent proteolysis and muscle histopathology in the mdx mouse. FASEB J 22(12):4190–4200. doi:10.1096/fj.07-099036

    Article  PubMed  CAS  Google Scholar 

  58. Gazzerro E, Assereto S, Bonetto A, Sotgia F, Scarfi S, Pistorio A, Bonuccelli G, Cilli M, Bruno C, Zara F, Lisanti MP, Minetti C (2010) Therapeutic potential of proteasome inhibition in Duchenne and Becker muscular dystrophies. Am J Pathol 176(4):1863–1877. doi:10.2353/ajpath.2010.090468

    Article  PubMed  CAS  Google Scholar 

  59. Kominami E, Kunio I, Katunuma N (1987) Activation of the intramyofibral autophagic-lysosomal system in muscular dystrophy. Am J Pathol 127(3):461–466

    PubMed  CAS  Google Scholar 

  60. Abrahamsen H, Stenmark H (2010) Protein secretion: unconventional exit by exophagy. Curr Biol 20(9):R415–R418. doi:10.1016/j.cub.2010.03.011

    Article  PubMed  CAS  Google Scholar 

  61. Horsley V, Jansen KM, Mills ST, Pavlath GK (2003) IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell 113(4):483–494

    Article  PubMed  CAS  Google Scholar 

  62. MacLennan PA, Edwards RH (1990) Protein turnover is elevated in muscle of mdx mice in vivo. Biochem J 268(3):795–797

    PubMed  CAS  Google Scholar 

  63. White RB, Bierinx AS, Gnocchi VF, Zammit PS (2010) Dynamics of muscle fibre growth during postnatal mouse development. BMC Dev Biol 10:21. doi:10.1186/1471-213x-10-21

    Article  PubMed  Google Scholar 

  64. Villalta SA, Nguyen HX, Deng B, Gotoh T, Tidball JG (2009) Shifts in macrophage phenotypes and macrophage competition for arginine metabolism affect the severity of muscle pathology in muscular dystrophy. Hum Mol Genet 18(3):482–496. doi:10.1093/hmg/ddn376

    Article  PubMed  CAS  Google Scholar 

  65. Rando TA, Disatnik MH, Yu Y, Franco A (1998) Muscle cells from mdx mice have an increased susceptibility to oxidative stress. Neuromuscul Disord 8(1):14–21

    Article  PubMed  CAS  Google Scholar 

  66. Disatnik MH, Dhawan J, Yu Y, Beal MF, Whirl MM, Franco AA, Rando TA (1998) Evidence of oxidative stress in mdx mouse muscle: studies of the pre-necrotic state. J Neurol Sci 161(1):77–84

    Article  PubMed  CAS  Google Scholar 

  67. Hauser E, Hoger H, Bittner R, Widhalm K, Herkner K, Lubec G (1995) Oxyradical damage and mitochondrial enzyme activities in the mdx mouse. Neuropediatrics 26(5):260–262. doi:10.1055/s-2007-979768

    Article  PubMed  CAS  Google Scholar 

  68. Haycock JW, MacNeil S, Jones P, Harris JB, Mantle D (1996) Oxidative damage to muscle protein in Duchenne muscular dystrophy. NeuroReport 8(1):357–361

    Article  PubMed  CAS  Google Scholar 

  69. Goonasekera SA, Lam CK, Millay DP, Sargent MA, Hajjar RJ, Kranias EG, Molkentin JD (2011) Mitigation of muscular dystrophy in mice by SERCA overexpression in skeletal muscle. J Clin Investig 121(3):1044–1052. doi:10.1172/jci43844

    Article  PubMed  CAS  Google Scholar 

  70. Millay DP, Sargent MA, Osinska H, Baines CP, Barton ER, Vuagniaux G, Sweeney HL, Robbins J, Molkentin JD (2008) Genetic and pharmacologic inhibition of mitochondrial-dependent necrosis attenuates muscular dystrophy. Nat Med 14(4):442–447. doi:10.1038/nm1736

