Skip to main content

Advertisement

Log in

mTOR signaling in neural stem cells: from basic biology to disease

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The mammalian target of rapamycin (mTOR) pathway is a central controller of growth and homeostasis, and, as such, is implicated in disease states where growth is deregulated, namely cancer, metabolic diseases, and hamartoma syndromes like tuberous sclerosis complex (TSC). Accordingly, mTOR is also a pivotal regulator of the homeostasis of several distinct stem cell pools in which it finely tunes the balance between stem cell self-renewal and differentiation. mTOR hyperactivation in neural stem cells (NSCs) has been etiologically linked to the development of TSC-associated neurological lesions, such as brain hamartomas and benign tumors. Animal models generated by deletion of mTOR upstream regulators in different types of NSCs reproduce faithfully some of the TSC neurological alterations. Thus, mTOR dysregulation in NSCs seems to be responsible for the derangement of their homeostasis, thus leading to TSC development. Here we review recent advances in the molecular dissection of the mTOR cascade, its involvement in the maintenance of stem cell compartments, and in particular the implications of mTOR hyperactivation in NSCs in vivo and in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274–293

    Article  PubMed  CAS  Google Scholar 

  2. Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12(1):9–22

    Article  PubMed  CAS  Google Scholar 

  3. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12(1):21–35

    Article  PubMed  CAS  Google Scholar 

  4. Chen C et al (2008) TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J Exp Med 205(10):2397–2408

    Article  PubMed  CAS  Google Scholar 

  5. Castilho RM et al (2009) mTOR mediates Wnt-induced epidermal stem cell exhaustion and aging. Cell Stem Cell 5(3):279–289

    Article  PubMed  CAS  Google Scholar 

  6. Hobbs RM et al (2010) Plzf regulates germline progenitor self-renewal by opposing mTORC1. Cell 142(3):468–479

    Article  PubMed  CAS  Google Scholar 

  7. Sun P et al (2010) TSC1/2 tumour suppressor complex maintains Drosophila germline stem cells by preventing differentiation. Development 137(15):2461–2469

    Article  PubMed  CAS  Google Scholar 

  8. Magri L et al (2011) Sustained activation of mTOR pathway in embryonic neural stem cells leads to development of tuberous sclerosis complex-associated lesions. Cell Stem Cell 9(5):447–462

    Article  PubMed  CAS  Google Scholar 

  9. Carson RP et al (2011) Neuronal and glia abnormalities in Tsc1-deficient forebrain and partial rescue by rapamycin. Neurobiol Dis 45(1):369–380

    Article  PubMed  CAS  Google Scholar 

  10. Hara K et al (2002) Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110(2):177–189

    Article  PubMed  CAS  Google Scholar 

  11. Sarbassov DD et al (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14(14):1296–1302

    Article  PubMed  CAS  Google Scholar 

  12. Guertin DA et al (2006) Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell 11(6):859–871

    Article  PubMed  CAS  Google Scholar 

  13. Loewith R et al (2002) Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10(3):457–468

    Article  PubMed  CAS  Google Scholar 

  14. Kim DH et al (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110(2):163–175

    Article  PubMed  CAS  Google Scholar 

  15. Sarbassov DD et al (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22(2):159–168

    Article  PubMed  CAS  Google Scholar 

  16. Sabatini DM et al (1994) RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78(1):35–43

    Article  PubMed  CAS  Google Scholar 

  17. Huang J et al (2008) The TSC1-TSC2 complex is required for proper activation of mTOR complex 2. Mol Cell Biol 28(12):4104–4115

    Article  PubMed  CAS  Google Scholar 

  18. Saucedo LJ et al (2003) Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat Cell Biol 5(6):566–571

    Article  PubMed  CAS  Google Scholar 

  19. Manning BD et al (2002) Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell 10(1):151–162

    Article  PubMed  CAS  Google Scholar 

  20. Inoki K et al (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4(9):648–657

    Article  PubMed  CAS  Google Scholar 

  21. Sancak Y et al (2007) PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 25(6):903–915

    Article  PubMed  CAS  Google Scholar 

  22. Ma L et al (2005) Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121(2):179–193

    Article  PubMed  CAS  Google Scholar 

  23. Jozwiak J, Jozwiak S, Wlodarski P (2008) Possible mechanisms of disease development in tuberous sclerosis. Lancet Oncol 9(1):73–79

