Skip to main content
Log in

Ancestry of modern Europeans: contributions of ancient DNA

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Understanding the peopling history of Europe is crucial to comprehend the origins of modern populations. Of course, the analysis of current genetic data offers several explanations about human migration patterns which occurred on this continent, but it fails to explain precisely the impact of each demographic event. In this context, direct access to the DNA of ancient specimens allows the overcoming of recent demographic phenomena, which probably highly modified the constitution of the current European gene pool. In recent years, several DNA studies have been successfully conducted from ancient human remains thanks to the improvement of molecular techniques. They have brought new fundamental information on the peopling of Europe and allowed us to refine our understanding of European prehistory. In this review, we will detail all the ancient DNA studies performed to date on ancient European DNA from the Middle Paleolithic to the beginning of the protohistoric period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Carbonell E, Bermudez de Castro JM, Pares JM, Perez-Gonzalez A, Cuenca-Bescos G, Olle A, Mosquera M, Huguet R, van der Made J, Rosas A, Sala R, Vallverdu J, Garcia N, Granger DE, Martinon-Torres M, Rodriguez XP, Stock GM, Verges JM, Allue E, Burjachs F, Caceres I, Canals A, Benito A, Diez C, Lozano M, Mateos A, Navazo M, Rodriguez J, Rosell J, Arsuaga JL (2008) The first hominin of Europe. Nature 452(7186):465–469

    Article  PubMed  CAS  Google Scholar 

  2. Klein RG (2003) Paleoanthropology. Whither the Neanderthals? Science 299(5612):1525–1527

    Article  PubMed  CAS  Google Scholar 

  3. Mellars P (2006) A new radiocarbon revolution and the dispersal of modern humans in Eurasia. Nature 439(7079):931–935

    Article  PubMed  CAS  Google Scholar 

  4. Duarte C, Mauricio J, Pettitt PB, Souto P, Trinkaus E, van der Plicht H, Zilhao J (1999) The early Upper Paleolithic human skeleton from the Abrigo do Lagar Velho (Portugal) and modern human emergence in Iberia. Proc Natl Acad Sci USA 96(13):7604–7609

    Article  PubMed  CAS  Google Scholar 

  5. Soares P, Achilli A, Semino O, Davies W, Macaulay V, Bandelt HJ, Torroni A, Richards MB (2010) The Archaeogenetics of Europe. Curr Biol 20(4):R174–R183

    Article  PubMed  CAS  Google Scholar 

  6. Soares P, Ermini L, Thomson N, Mormina M, Rito T, Rohl A, Salas A, Oppenheimer S, Macaulay V, Richards MB (2009) Correcting for purifying selection: an improved human mitochondrial molecular clock. Am J Hum Genet 84(6):740–759

    Article  PubMed  CAS  Google Scholar 

  7. Herrera KJ, Somarelli JA, Lowery RK, Herrera RJ (2009) To what extent did Neanderthals and modern humans interact? Biol Rev Camb Philos Soc 84(2):245–257

    Article  PubMed  Google Scholar 

  8. Mellars P (2004) Neanderthals and the modern human colonization of Europe. Nature 432(7016):461–465

    Article  PubMed  CAS  Google Scholar 

  9. Arsuaga JL, Quam R, Daura J, Montserrat S (2011) Neandertal mtDNA from a late pleistocene human mandibule from the Cova del Gegant (Spain). In: Condemi S, Weniger G-C (eds) Continuity and discontinuity in the peopling of Europe: 150 years of Neanderthal study. Springer, Berlin, pp 213–217

  10. Beauval C, Maureille B, Lacrampe-Cuyaubere F, Serre D, Peressinotto D, Bordes JG, Cochard D, Couchoud I, Dubrasquet D, Laroulandie V, Lenoble A, Mallye JB, Pasty S, Primault J, Rohland N, Paabo S, Trinkaus E (2005) A late Neandertal femur from Les Rochers-de-Villeneuve, France. Proc Natl Acad Sci USA 102(20):7085–7090

    Article  PubMed  CAS  Google Scholar 

  11. Briggs AW, Good JM, Green RE, Krause J, Maricic T, Stenzel U, Lalueza-Fox C, Rudan P, Brajkovic D, Kucan Z, Gusic I, Schmitz R, Doronichev VB, Golovanova LV, de la Rasilla M, Fortea J, Rosas A, Paabo S (2009) Targeted retrieval and analysis of five Neandertal mtDNA genomes. Science 325(5938):318–321

    Article  PubMed  CAS  Google Scholar 

  12. Caramelli D, Lalueza-Fox C, Condemi S, Longo L, Milani L, Manfredini A, de Saint Pierre M, Adoni F, Lari M, Giunti P, Ricci S, Casoli A, Calafell F, Mallegni F, Bertranpetit J, Stanyon R, Bertorelle G, Barbujani G (2006) A highly divergent mtDNA sequence in a Neandertal individual from Italy. Curr Biol 16(16):R630–R632