    Article  PubMed  CAS  Google Scholar 

  71. Schuh RA, Jackson KC, Khairallah RJ, Ward CW, Spangenburg EE (2012) Measuring mitochondrial respiration in intact single muscle fibers. Am J Physiol Regul Integr Comp Physiol 302(6):R712–R719. doi:10.1152/ajpregu.00229.2011

    Article  PubMed  CAS  Google Scholar 

  72. Smith MA, Reid MB (2006) Redox modulation of contractile function in respiratory and limb skeletal muscle. Respir Physiol Neurobiol 151(2–3):229–241. doi:10.1016/j.resp.2005.12.011

    Article  PubMed  CAS  Google Scholar 

  73. Morrison J, Lu QL, Pastoret C, Partridge T, Bou-Gharios G (2000) T-cell-dependent fibrosis in the mdx dystrophic mouse. Lab Invest 80(6):881–891

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Douglas Johnson for his help with preliminary SILAC experiments, Dr. Toshifumi Yokota, Dr. Qi Lu, Dr. Jyoti Jaiswal and Dr. Kanneboyina Nagaraju for useful discussion and technical advice. This work was supported by IDDRC 1P30HD40677 and NCMRR 2R24HD050846 NIH grants and by funding from the Foundation to Eradicate Duchenne and from Wellstone Center, U54HD053177, W81XWH-05-1-0616, and by the ANR Genopath IN-A-FIB and the AFM (Association Française contre les Myopathies). The monoclonal antibodies F310 and S21 developed by Dr. Stockdale F.E. [Developmental Studies Hybridoma Bank (DSHB)] were developed under the auspices of the NICHD and maintained by The University of Iowa, Department of Biology, Iowa City, IA 52242.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terence Partridge.

Electronic supplementary material

Below is the link to the electronic supplementary material.

18_2012_1248_MOESM1_ESM.tif

Supplemental Figure 1: Cell death is not greater in mdx myotubes. (A) Caspase 9 activity in mdx and wild-type myotubes cultured without (-) serum. (B) Cleaved PARP1 protein level in mdx and wild-type myotubes. Immunoblots of cleaved PARP1 with an image of a coomassie-stained gel showing MHC. Lanes 1 to 5 are wild-type or mdx myotube samples cultured without serum, lanes 6 and 7 cultured with serum. (C) Measurements of myotube cell death when cultured for 24 h without serum. Values are mean ± SD, n = 5 per group. ***p < 0.001, mdx vs. wild-type H-2K myotubes. WT: wild-type; PARP: ADP-ribose polymerase; MHC: myosin heavy chain

18_2012_1248_MOESM2_ESM.tif

Supplementary material 2 (TIFF 24292 kb) Evans Blue and propidium iodide do not diffuse into mdx and wild-type myotubes. (A) Representative images of Evans Blue staining in mdx and wild-type myotubes cultured in the absence of serum. Diffusion into the myotubes was not observed in the presence of serum either (data not shown). (× 20 objective). (B) Representative images of propidium iodide staining in mdx and wild-type myotubes after 12 h of incubation. Myotubes incubated for 1 h were also negative (data not shown). (× 20 objective)

18_2012_1248_MOESM3_ESM.jpg

Supplementary material 3 (JPEG 678 kb) Proteins identified by SILAC are not passively released into the culture medium. Myotubes were incubated with 3, 10 and 40 kDa dextran for 5 min. (x20 objective). (A). Representative images of mdx myotubes incubated with 3, 10 and 40 kDa dextran. Positive myotubes were observed with a dextran size of 3 kDa but, in general, myotubes were not permeable to sizes of 10 and 40 kDa. Similar results were observed for wild-type myotubes (images not shown; data presented in Table II). (B) Positive control of dextran leakage into wild-type myotubes. Live myotubes were permeabalized by adding 0.2 % triton × 100 into the culture medium.