    Article  PubMed  CAS  Google Scholar 

  24. Lee DF et al (2007) IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell 130(3):440–455

    Article  PubMed  CAS  Google Scholar 

  25. Inoki K et al (2006) TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126(5):955–968

    Article  PubMed  CAS  Google Scholar 

  26. Hara K et al (1998) Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem 273(23):14484–14494

    Article  PubMed  CAS  Google Scholar 

  27. Kim E et al (2008) Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol 10(8):935–945

    Article  PubMed  CAS  Google Scholar 

  28. Sancak Y et al (2008) The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320(5882):1496–1501

    Article  PubMed  CAS  Google Scholar 

  29. Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115(5):577–590

    Article  PubMed  CAS  Google Scholar 

  30. Hahn-Windgassen A et al (2005) Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J Biol Chem 280(37):32081–32089

    Article  PubMed  CAS  Google Scholar 

  31. Shaw RJ et al (2004) The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 6(1):91–99

    Article  PubMed  CAS  Google Scholar 

  32. Brugarolas J et al (2004) Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev 18(23):2893–2904

    Article  PubMed  CAS  Google Scholar 

  33. Hara K et al (1997) Regulation of eIF-4E BP1 phosphorylation by mTOR. J Biol Chem 272(42):26457–26463

    Article  PubMed  CAS  Google Scholar 

  34. Miyata H, Chiang AC, Vinters HV (2004) Insulin signaling pathways in cortical dysplasia and TSC-tubers: tissue microarray analysis. Ann Neurol 56(4):510–519

    Article  PubMed  CAS  Google Scholar 

  35. Chan JA et al (2004) Pathogenesis of tuberous sclerosis subependymal giant cell astrocytomas: biallelic inactivation of TSC1 or TSC2 leads to mTOR activation. J Neuropathol Exp Neurol 63(12):1236–1242

    PubMed  CAS  Google Scholar 

  36. Yu Y et al (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332(6035):1322–1326

    Article  PubMed  CAS  Google Scholar 

  37. Hsu PP et al (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332(6035):1317–1322

    Article  PubMed  CAS  Google Scholar 

  38. Laplante M, Sabatini DM (2009) An emerging role of mTOR in lipid biosynthesis. Curr Biol (CB) 19(22):R1046–R1052

    Article  CAS  Google Scholar 

  39. Duvel K et al (2010) Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 39(2):171–183

    Article  PubMed  CAS  Google Scholar 

  40. Li S, Brown MS, Goldstein JL (2010) Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis. Proc Natl Acad Sci USA 107(8):3441–3446

    Article  PubMed  CAS  Google Scholar 

  41. Brugarolas JB et al (2003) TSC2 regulates VEGF through mTOR-dependent and -independent pathways. Cancer Cell 4(2):147–158

    Article  PubMed  CAS  Google Scholar 

  42. Ganley IG et al (2009) ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 284(18):12297–12305

    Article  PubMed  CAS  Google Scholar 

  43. Hosokawa N et al (2009) Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 20(7):1981–1991

    Article  PubMed  CAS  Google Scholar 

  44. Um SH et al (2004) Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431(7005):200–205

    Article  PubMed  CAS  Google Scholar 

  45. Kwiatkowski DJ et al (2002) A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells. Hum Mol Genet 11(5):525–534

    Article  PubMed  CAS  Google Scholar 

  46. Zhang H et al (2007) PDGFRs are critical for PI3K/Akt activation and negatively regulated by mTOR. J Clin Invest 117(3):730–738

    Article  PubMed  CAS  Google Scholar 

  47. Jacinto E et al (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6(11):1122–1128

    Article  PubMed  CAS  Google Scholar 

  48. Dalle Pezze P et al (2012) A dynamic network model of mTOR signaling reveals TSC-independent mTORC2 regulation. Sci Signal 5(217):ra25

    Article  PubMed  Google Scholar 

  49. Lamming DW et al (2012) Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335(6076):1638–1643

    Article  PubMed  CAS  Google Scholar 

  50. Sarbassov DD et al (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307(5712):1098–1101

    Article  PubMed  CAS  Google Scholar 

  51. Garcia-Martinez JM, Alessi DR (2008) mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem J 416(3):375–385

    Article  PubMed  CAS  Google Scholar 

  52. Neuman, NA, Henske EP (2011) Non-canonical functions of the tuberous sclerosis complex-Rheb signalling axis. EMBO Mol Med 3(4):189–200