    Article  PubMed  CAS  Google Scholar 

  13. Krings M, Geisert H, Schmitz RW, Krainitzki H, Paabo S (1999) DNA sequence of the mitochondrial hypervariable region II from the neandertal type specimen. Proc Natl Acad Sci USA 96(10):5581–5585

    Article  PubMed  CAS  Google Scholar 

  14. Krings M, Stone A, Schmitz RW, Krainitzki H, Stoneking M, Paabo S (1997) Neandertal DNA sequences and the origin of modern humans. Cell 90(1):19–30

    Article  PubMed  CAS  Google Scholar 

  15. Lalueza-Fox C, Krause J, Caramelli D, Catalano G, Milani L, Sampietro ML, Calafell F, Martinez-Maza C, Bastir M, Garcia-Tabernero A, de la Rasilla M, Fortea J, Paabo S, Bertranpetit J, Rosas A (2006) Mitochondrial DNA of an Iberian Neandertal suggests a population affinity with other European Neandertals. Curr Biol 16(16):R629–R630

    Article  PubMed  CAS  Google Scholar 

  16. Lalueza-Fox C, Rosas A, Estalrrich A, Gigli E, Campos PF, Garcia-Tabernero A, Garcia-Vargas S, Sanchez-Quinto F, Ramirez O, Civit S, Bastir M, Huguet R, Santamaria D, Gilbert MT, Willerslev E, de la Rasilla M (2011) Genetic evidence for patrilocal mating behavior among Neandertal groups. Proc Natl Acad Sci USA 108(1):250–253

    Article  PubMed  CAS  Google Scholar 

  17. Lalueza-Fox C, Sampietro ML, Caramelli D, Puder Y, Lari M, Calafell F, Martinez-Maza C, Bastir M, Fortea J, de la Rasilla M, Bertranpetit J, Rosas A (2005) Neandertal evolutionary genetics: mitochondrial DNA data from the Iberian Peninsula. Mol Biol Evol 22(4):1077–1081

    Article  PubMed  CAS  Google Scholar 

  18. Orlando L, Darlu P, Toussaint M, Bonjean D, Otte M, Hanni C (2006) Revisiting Neandertal diversity with a 100,000 year old mtDNA sequence. Curr Biol 16(11):R400–R402

    Article  PubMed  CAS  Google Scholar 

  19. Ovchinnikov IV, Gotherstrom A, Romanova GP, Kharitonov VM, Liden K, Goodwin W (2000) Molecular analysis of Neanderthal DNA from the northern Caucasus. Nature 404(6777):490–493

    Article  PubMed  CAS  Google Scholar 

  20. Schmitz RW, Serre D, Bonani G, Feine S, Hillgruber F, Krainitzki H, Paabo S, Smith FH (2002) The Neandertal type site revisited: interdisciplinary investigations of skeletal remains from the Neander Valley, Germany. Proc Natl Acad Sci USA 99(20):13342–13347

    Article  PubMed  CAS  Google Scholar 

  21. Serre D, Langaney A, Chech M, Teschler-Nicola M, Paunovic M, Mennecier P, Hofreiter M, Possnert G, Paabo S (2004) No evidence of Neandertal mtDNA contribution to early modern humans. PLoS Biol 2(3):E57

    Article  PubMed  Google Scholar 

  22. Caramelli D, Lalueza-Fox C, Vernesi C, Lari M, Casoli A, Mallegni F, Chiarelli B, Dupanloup I, Bertranpetit J, Barbujani G, Bertorelle G (2003) Evidence for a genetic discontinuity between Neandertals and 24,000-year-old anatomically modern Europeans. Proc Natl Acad Sci USA 100(11):6593–6597

    Article  PubMed  CAS  Google Scholar 

  23. Green RE, Malaspinas AS, Krause J, Briggs AW, Johnson PL, Uhler C, Meyer M, Good JM, Maricic T, Stenzel U, Prufer K, Siebauer M, Burbano HA, Ronan M, Rothberg JM, Egholm M, Rudan P, Brajkovic D, Kucan Z, Gusic I, Wikstrom M, Laakkonen L, Kelso J, Slatkin M, Paabo S (2008) A complete Neandertal mitochondrial genome sequence determined by high-throughput sequencing. Cell 134(3):416–426

    Article  PubMed  CAS  Google Scholar 

  24. Endicott P, Ho SY, Stringer C (2010) Using genetic evidence to evaluate four palaeoanthropological hypotheses for the timing of Neanderthal and modern human origins. J Hum Evol 59(1):87–95

    Article  PubMed  Google Scholar 

  25. Belle EM, Benazzo A, Ghirotto S, Colonna V, Barbujani G (2009) Comparing models on the genealogical relationships among Neandertal, Cro-Magnoid and modern Europeans by serial coalescent simulations. Heredity (Edinb) 102(3):218–225

