Skip to main content

Advertisement

Log in

Heterogeneity of gangliosides among T cell subsets

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Gangliosides are major components of highly organized membrane microdomains or rafts, yet little is known about the role of gangliosides in raft organization. This is also the case of gangliosides in TCR-mediated activation. Comprehensive structural analysis of gangliosides in the primary thymocytes and CD4+ T and CD8+ T cells was not achieved due to technical difficulties. We have found that CD8+ T cells express very high levels of o-series gangliosides, but on the other hand, CD4+ T cells preferably express a-series gangliosides. In the TCR-dependent activation, CD4+ T cells selectively require a-series gangliosides, but CD8+ T cells do require only o-series gangliosides but not a-series gangliosides. Ganglioside GM3 synthase-deficient mice lacking a-series gangliosides neither exhibited the TCR-dependent activation of CD4+ T nor developed ovalbumin-induced allergic airway inflammation. These findings imply that the distinct expression pattern of ganglioside species in CD4+ and CD8+ T cells define the immune function of each T cell subset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

GM3S:

GM3 synthase

GM2/GD2S:

GM2/GD2 synthase

GSLs:

Glycosphingolipids

SA:

Sialic acid

CTx-B:

Cholera toxin B subunit

References

  1. Fooksman DR, Vardhana S, Vasiliver-Shamis G, Liese J, Blair DA, Waite J, Sacristán C, Victora GD, Zanin-Zhorov A, Dustin ML (2010) Functional anatomy of T cell activation and synapse formation. Annu Rev Immunol 28:79–105

    Article  PubMed  CAS  Google Scholar 

  2. Dykstra M, Cherukuri A, Won Sohn H, Tzeng A-J, Pierce SK (2003) Location is everything: lipid rafts and immune cell signaling. Annu Rev Immunol 21:457–481

    Article  PubMed  CAS  Google Scholar 

  3. Harder T, Rentero C, Zech T, Gaus K (2007) Plasma membrane segregation during T cell activation: probing the order of domains. Curr Opin Immunol 19:470–475

    Article  PubMed  CAS  Google Scholar 

  4. Monks CR, Freiberg BA, Kupfer H, Sciaky N, Kupfer A (1998) Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395:82–86

    Article  PubMed  CAS  Google Scholar 

  5. Davis DM, Dustin ML (2004) What is the importance of the immunological synapse? Trends Immunol 25:323–327

    Article  PubMed  CAS  Google Scholar 

  6. Saito T, Yokosuka T (2006) Immunological synapse and microclusters: the site for recognition and activation of T cells. Curr Opin Immunol 18:305–313

    Article  PubMed  CAS  Google Scholar 

  7. Grakoui A, Bromley S, Sumen C, Davis M, Shaw A, Allen P, Dustin ML (1999) The immunological synapse: a molecular machine controlling T cell activation. Science 285:221–227

    Article  PubMed  CAS  Google Scholar 

  8. Kovacs B, Maus MV, Riley JL, Derimanov GS, Koretzky GA, June CH, Finkel TH (2002) Human CD8+ T cells do not require the polarization of lipid rafts for activation and proliferation. Proc Natl Acad Sci USA 99:15006–15011

    Article  PubMed  CAS  Google Scholar 

  9. Gómez-Móuton C, Abad JL, Mira E, Lacalle RA, Gallardo E, Jiménez-Baranda S, Illa I, Bernad A, Mañes S, Martínez AC (2001) Segregation of leading-edge and uropod components into specific lipid rafts during T cell polarization. Proc Natl Acad Sci USA 98:9642–9647

    Article  PubMed  Google Scholar 

  10. Marusic A, Markotic A, Kovacic N, Muthing J (2004) Expression of glycosphingolipids in lymph nodes of mice lacking TNF receptor 1: biochemical and flow cytometry analysis. Carbohydr Res 339:77–86

    Article  PubMed  CAS  Google Scholar 

  11. Nakamura K, Suzuki H, Hirabayashi Y, Suzuki A (1995) IV3 alpha (NeuGc alpha 2–8NeuGc)-Gg4Cer is restricted to CD4+ T cells producing interleukin-2 and a small population of mature thymocytes in mice. J Biol Chem 270:3876–3881

    Article  PubMed  CAS  Google Scholar 

  12. Nagafuku M, Okuyama K, Onimaru Y, Suzuki A, Odagiri Y, Yamashita T, Iwasaki K, Fujiwara M, Takayanagi M, Ohno I, Inokuchi J (2012) CD4 and CD8 T cells require different membrane gangliosides for activation. Proc Natl Acad Sci USA 109:E336–E342