    Google Scholar 

  53. Astrinidis A, Senapedis W, Henske EP (2006) Hamartin, the tuberous sclerosis complex 1 gene product, interacts with polo-like kinase 1 in a phosphorylation-dependent manner. Hum Mol Genet 15(2):287–297

    Article  PubMed  CAS  Google Scholar 

  54. Bonnet CS et al (2009) Defects in cell polarity underlie TSC and ADPKD-associated cystogenesis. Hum Mol Genet 18(12):2166–2176

    Article  PubMed  CAS  Google Scholar 

  55. Zhou X et al (2009) Rheb controls misfolded protein metabolism by inhibiting aggresome formation and autophagy. Proc Natl Acad Sci USA 106(22):8923–8928

    Article  PubMed  CAS  Google Scholar 

  56. Inoki K et al (2003) Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 17(15):1829–1834

    Article  PubMed  CAS  Google Scholar 

  57. Freilinger A et al (2006) Tuberin activates the proapoptotic molecule BAD. Oncogene 25(49):6467–6479

    Article  PubMed  CAS  Google Scholar 

  58. Di Nardo A et al (2009) Tuberous sclerosis complex activity is required to control neuronal stress responses in an mTOR-dependent manner. J Neurosci Off J Soc Neurosci 29(18):5926–5937

    Article  CAS  Google Scholar 

  59. Thoreen CC et al (2009) An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 284(12):8023–8032

    Article  PubMed  CAS  Google Scholar 

  60. Russell RC, Fang C, Guan KL (2011) An emerging role for TOR signaling in mammalian tissue and stem cell physiology. Development 138(16):3343–3356

    Article  PubMed  CAS  Google Scholar 

  61. Yilmaz OH et al (2006) Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441(7092):475–482

    Article  PubMed  CAS  Google Scholar 

  62. Chen C, Liu Y, Zheng P (2009) mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci Signal 2(98):ra75

    Article  PubMed  Google Scholar 

  63. Chen C, Liu Y, Zheng P (2010) Mammalian target of rapamycin activation underlies HSC defects in autoimmune disease and inflammation in mice. J Clin Investig 120(11):4091–4101

    Article  PubMed  CAS  Google Scholar 

  64. Murakami M et al (2004) mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol Cell Biol 24(15):6710–6718

    Article  PubMed  CAS  Google Scholar 

  65. Zhou J et al (2009) mTOR supports long-term self-renewal and suppresses mesoderm and endoderm activities of human embryonic stem cells. Proc Natl Acad Sci USA 106(19):7840–7845

    Article  PubMed  CAS  Google Scholar 

  66. Easley CAt et al (2010) mTOR-mediated activation of p70 S6K induces differentiation of pluripotent human embryonic stem cells. Cell Reprogram 12(3):263–273

    Article  PubMed  CAS  Google Scholar 

  67. Chen T et al (2011) Rapamycin and other longevity-promoting compounds enhance the generation of mouse induced pluripotent stem cells. Aging Cell 10(5):908–911

    Article  PubMed  CAS  Google Scholar 

  68. He J et al (2012) An elaborate regulation of mammalian target of rapamycin activity is required for somatic cell reprogramming induced by defined transcription factors. Stem Cells Dev 21(14):2630–2641

    Google Scholar 

  69. Sancak O et al (2005) Mutational analysis of the TSC1 and TSC2 genes in a diagnostic setting: genotype–phenotype correlations and comparison of diagnostic DNA techniques in Tuberous Sclerosis Complex. Eur J Hum Genet 13(6):731–741

    Article  PubMed  CAS  Google Scholar 

  70. Crino PB, Nathanson KL, Henske EP (2006) The tuberous sclerosis complex. N Engl J Med 355(13):1345–1356

    Article  PubMed  CAS  Google Scholar 

  71. Thiele EA (2004) Managing epilepsy in tuberous sclerosis complex. J Child Neurol 19(9):680–686

    PubMed  Google Scholar 

  72. Crino PB (2011) mTOR: a pathogenic signaling pathway in developmental brain malformations. Trends Mol Med 17(12):734–742