    Article  CAS  Google Scholar 

  26. Currat M, Excoffier L (2004) Modern humans did not admix with Neanderthals during their range expansion into Europe. PLoS Biol 2(12):e421

    Article  PubMed  Google Scholar 

  27. Noonan JP, Coop G, Kudaravalli S, Smith D, Krause J, Alessi J, Chen F, Platt D, Paabo S, Pritchard JK, Rubin EM (2006) Sequencing and analysis of Neanderthal genomic DNA. Science 314(5802):1113–1118

    Article  PubMed  CAS  Google Scholar 

  28. Green RE, Krause J, Ptak SE, Briggs AW, Ronan MT, Simons JF, Du L, Egholm M, Rothberg JM, Paunovic M, Paabo S (2006) Analysis of one million base pairs of Neanderthal DNA. Nature 444(7117):330–336

    Article  PubMed  CAS  Google Scholar 

  29. Wall JD, Kim SK (2007) Inconsistencies in Neanderthal genomic DNA sequences. PLoS Genet 3(10):1862–1866

    Article  PubMed  CAS  Google Scholar 

  30. Krause J, Lalueza-Fox C, Orlando L, Enard W, Green RE, Burbano HA, Hublin JJ, Hanni C, Fortea J, de la Rasilla M, Bertranpetit J, Rosas A, Paabo S (2007) The derived FOXP2 variant of modern humans was shared with Neandertals. Curr Biol 17(21):1908–1912

    Article  PubMed  CAS  Google Scholar 

  31. Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, Patterson N, Li H, Zhai W, Fritz MH, Hansen NF, Durand EY, Malaspinas AS, Jensen JD, Marques-Bonet T, Alkan C, Prufer K, Meyer M, Burbano HA, Good JM, Schultz R, Aximu-Petri A, Butthof A, Hober B, Hoffner B, Siegemund M, Weihmann A, Nusbaum C, Lander ES, Russ C, Novod N, Affourtit J, Egholm M, Verna C, Rudan P, Brajkovic D, Kucan Z, Gusic I, Doronichev VB, Golovanova LV, Lalueza-Fox C, de la Rasilla M, Fortea J, Rosas A, Schmitz RW, Johnson PL, Eichler EE, Falush D, Birney E, Mullikin JC, Slatkin M, Nielsen R, Kelso J, Lachmann M, Reich D, Paabo S (2010) A draft sequence of the Neandertal genome. Science 328(5979):710–722

    Article  PubMed  CAS  Google Scholar 

  32. Currat M, Excoffier L (2011) Strong reproductive isolation between humans and Neanderthals inferred from observed patterns of introgression. Proc Natl Acad Sci USA 108(37):15129–15134

    Article  PubMed  CAS  Google Scholar 

  33. Hodgson JA, Bergey CM, Disotell TR (2010) Neandertal genome: the ins and outs of African genetic diversity. Curr Biol 20(12):R517–R519

    Article  PubMed  CAS  Google Scholar 

  34. Eriksson A, Manica A (2012) Effect of ancient population structure on the degree of polymorphism shared between modern human populations and ancient hominins. Proc Natl Acad Sci USA 109(35):13956–13960

    Article  PubMed  CAS  Google Scholar 

  35. Pinhasi R, Higham TF, Golovanova LV, Doronichev VB (2011) Revised age of late Neanderthal occupation and the end of the Middle Paleolithic in the northern Caucasus. Proc Natl Acad Sci USA 108(21):8611–8616

    Article  PubMed  CAS  Google Scholar 

  36. Pult I, Sajantila A, Simanainen J, Georgiev O, Schaffner W, Paabo S (1994) Mitochondrial DNA sequences from Switzerland reveal striking homogeneity of European populations. Biol Chem Hoppe Seyler 375(12):837–840

    PubMed  CAS  Google Scholar 

  37. Simoni L, Calafell F, Pettener D, Bertranpetit J, Barbujani G (2000) Geographic patterns of mtDNA diversity in Europe. Am J Hum Genet 66(1):262–278

    Article  PubMed  CAS  Google Scholar 

  38. Richards M (2003) The Neolithic invasion of Europe. Annu Rev Anthropol 32:135–162

    Article  Google Scholar 

  39. Ammerman AJ, Cavalli-Sforza LL (1984) The Neolithic transition and the genetics of populations in Europe. Princeton University Press, Princeton

    Google Scholar 

  40. Richards M, Macaulay V, Hickey E, Vega E, Sykes B, Guida V, Rengo C, Sellitto D, Cruciani F, Kivisild T, Villems R, Thomas M, Rychkov S, Rychkov O, Rychkov Y, Golge M, Dimitrov D, Hill E, Bradley D, Romano V, Cali F, Vona G, Demaine A, Papiha S, Triantaphyllidis C, Stefanescu G, Hatina J, Belledi M, Di Rienzo A, Novelletto A, Oppenheim A, Norby S, Al-Zaheri N, Santachiara-Benerecetti S, Scozari R, Torroni A, Bandelt HJ (2000) Tracing European founder lineages in the Near Eastern mtDNA pool. Am J Hum Genet 67(5):1251–1276