18_2012_1248_MOESM4_ESM.tif

Supplementary material 4 (TIFF 6256 kb) Myosin light chain is consistently detected in the culture medium and in the plasma blood samples. (a) Western blots of myosin light chain 1-3 on myotube samples. anti-myosin light chain 1-3 (F310), give satisfactory results by western blot on myotube samples. (b) Immunoblots of MLC1-3 after 24 h of culture in medium containing serum. 10 μl of culture medium were loaded from each flask. Lanes 1-5: culture medium containing serum from mdx or wild-type myotubes (n = 5/group). MLC1-3 is observed in all five mdx culture medium samples and is absent in all five wild-type culture medium samples, commending its potential as a biomarker. Bands at 100 kDa on the gels show the consistency of the sample loading. (c) Immunoblots showing MLC1-3 in the blood plasma from two wild-type and two mdx mice aged 15-20 days. Albumin levels on the gels show the consistency of the sample loading. WT: wild-type; MLC1-3: myosin light chain 1-3

18_2012_1248_MOESM5_ESM.xls

Supplementary material 5 (XLS 414 kb) Table 1: Total list of proteins that are detected in the culture medium of mdx and wild-type myotubes. A total of 267 proteins that were consistently observed in both forward and reverse SILAC experiments. We found 234 proteins released in excess by the mdx myotubes, and 13 proteins by the wild-type. Eighty-two proteins were found at a lower band then their expected molecular weight, and 40 proteins were found at a higher molecular weight than expected. Proteins were sorted based on their localization in the cells (according to the DAVID database). The ratio between labeled and unlabeled (i.e., mdx labeled vs. wild-type unlabeled or vice versa) of the two experiments are shown, as well as the theoretical and observed molecular weights of the proteins detected on the gels. We report the accession number given by UniProtKB. We report the proteins that are classically described to be secreted or involved in secretion pathways according to the UniProtKB database: 43 of these proteins are classically secreted, and 11 proteins are involved in secretion pathways. Table 3: Cluster-based protein function analysis of the secretome of mdx myotubes 107 protein clusters have been identified. The table gives enrichment score for each cluster, as well as the annotation terms belonging to each cluster. The number of protein involved, and their Uniprot accession number are also given for each pathways (annotation terms). The Fisher exact p value of each annotation term inside the cluster is given and reflects the relevance of the enrichment. Table 4: Total list of proteins secreted by PMO Ex23-treated and untreated mdx myotubes309 proteins were observed in both the forward and reverse SILAC experiments, with 235 over-secreted by untreated mdx myotubes and 74 by PMO Ex23-treated. Proteins were sorted based on their localization in the cells (according to DAVID database). The ratio between labeled and unlabeled (i.e., untreated labeled vs. PMO Ex23-treated unlabeled or vice versa) of the two experiments are shown. We report the accession number given by UniProtKB. The table report the proteins that were also identified the analysis of the secretome of mdx vs. wild-type myotubes

18_2012_1248_MOESM6_ESM.docx

Supplementary material 6 (DOCX 14 kb) Table 2: Mdx and wild-type myotube intracellular accumulation of dextran. To assay passive leakage across the cell membrane, mdx and wild-type myotubes were incubated with 3, 10, or 40 kDa dextran for 5 or 20 min, at day 6 of differentiation. Myotubes were cultured for the preceding 24 h in medium with or without serum (see materials and methods for details). The table summarizes the number of myotubes positive for dextran versus the total number of myotubes analyzed. Mdx: mdx myotubes, WT: wild-type myotubes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duguez, S., Duddy, W., Johnston, H. et al. Dystrophin deficiency leads to disturbance of LAMP1-vesicle-associated protein secretion. Cell. Mol. Life Sci. 70, 2159–2174 (2013). https://doi.org/10.1007/s00018-012-1248-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1248-2

Keywords

Navigation