    Article  PubMed  CAS  Google Scholar 

  73. Crino PB, Henske EP (1999) New developments in the neurobiology of the tuberous sclerosis complex. Neurology 53(7):1384–1390

    Article  PubMed  CAS  Google Scholar 

  74. Kim SK et al (2001) Biological behavior and tumorigenesis of subependymal giant cell astrocytomas. J Neurooncol 52(3):217–225

    Article  PubMed  CAS  Google Scholar 

  75. Marcotte L, Crino PB (2006) The neurobiology of the tuberous sclerosis complex. Neuromolecular Med 8(4):531–546

    Article  PubMed  CAS  Google Scholar 

  76. Henske EP et al (1996) Allelic loss is frequent in tuberous sclerosis kidney lesions but rare in brain lesions. Am J Hum Genet 59(2):400–406

    PubMed  CAS  Google Scholar 

  77. Henske EP et al (1997) Loss of tuberin in both subependymal giant cell astrocytomas and angiomyolipomas supports a two-hit model for the pathogenesis of tuberous sclerosis tumors. Am J Pathol 151(6):1639–1647

    PubMed  CAS  Google Scholar 

  78. Crino PB et al (2010) Biallelic TSC gene inactivation in tuberous sclerosis complex. Neurology 74(21):1716–1723

    Article  PubMed  Google Scholar 

  79. Doetsch F (2003) The glial identity of neural stem cells. Nat Neurosci 6(11):1127–1134

    Article  PubMed  CAS  Google Scholar 

  80. Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149–184

    Article  PubMed  CAS  Google Scholar 

  81. Gotz M, Barde YA (2005) Radial glial cells defined and major intermediates between embryonic stem cells and CNS neurons. Neuron 46(3):369–372

    Article  PubMed  CAS  Google Scholar 

  82. Noctor SC et al (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 7(2):136–144

    Article  PubMed  CAS  Google Scholar 

  83. Gage FH (2002) Neurogenesis in the adult brain. J Neurosci 22(3):612–613

    PubMed  CAS  Google Scholar 

  84. Doetsch F et al (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97(6):703–716

    Article  PubMed  CAS  Google Scholar 

  85. Young KM et al (2007) Subventricular zone stem cells are heterogeneous with respect to their embryonic origins and neurogenic fates in the adult olfactory bulb. J Neurosci 27(31):8286–8296

    Article  PubMed  CAS  Google Scholar 

  86. Merkle FT, Mirzadeh Z, Alvarez-Buylla A (2007) Mosaic organization of neural stem cells in the adult brain. Science 317(5836):381–384

    Article  PubMed  CAS  Google Scholar 

  87. Seri B et al (2004) Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. J Comp Neurol 478(4):359–378

    Article  PubMed  Google Scholar 

  88. Sanai N et al (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427(6976):740–744

    Article  PubMed  CAS  Google Scholar 

  89. Sanai N et al (2011) Corridors of migrating neurons in the human brain and their decline during infancy. Nature 478(7369):382–386

    Article  PubMed  CAS  Google Scholar 

  90. Fietz SA et al (2010) OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat Neurosci 13(6):690–699

    Article  PubMed  CAS  Google Scholar 

  91. Hansen DV et al (2010) Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464(7288):554–561

    Article  PubMed  CAS  Google Scholar 

  92. Dehay C, Kennedy H (2007) Cell-cycle control and cortical development. Nat Rev Neurosci 8(6):438–450

    Article  PubMed  CAS  Google Scholar 

  93. Holmes GL, Stafstrom CE (2007) Tuberous sclerosis complex and epilepsy: recent developments and future challenges. Epilepsia 48(4):617–630

    Article  PubMed  Google Scholar 

  94. Ridler K et al (2004) Standardized whole brain mapping of tubers and subependymal nodules in tuberous sclerosis complex. J Child Neurol 19(9):658–665

    PubMed  Google Scholar 

  95. Lee A et al (2003) Markers of cellular proliferation are expressed in cortical tubers. Ann Neurol 53(5):668–673

    Article  PubMed  CAS  Google Scholar 

  96. Ess KC et al (2005) Developmental origin of subependymal giant cell astrocytoma in tuberous sclerosis complex. Neurology 64(8):1446–1449