    PubMed  CAS  Google Scholar 

  41. Belle EM, Landry PA, Barbujani G (2006) Origins and evolution of the European’s genome: evidence from multiple microsatellite loci. Proc R Soc Lond B 273(1594):1595–1602

    Article  CAS  Google Scholar 

  42. Balaresque P, Bowden GR, Adams SM, Leung HY, King TE, Rosser ZH, Goodwin J, Moisan JP, Richard C, Millward A, Demaine AG, Barbujani G, Previdere C, Wilson IJ, Tyler-Smith C, Jobling MA (2010) A predominantly Neolithic origin for European paternal lineages. PLoS Biol 8(1):e1000285

    Article  PubMed  Google Scholar 

  43. Bocquet-Appel JP, Naji S, Marc Vander Linden M, Kozlowski K (2009) Detection of diffusion and contact zones of early farming in Europe from the space-time distribution of 14C dates. J Archaeol Sci 36:807–820

    Article  Google Scholar 

  44. Guilaine J (2001) La diffusion de l’agriculture en Europe: une hypothèse arythmique. Zephyrus 53–54:267–272

    Google Scholar 

  45. Mazurié de Keroualin K (2003) Genèse et diffusion de l’agriculture en Europe. Errance, Paris

  46. Bramanti B, Thomas MG, Haak W, Unterlaender M, Jores P, Tambets K, Antanaitis-Jacobs I, Haidle MN, Jankauskas R, Kind CJ, Lueth F, Terberger T, Hiller J, Matsumura S, Forster P, Burger J (2009) Genetic discontinuity between local hunter-gatherers and central Europe’s first farmers. Science 326(5949):137–140

    Article  PubMed  CAS  Google Scholar 

  47. Desalte D, Guinet J, Saverwyns S (2009) De l’ocre sur le crâne mésolithique (haplogroupe U5) de Reuland-Loschbour (Grand-Duché de Luxembourg)? Bull Soc Préhis Luxembourgeoise 31:7–30

    Google Scholar 

  48. Bramanti B (2008) Ancient DNA: genetic analysis of aDNA from sixteen skeletons of the Vedrovice. Anthropologie 48(2–3):153–160

    Google Scholar 

  49. Haak W, Balanovsky O, Sanchez J, Koshel S, Zaporozhchenko V, Adler C, Der Sarkissian C, Brandt G, Schwarz C, Nicklisch N, Dresely V, Fritsch B, Balanovska I, Villems R, Meller H, Alt KW, Cooper A, Consortium tG (2010) Ancient DNA from European Early Neolithic farmers reveals their Near Eastern affinities. PLoS Biol 8(11):e1000536

  50. Haak W, Forster P, Bramanti B, Matsumura S, Brandt G, Tanzer M, Villems R, Renfrew C, Gronenborn D, Alt KW, Burger J (2005) Ancient DNA from the first European farmers in 7500-year-old Neolithic sites. Science 310(5750):1016–1018

    PubMed  CAS  Google Scholar 

  51. Guba Z, Hadadi E, Major A, Furka T, Juhasz E, Koos J, Nagy K, Zeke T (2011) HVS-I polymorphism screening of ancient human mitochondrial DNA provides evidence for N9a discontinuity and East Asian haplogroups in the Neolithic Hungary. J Hum Genet 56(11):784–796

    Article  PubMed  CAS  Google Scholar 

  52. Nikitin AG, Newton JR, Potekhina ID (2012) Mitochondrial haplogroup C in ancient mitochondrial DNA from Ukraine extends the presence of East Eurasian genetic lineages in Neolithic Central and Eastern Europe. J Hum Genet 57:610–612

    Article  PubMed  CAS  Google Scholar 

  53. Haak W, Brandt G, de Jong HN, Meyer C, Ganslmeier R, Heyd V, Hawkesworth C, Pike AW, Meller H, Alt KW (2008) Ancient DNA, Strontium isotopes, and osteological analyses shed light on social and kinship organization of the later Stone Age. Proc Natl Acad Sci USA 105(47):18226–18231

    Article  PubMed  CAS  Google Scholar 

  54. Nikitin A, Sokhatsky M, Kovaliukh M, Videiko M (2010) Comprehensive site chronology and ancient mitochondrial DNA analysis from verteba cave—a trypillian culture site of eneolithic Ukraine. Interdiscip Archaeol 1(1–2):9–18

    Google Scholar 

  55. Lee EJ, Makarewicz C, Renneberg R, Harder M, Krause-Kyora B, Muller S, Ostritz S, Fehren-Schmitz L, Schreiber S, Muller J, von Wurmb-Schwark N, Nebel A, Nebel A (2012) Emerging genetic patterns of the European Neolithic: perspectives from a late Neolithic bell beaker burial site in Germany. Am J Phys Anthropol 148:571–579