    Article  PubMed  CAS  Google Scholar 

  13. Wong J, Lu Z-H, Gabius H-J, Rohowsky-Kochan C, Ledeen RW, Wu G (2009) Cross-linking of GM1 ganglioside by galectin-1 mediates regulatory T cell activity involving TRPC5 channel activation: possible role in suppressing experimental autoimmune encephalomyelitis. J Immunol 182:4036–4045

    Article  Google Scholar 

  14. Wu G, Lu Z-H, Gabius H-J, Ledeen RW, Bleich D (2009) Ganglioside GM1 deficiency in effector T cells from NOD mice induces resistance to regulatory T-cell suppression. Diabetes 60:2341–2349

    Article  Google Scholar 

  15. Naito Y, Takematsu H, Koyama S, Miyake S, Yamamoto H, Fujinawa R, Sugai M, Okuno Y, Tsujimoto G, Yamaji T, Hashimoto Y, Itohara S, Kawasaki T, Suzuki A, Kozutsumi Y (2007) Germinal center marker GL7 probes activation-dependent repression of N-glycolylneuraminic acid, a sialic acid species involved in the negative modulation of B-cell activation. Mol Cell Biol 27:3008–3022

    Article  PubMed  CAS  Google Scholar 

  16. Brown DA, London E (2000) Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 275:17221–17224

    Article  PubMed  CAS  Google Scholar 

  17. Iwabuchi K, Nagaoka I (2000) Lactosylceramide-enriched glycosphingolipid signaling domain mediates superoxide generation from human neutrophils. Blood 100:1454–1464

    Google Scholar 

  18. Inokuchi J, Rain NS (1987) Preparation of active isomer of 1-phenyl-2-decanoylamino-3-morpholino-1-propanol, inhibitor of murine glucocerebroside synthetase. J Lipid Res 28:565–571

    PubMed  CAS  Google Scholar 

  19. Nagafuku M, Kabayama K, Oka D, Kato A, Tani-ichi S, Shimada Y, Ohno-Iwashita Y, Yamasaki S, Saito T, Iwabuchi K, Hamaoka T, Inokuchi J, Kosugi A (2003) Reduction of glycosphingolipid levels in lipid rafts affects the expression state and function of glycosylphosphatidyl-inositol-anchored proteins but does not impair signal transduction via the T cell receptor. J Biol Chem 278:51920–51927

    Article  PubMed  CAS  Google Scholar 

  20. Blank N, Schiller M, Gabler C, Kalden JR, Lorenz HM (2005) Inhibition of sphingolipid synthesis impairs cellular activation, cytokine production and proliferation in human lymphocytes. Biochem Pharmacol 71:126–135

    Article  PubMed  CAS  Google Scholar 

  21. Yoshikawa M, Go S, Takasaki K, Kakazu Y, Ohashi M, Nagafuku M, Kabayama K, Sekimoto J, Suzuki S, Takaiwa K, Kimitsuki T, Matsumoto N, Komune S, Kamei D, Saito M, Fujiwara M, Iwasaki K, Inokuchi J (2009) Mice lacking ganglioside GM3 synthase exhibit complete hearing loss due to selective degeneration of the organ of Corti. Proc Natl Acad Sci USA 106:9483–9488

    Article  PubMed  CAS  Google Scholar 

  22. Takamiya K, Yamamoto A, Furukawa K, Yamashiro S, Shin M, Okada M, Fukumoto S, Haraguchi M, Takeda N, Fujimura K, Sakae M, Kishikawa M, Shiku H, Furukawa K, Aizawa S (1996) Mice with disrupted GM2/GD2 synthase gene lack complex gangliosides but exhibit only subtle defects in their nervous system. Proc Natl Acad Sci USA 93:10662–10667

    Article  PubMed  CAS  Google Scholar 

  23. de Mello Coelho V, Nguyen D, Giri B, Bunbury A, Schaffer E, Taub DD (2004) Quantitative differences in lipid raft components between murine CD4+ and CD8+ T cells. BMC Immunol 5:2

    Article  Google Scholar 

  24. Nakamura K, Suzuki M, Inagaki F, Yamakawa T, Suzuki A (1987) A new ganglioside showing choleragenoid-binding activity in mouse spleen. J Biochem 101:825–835