    Article  PubMed  Google Scholar 

  97. Zhou J et al (2011) Tsc1 mutant neural stem/progenitor cells exhibit migration deficits and give rise to subependymal lesions in the lateral ventricle. Genes Dev 25(15):1595–1600

    Article  PubMed  CAS  Google Scholar 

  98. Way SW et al (2009) Loss of Tsc2 in radial glia models the brain pathology of tuberous sclerosis complex in the mouse. Hum Mol Genet 18(7):1252–1265

    Article  PubMed  CAS  Google Scholar 

  99. Uhlmann EJ et al (2002) Astrocyte-specific TSC1 conditional knockout mice exhibit abnormal neuronal organization and seizures. Ann Neurol 52(3):285–296

    Article  PubMed  CAS  Google Scholar 

  100. Meikle L et al (2007) A mouse model of tuberous sclerosis: neuronal loss of Tsc1 causes dysplastic and ectopic neurons, reduced myelination, seizure activity, and limited survival. J Neurosci 27(21):5546–5558

    Article  PubMed  CAS  Google Scholar 

  101. Ehninger D et al (2008) Reversal of learning deficits in a Tsc2± mouse model of tuberous sclerosis. Nat Med 14(8):843–848

    Article  PubMed  CAS  Google Scholar 

  102. Zeng LH et al (2011) Tsc2 gene inactivation causes a more severe epilepsy phenotype than Tsc1 inactivation in a mouse model of Tuberous Sclerosis Complex. Hum Mol Genet 20(3):445–454

    Google Scholar 

  103. Fu C et al (2011) GABAergic interneuron development and function is modulated by the Tsc1. Gene Cereb Cortex 22(9):2111–2119

    Google Scholar 

  104. Feliciano DM et al (2011) Single-cell Tsc1 knockout during corticogenesis generates tuber-like lesions and reduces seizure threshold in mice. J Clin Invest 121(4):1596–1607

    Google Scholar 

  105. Feliciano DM et al (2011) Postnatal neurogenesis generates heterotopias, olfactory micronodules and cortical infiltration following single-cell Tsc1 deletion. Hum Mol Genet 21(4):799–810

    Google Scholar 

  106. Gorski JA et al (2002) Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J Neurosci 22(15):6309–6314

    PubMed  CAS  Google Scholar 

  107. Anderl S et al (2011) Therapeutic value of prenatal rapamycin treatment in a mouse brain model of tuberous sclerosis complex. Hum Mol Genet 20(23):4597–4604

    Article  PubMed  CAS  Google Scholar 

  108. Goto J et al (2011) Regulable neural progenitor-specific Tsc1 loss yields giant cells with organellar dysfunction in a model of tuberous sclerosis complex. Proc Natl Acad Sci USA 108(45):E1070–E1079

    Article  PubMed  CAS  Google Scholar 

  109. Meikle L et al (2008) Response of a neuronal model of tuberous sclerosis to mammalian target of rapamycin (mTOR) inhibitors: effects on mTORC1 and Akt signaling lead to improved survival and function. J Neurosci 28(21):5422–5432

    Article  PubMed  CAS  Google Scholar 

  110. Zeng LH et al (2008) Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Ann Neurol 63(4):444–453

    Article  PubMed  CAS  Google Scholar 

  111. Way SW et al (2012) The differential effects of prenatal and/or postnatal rapamycin on neurodevelopmental defects and cognition in a neuroglial mouse model of tuberous sclerosis complex. Hum Mol Genet 21(14):3226–3236

    Article  PubMed  CAS  Google Scholar 

  112. Onda H et al (2002) Tsc2 null murine neuroepithelial cells are a model for human tuber giant cells, and show activation of an mTOR pathway. Mol Cell Neurosci 21(4):561–574

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The published work cited in this article and conducted by the authors was funded by Associazione Sclerosi Tuberosa (AST) Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rossella Galli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magri, L., Galli, R. mTOR signaling in neural stem cells: from basic biology to disease. Cell. Mol. Life Sci. 70, 2887–2898 (2013). https://doi.org/10.1007/s00018-012-1196-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1196-x

Keywords

Navigation