    Article  PubMed  Google Scholar 

  56. Palanichamy MG, Zhang CL, Mitra B, Malyarchuk B, Derenko M, Chaudhuri TK, Zhang YP (2010) Mitochondrial haplogroup N1a phylogeography, with implication to the origin of European farmers. BMC Evol Biol 10:304

    PubMed  Google Scholar 

  57. Banffy E, Brandt G, Alt KW (2012) ‘Early Neolithic’ graves of the Carpathian Basin are in fact 6,000 years younger-Appeal for real interdisciplinarity between archaeology and ancient DNA research. J Hum Genet 57(7):467–469

    Article  PubMed  CAS  Google Scholar 

  58. Zeke T, Guba Z (2012) Response to data on Hungarian early Neolithic graves by Banffy et al. J Hum Genet 57:470–471

    Article  CAS  Google Scholar 

  59. Malmstrom H, Gilbert MT, Thomas MG, Brandstrom M, Stora J, Molnar P, Andersen PK, Bendixen C, Holmlund G, Gotherstrom A, Willerslev E (2009) Ancient DNA reveals lack of continuity between neolithic hunter-gatherers and contemporary Scandinavians. Curr Biol 19(20):1758–1762

    Article  PubMed  Google Scholar 

  60. Melchior L, Lynnerup N, Siegismund HR, Kivisild T, Dissing J (2010) Genetic diversity among ancient Nordic populations. PLoS One 5(7):e11898

    Article  PubMed  Google Scholar 

  61. Caramelli D, Milani L, Vai S, Modi A, Pecchioli E, Girardi M, Pilli E, Lari M, Lippi B, Ronchitelli A, Mallegni F, Casoli A, Bertorelle G, Barbujani G (2008) A 28,000 years old Cro-Magnon mtDNA sequence differs from all potentially contaminating modern sequences. PLoS One 3(7):e2700

    Article  PubMed  Google Scholar 

  62. Di Benedetto G, Nasidze IS, Stenico M, Nigro L, Krings M, Lanzinger M, Vigilant L, Stoneking M, Paabo S, Barbujani G (2000) Mitochondrial DNA sequences in prehistoric human remains from the Alps. Eur J Hum Genet 8(9):669–677

    Article  PubMed  Google Scholar 

  63. Hervella M, Izagirre N, Alonso S, Fregel R, Alonso A, Cabrera VM, de la Rua C (2012) Ancient DNA from hunter-gatherer and farmer groups from northern Spain supports a random dispersion model for the Neolithic expansion into Europe. PLoS One 7(4):e34417

    Article  PubMed  CAS  Google Scholar 

  64. Sanchez-Quinto F, Schroeder H, Ramirez O, Avila-Arcos MC, Pybus M, Olalde I, Velazquez AM, Marcos ME, Encinas JM, Bertranpetit J, Orlando L, Gilbert MT, Lalueza-Fox C (2012) Genomic affinities of two 7,000-year-old Iberian hunter-gatherers. Curr Biol 22(16):1494–1499

    Article  PubMed  CAS  Google Scholar 

  65. Gamba C, Fernandez E, Tirado M, Deguilloux MF, Pemonge MH, Utrilla P, Edo M, Molist M, Rasteiro R, Chikhi L, Arroyo-Pardo E (2011) Ancient DNA from an Early Neolithic Iberian population supports a pioneer colonization by first farmers. Mol Ecol 21(1):45–56

    Article  PubMed  Google Scholar 

  66. Ermini L, Olivieri C, Rizzi E, Corti G, Bonnal R, Soares P, Luciani S, Marota I, De Bellis G, Richards MB, Rollo F (2008) Complete mitochondrial genome sequence of the Tyrolean Iceman. Curr Biol 18(21):1687–1693

    Article  PubMed  CAS  Google Scholar 

  67. Lacan M, Keyser C, Ricaut FX, Brucato N, Duranthon F, Guilaine J, Crubezy E, Ludes B (2011) Ancient DNA reveals male diffusion through the Neolithic Mediterranean route. Proc Natl Acad Sci USA 108(24):9788–9791

    Article  PubMed  CAS  Google Scholar 

  68. Lacan M, Keyser C, Ricaut FX, Brucato N, Tarrus J, Bosch A, Guilaine J, Crubezy E, Ludes B (2011) Ancient DNA suggests the leading role played by men in the Neolithic dissemination. Proc Natl Acad Sci USA 108(45):18255–18259

    Article  PubMed  CAS  Google Scholar 

  69. Sampietro ML, Lao O, Caramelli D, Lari M, Pou R, Marti M, Bertranpetit J, Lalueza-Fox C (2007) Palaeogenetic evidence supports a dual model of Neolithic spreading into Europe. Proc R Soc Lond B 274(1622):2161–2167