    PubMed  CAS  Google Scholar 

  25. Trambley J, Bingaman AW, Lin A, Elwood ET, Waitze SY, Ha J, Durham MM, Corbascio M, Cowan SR, Pearson TC, Larsen CP (1999) Asialo GM1(+) CD8(+) T cells play a critical role in costimulation blockade-resistant allograft rejection. J Clin Invest 104:1715–1722

    Article  PubMed  CAS  Google Scholar 

  26. Sorice M, Parolini I, Sansolini T, Garofalo T, Dolo V, Sargiacomo M, Tai T, Peschle C, Torrisi MR, Pavan A (1997) Evidence for the existence of ganglioside-enriched plasma membrane domains in human peripheral lymphocytes. J Lipid Res 38:969–980

    PubMed  CAS  Google Scholar 

  27. Salmond RJ, Pitman RS, Jimi E, Soriani M, Hirst TR, Ghosh S, Rincón M, Williams NA (2002) CD8+ T cell apoptosis induced by Escherichia coli heat-labile enterotoxin B subunit occurs via a novel pathway involving NF-kappaB-dependent caspase activation. Eur J Immunol 32:1737–1747

    Article  PubMed  CAS  Google Scholar 

  28. Balamuth F, Brogdon JL, Bottomly K (2004) CD4 raft association and signaling regulate molecular clustering at the immunological synapse site. J Immunol 172:5887–5892

    PubMed  CAS  Google Scholar 

  29. Pang DJ, Hayday AC, Bijlmakers MJ (2007) CD8 Raft localization is induced by its assembly into CD8alpha beta heterodimers, not CD8alpha alpha homodimers. J Biol Chem 282:13884–13894

    Article  PubMed  CAS  Google Scholar 

  30. Popik W, Alce TM (2004) CD4 receptor localized to non-raft membrane microdomains supports HIV-1 entry. Identification of a novel raft localization marker in CD4. J Biol Chem 279:704–712

    Article  PubMed  CAS  Google Scholar 

  31. Kroczek RA, Mages HW, Hutloff A (2004) Emerging paradigms of T-cell co-stimulation. Curr Opin Immunol 16:321–327

    Article  PubMed  CAS  Google Scholar 

  32. Greenwald RJ, Freeman GJ, Sharpe AH (2005) The B7 family revisited. Annu Rev Immunol 23:515–548

    Article  PubMed  Google Scholar 

  33. Bi K, Tanaka Y, Coudronniere N, Sugie K, Hong S, van Stipdonk MJ, Altman A (2001) Antigen-induced translocation of PKC-theta to membrane rafts is required for T cell activation. Nat Immunol 2:556–563

    Article  PubMed  CAS  Google Scholar 

  34. O’Keefe JP, Blaine K, Alegre ML, Gajewski TF (2004) Formation of a central supramolecular activation cluster is not required for activation of naive CD8+ T cells. Proc Natl Acad Sci USA 101:9351–9356

    Article  PubMed  Google Scholar 

  35. Sonnino S, Prinetti A, Mauri L, Chigorno V, Tettamanti G (2006) Dynamic and structural properties of sphingolipids as driving forces for the formation of membrane domains. Chem Rev 106:2111–2125

    Article  PubMed  CAS  Google Scholar 

  36. Poppe L, van Halbeek H, Acquotti D, Sonnino S (1994) Carbohydrate dynamics at a micellar surface: GD1a headgroup transformations revealed by NMR spectroscopy. Biophys J 66:1642–1652

    Article  PubMed  CAS  Google Scholar 

  37. Shalaby KH, Martin JG (2010) Overview of asthma; the place of the T cell. Curr Opin Pharmacol 10:218–225

    Article  PubMed  CAS  Google Scholar 

  38. Lloyd CM, Hessel EM (2010) Functions of T cells in asthma: more than just T(H)2 cells. Nat Rev Immunol 10:838–848

    Article  PubMed  CAS  Google Scholar 

  39. Zhu Y, Gumlaw N, Karman J, Zhao H, Zhang J, Jiang JL, Maniatis P, Edling A, Chuang WL, Siegel C, Shayman JA, Kaplan J, Jiang C, Cheng SH (2011) Lowering glycosphingolipid levels in CD4+ T cells attenuates T cell receptor signaling, cytokine production, and differentiation to the Th17 lineage. J Biol Chem 286:14787–14794

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-ichi Inokuchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inokuchi, Ji., Nagafuku, M., Ohno, I. et al. Heterogeneity of gangliosides among T cell subsets. Cell. Mol. Life Sci. 70, 3067–3075 (2013). https://doi.org/10.1007/s00018-012-1208-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1208-x

Keywords

Navigation