    Article  CAS  Google Scholar 

  70. Keller A, Graefen A, Ball M, Matzas M, Boisguerin V, Maixner F, Leidinger P, Backes C, Khairat R, Forster M, Stade B, Franke A, Mayer J, Spangler J, McLaughlin S, Shah M, Lee C, Harkins TT, Sartori A, Moreno-Estrada A, Henn B, Sikora M, Semino O, Chiaroni J, Rootsi S, Myres NM, Cabrera VM, Underhill PA, Bustamante CD, Vigl EE, Samadelli M, Cipollini G, Haas J, Katus H, O’Connor BD, Carlson MR, Meder B, Blin N, Meese E, Pusch CM, Zink A (2012) New insights into the Tyrolean Iceman’s origin and phenotype as inferred by whole-genome sequencing. Nat Commun 3:698

    Article  PubMed  Google Scholar 

  71. Cinnioglu C, King R, Kivisild T, Kalfoglu E, Atasoy S, Cavalleri GL, Lillie AS, Roseman CC, Lin AA, Prince K, Oefner PJ, Shen P, Semino O, Cavalli-Sforza LL, Underhill PA (2004) Excavating Y-chromosome haplotype strata in Anatolia. Hum Genet 114(2):127–148

    Article  PubMed  Google Scholar 

  72. Battaglia V, Fornarino S, Al-Zahery N, Olivieri A, Pala M, Myres NM, King RJ, Rootsi S, Marjanovic D, Primorac D, Hadziselimovic R, Vidovic S, Drobnic K, Durmishi N, Torroni A, Santachiara-Benerecetti AS, Underhill PA, Semino O (2009) Y-chromosomal evidence of the cultural diffusion of agriculture in southeast Europe. Eur J Hum Genet 17(6):820–830

    Article  PubMed  CAS  Google Scholar 

  73. Behar DM, Garrigan D, Kaplan ME, Mobasher Z, Rosengarten D, Karafet TM, Quintana-Murci L, Ostrer H, Skorecki K, Hammer MF (2004) Contrasting patterns of Y chromosome variation in Ashkenazi Jewish and host non-Jewish European populations. Hum Genet 114(4):354–365

    Article  PubMed  CAS  Google Scholar 

  74. Semino O, Passarino G, Oefner PJ, Lin AA, Arbuzova S, Beckman LE, De Benedictis G, Francalacci P, Kouvatsi A, Limborska S, Marcikiae M, Mika A, Mika B, Primorac D, Santachiara-Benerecetti AS, Cavalli-Sforza LL, Underhill PA (2000) The genetic legacy of Paleolithic Homo sapiens sapiens in extant Europeans: a Y chromosome perspective. Science 290(5494):1155–1159

    Article  PubMed  CAS  Google Scholar 

  75. Handt O, Richards M, Trommsdorff M, Kilger C, Simanainen J, Georgiev O, Bauer K, Stone A, Hedges R, Schaffner W et al (1994) Molecular genetic analyses of the Tyrolean Ice Man. Science 264(5166):1775–1778

    Article  PubMed  CAS  Google Scholar 

  76. Rollo F, Ermini L, Luciani S, Marota I, Olivieri C, Luiselli D (2006) Fine characterization of the Iceman’s mtDNA haplogroup. Am J Phys Anthropol 130(4):557–564

    Article  PubMed  Google Scholar 

  77. Malmstrom H, Linderholm A, Liden K, Stora J, Molnar P, Holmlund G, Jakobsson M, Gotherstrom A (2010) High frequency of lactose intolerance in a prehistoric hunter-gatherer population in northern Europe. BMC Evol Biol 10:89

    Article  PubMed  Google Scholar 

  78. Skoglund P, Malmstrom H, Raghavan M, Stora J, Hall P, Willerslev E, Gilbert MT, Gotherstrom A, Jakobsson M (2012) Origins and genetic legacy of Neolithic farmers and hunter-gatherers in Europe. Science 336(6080):466–469

    Article  PubMed  CAS  Google Scholar 

  79. Balter M (2012) Archaeology. Ancient migrants brought farming way of life to Europe. Science 336(6080):400–401

    Article  PubMed  CAS  Google Scholar 

  80. Burger J, Hummel S, Hermann B, Henke W (1999) DNA preservation: a microsatellite-DNA study on ancient skeletal remains. Electrophoresis 20(8):1722–1728

    Article  PubMed  CAS  Google Scholar 

  81. Pruvost M, Schwarz R, Correia VB, Champlot S, Braguier S, Morel N, Fernandez-Jalvo Y, Grange T, Geigl EM (2007) Freshly excavated fossil bones are best for amplification of ancient DNA. Proc Natl Acad Sci USA 104(3):739–744

    Article  PubMed  CAS  Google Scholar 

  82. Ramakrishnan U, Hadly E (2009) Using phylochronology to reveal cryptic population histories: review and synthesis of 29 ancient DNA studies. Mol Ecol 18:1310–1330

    Article  PubMed  Google Scholar 

  83. Ricaut FX, Cox MP, Lacan M, Keyser C, Duranthon F, Ludes B, Guilaine J, Crubézy E (2012) A time series of prehistoric mitochondrial DNA reveals western European genetic diversity was largely established by Bronze Age. Adv Anthropol 2(1):14–23

    Article  Google Scholar 

  84. Higuchi R, Bowman B, Freiberger M, Ryder OA, Wilson AC (1984) DNA sequences from the quagga, an extinct member of the horse family. Nature 312(5991):282–284

    Article  PubMed  CAS  Google Scholar 

  85. Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155:335–350

    Article  PubMed  CAS  Google Scholar 

  86. Paabo S, Poinar H, Serre D, Jaenicke-Despres V, Hebler J, Rohland N, Kuch M, Krause J, Vigilant L, Hofreiter M (2004) Genetic analyses from ancient DNA. Annu Rev Genet 38:645–679

    Article  PubMed  Google Scholar 

  87. Lamers R, Hayter S, Matheson CD (2009) Postmortem miscoding lesions in sequence analysis of human ancient mitochondrial DNA. J Mol Evol 68(1):40–55

    Article  PubMed  CAS  Google Scholar 

  88. Cooper A, Poinar HN (2000) Ancient DNA: do it right or not at all. Science 289(5482):1139

    Article  PubMed  CAS  Google Scholar 

  89. Gilbert MT, Bandelt HJ, Hofreiter M, Barnes I (2005) Assessing ancient DNA studies. Trends Ecol Evol 20(10):541–544

    Article  PubMed  Google Scholar 

  90. Millar CD, Huynen L, Subramanian S, Mohandesan E, Lambert DM (2008) New developments in ancient genomics. Trends Ecol Evol 23(7):386–393

    Article  PubMed  Google Scholar 

  91. Briggs AW, Good JM, Green RE, Krause J, Maricic T, Stenzel U, Paabo S (2009) Primer extension capture: targeted sequence retrieval from heavily degraded DNA sources. J Vis Exp 31:1573

    PubMed  Google Scholar 

  92. Burbano HA, Hodges E, Green RE, Briggs AW, Krause J, Meyer M, Good JM, Maricic T, Johnson PL, Xuan Z, Rooks M, Bhattacharjee A, Brizuela L, Albert FW, de la Rasilla M, Fortea J, Rosas A, Lachmann M, Hannon GJ, Paabo S (2010) Targeted investigation of the Neandertal genome by array-based sequence capture. Science 328(5979):723–725

    Article  PubMed  CAS  Google Scholar 

  93. Krause J (2010) From Genes to genomes: what is new in ancient DNA. MGfU 19:11–33

    Google Scholar 

  94. Garcia-Garcera M, Gigli E, Sanchez-Quinto F, Ramirez O, Calafell F, Civit S, Lalueza-Fox C (2011) Fragmentation of contaminant and endogenous DNA in ancient samples determined by shotgun sequencing; prospects for human palaeogenomics. PLoS One 6(8):e24161

    Article  PubMed  CAS  Google Scholar 

  95. Sampietro ML, Gilbert MT, Lao O, Caramelli D, Lari M, Bertranpetit J, Lalueza-Fox C (2006) Tracking down human contamination in ancient human teeth. Mol Biol Evol 23(9):1801–1807

    Article  PubMed  CAS  Google Scholar 

  96. Krause J, Briggs AW, Kircher M, Maricic T, Zwyns N, Derevianko A, Paabo S (2010) A complete mtDNA genome of an early modern human from Kostenki. Russ Curr Biol 20(3):231–236

    Article  CAS  Google Scholar 

  97. Krause J, Fu Q, Good JM, Viola B, Shunkov MV, Derevianko AP, Paabo S (2010) The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature 464(7290):894–897

    Article  PubMed  CAS  Google Scholar 

  98. Rasmussen M, Li Y, Lindgreen S, Pedersen JS, Albrechtsen A, Moltke I, Metspalu M, Metspalu E, Kivisild T, Gupta R, Bertalan M, Nielsen K, Gilbert MT, Wang Y, Raghavan M, Campos PF, Kamp HM, Wilson AS, Gledhill A, Tridico S, Bunce M, Lorenzen ED, Binladen J, Guo X, Zhao J, Zhang X, Zhang H, Li Z, Chen M, Orlando L, Kristiansen K, Bak M, Tommerup N, Bendixen C, Pierre TL, Gronnow B, Meldgaard M, Andreasen C, Fedorova SA, Osipova LP, Higham TF, Ramsey CB, Hansen TV, Nielsen FC, Crawford MH, Brunak S, Sicheritz-Ponten T, Villems R, Nielsen R, Krogh A, Wang J, Willerslev E (2010) Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature 463(7282):757–762

    Article  PubMed  CAS  Google Scholar 

  99. Shapiro B, Hofreiter M (2010) Analysis of ancient human genomes: using next generation sequencing, 20-fold coverage of the genome of a 4,000-year-old human from Greenland has been obtained. Bioessays 32(5):388–391

    Article  PubMed  CAS  Google Scholar 

  100. Krings M, Capelli C, Tschentscher F, Geisert H, Meyer S, von Haeseler A, Grossschmidt K, Possnert G, Paunovic M, Paabo S (2000) A view of Neandertal genetic diversity. Nat Genet 26(2):144–146

    Article  PubMed  CAS  Google Scholar 

  101. Deguilloux MF, Soler L, Pemonge MH, Scarre C, Joussaume R, Laporte L (2011) News from the west: Ancient DNA from a French megalithic burial chamber. Am J Phys Anthropol 144(1):108–118

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Lacan.

Box 1: Human ancient DNA research, a booming field

Box 1: Human ancient DNA research, a booming field

In 1984, an American team was able to extract for the first time mitochondrial DNA fragments from an extinct specimen of the genus Equus (the quagga) and revealed that DNA molecules could survive within ancient remains [84]. But it was really after 1987 and the development of the polymerase chain reaction (PCR), which allows a small amount of DNA to be amplified exponentially [85], that the discipline became a promising field, notably to reconstruct the evolution of species or populations. However, because of the low amount of available material in ancient samples and the degraded state of the DNA, limitations linked with the PCR principle have also been highlighted.

Indeed, after the death of an organism, several enzymatic or chemical reactions lead to irreversible modifications of the DNA molecules. The quantity and quality of authentic DNA will vary greatly from a sample to another according to the taphonomic history of the sample. When ancient DNA can be extracted, it is almost systematically highly fragmented and its bases are chemically altered [86]: fragments extracted are rarely longer than 150 bp, and they exhibit base modifications which will have important consequences during PCR. These miscoding lesions can thus provoke replication errors such as C/G to T/A transitions (due to hydrolytic deaminations) or C/G to A/T transversions (because of oxidative damages) [87]. Above all, these alterations make ancient DNA analyses particularly sensitive to contamination by exogenous DNA. Indeed, there is a higher chance that, during PCR, the polymerase preferentially amplifies contemporary and intact molecules rather than ancient and degraded ones. This contamination issue is particularly problematic when analyses are performed on ancient human specimens, since it is not always possible to distinguish if the sequences obtained correspond to endogenous fragments or to contaminating molecules brought by contemporary people involved in the study of the ancient samples. Handling precautions and drastic authenticity criteria have, of course, been implemented to avoid publication of erroneous data [88]. Analyses are thus always performed in specific clean room facilities (positive air pressure and UV decontamination), free of any modern or amplified DNA. But most ancient samples coming from museum collections have been manipulated by several people without precautions over several years. So, despite all precautions taken during analysis, the DNA study of ancient human skeletal remains is still a huge challenge, and, in addition, thoughtful analysis strategies must in particular be developed to prove the authenticity of the data produced [89].

In recent years, the improvement of sequencing technologies offers new perspectives. Indeed, the “Next Generation Sequencing” or NGS technologies use a different approach to investigate ancient genomes. They allow large-scale studies through the massive sequencing of a set of ancient DNA molecules without prior targeted amplification [90]. The high throughput sequencers are thus able to produce over one gigabase of data in a single run, and offer the possibility notably through particular strategies such as targeted capture approaches, to achieve a high coverage of a lot of genetic loci of interest [91, 92]. These techniques are particularly promising in the study of ancient human DNA since they offer many advantages regarding the detection of potential contamination. For example, the high coverage permits the obtaining of an important number of fragments that overlap particular DNA positions and provides internal replications necessary to confirm that the DNA studied really does originate from a single individual. In addition, these technologies provide an overview on the degraded state of DNA through the detection of nucleotide misincorporation patterns. The estimation of purine frequency at the ends of fragments, or the length of fragments themselves, can, for example, be used to distinguish the presence of modern contaminant DNA [93, 94]. However, the number of degradation patterns can vary from sample to sample according to the age of the specimen or the taphonomic conditions. Moreover, some contaminant molecules can also exhibit degradation patterns, notably if the contamination occurred several years prior to the analysis or if samples were cleaned with a depurinating agent [94, 95]. NGS are thus a promising approach for the future analysis of ancient human remains. However, such technologies are not always accessible for all ancient DNA laboratories and their cost remains high compared to traditional approaches by PCR. This is a reason why these technologies are not yet used routinely in all laboratories and are mainly employed to study exceptional specimens such as ancient hominins [11, 23, 27, 28, 31, 96, 97] or samples containing particularly well-preserved DNA [98, 99].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lacan, M., Keyser, C., Crubézy, E. et al. Ancestry of modern Europeans: contributions of ancient DNA. Cell. Mol. Life Sci. 70, 2473–2487 (2013). https://doi.org/10.1007/s00018-012-1180-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1180-5

Keywords

Navigation