Skip to main content
Log in

Effects of MACPF/CDC proteins on lipid membranes

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Recent work on the MACPF/CDC superfamily of pore-forming proteins has focused on the structural analysis of monomers and pore-forming oligomeric complexes. We set the family of proteins in context and highlight aspects of their function which the direct and exclusive equation of oligomers with pores fails to explain. Starting with a description of the distribution of MACPF/CDC proteins across the domains of life, we proceed to show how their evolutionary relationships can be understood on the basis of their structural homology and re-evaluate models for pore formation by perforin, in particular. We furthermore highlight data showing the role of incomplete oligomeric rings (arcs) in pore formation and how this can explain small pores generated by oligomers of proteins belonging to the family. We set this in the context of cell biological and biophysical data on the proteins’ function and discuss how this helps in the development of an understanding of how they act in processes such as apicomplexan parasites gliding through cells and exiting from cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ALY:

Anthrolysin

Bth:

Bacillus thetaiotaomicron MACPF protein

CDCs:

Cholesterol-dependent cytolysins

CTL:

Cytotoxic T lymphocytes

EM:

Electron microscopy

GrB:

Granzyme B

ILY:

Intermedilysin

LLO:

Listeriolysin

MACPF:

Membrane attack complex/perforin

MAC:

Membrane attack complex

PFN:

Perforin

PFO:

Perfringolysin

PLY:

Pneumolysin

PLPs:

Perforin-like proteins

Plu:

Photorhabdus luminescens MACPF protein

PPLPs:

Plasmodium perforin-like proteins

PV:

Parasitophorous vacuole

SLO:

Streptolysin

TMH:

Trans-membrane hairpin (present in the soluble forms of CDC/MACPFs as α-helices)

References

  1. Tschopp J, Masson D, Stanley KK (1986) Structural/functional similarity between proteins involved in complement- and cytotoxic T-lymphocyte-mediated cytolysis. Nature 322:831–834

    Article  PubMed  CAS  Google Scholar 

  2. Rosado CJ, Buckle AM, Law RH, Butcher RE, Kan WT, Bird CH, Ung K, Browne KA, Baran K, Bashtannyk-Puhalovich TA, Faux NG, Wong W, Porter CJ, Pike RN, Ellisdon AM, Pearce MC, Bottomley SP, Emsley J, Smith AI, Rossjohn J, Hartland EL, Voskoboinik I, Trapani JA, Bird PI, Dunstone MA, Whisstock JC (2007) A common fold mediates vertebrate defense and bacterial attack. Science 317:1548–1551

    Article  PubMed  CAS  Google Scholar 

  3. Hadders MA, Beringer DX, Gros P (2007) Structure of C8alpha-MACPF reveals mechanism of membrane attack in complement immune defense. Science 317:1552–1554

    Article  PubMed  CAS  Google Scholar 

  4. Slade DJ, Lovelace LL, Chruszcz M, Minor W, Lebioda L, Sodetz JM (2008) Crystal structure of the MACPF domain of human complement protein C8 alpha in complex with the C8 gamma subunit. J Mol Biol 379:331–342

    Article  PubMed  CAS  Google Scholar 

  5. Rosado CJ, Kondos S, Bull TE, Kuiper MJ, Law RHP, Buckle AM, Voskoboinik I, Bird PI, Trapani JA, Whisstock JC, Dunstone MA (2008) The MACPF/CDC family of pore-forming toxins. Cell Microbiol 10:1765–1774

    Article  PubMed  CAS  Google Scholar 

  6. Gilbert RJ (2005) Inactivation and activity of cholesterol-dependent cytolysins: what structural studies tell us. Structure 13:1097–1106

    Article  PubMed  CAS  Google Scholar 

  7. Hotze EM, Tweten RK (2012) Membrane assembly of the cholesterol-dependent cytolysin pore complex. Biochim Biophys Acta 1818:1028–1038

    Article  PubMed  CAS  Google Scholar 

  8. Farrand AJ, LaChapelle S, Hotze EM, Johnson AE, Tweten RK (2010) Only two amino acids are essential for cytolytic toxin recognition of cholesterol at the membrane surface. Proc Natl Acad Sci USA 107:4341–4346

    Article  PubMed  CAS  Google Scholar 

  9. Giddings KS, Zhao J, Sims PJ, Tweten RK (2004) Human CD59 is a receptor for the cholesterol-dependent cytolysin intermedilysin. Nat Struct Mol Biol 11:1173–1178

    Article  PubMed  CAS  Google Scholar 

  10. Gilbert RJ, Jimenez JL, Chen S, Tickle IJ, Rossjohn J, Parker M, Andrew PW, Saibil HR (1999) Two structural transitions in membrane pore formation by pneumolysin, the pore-forming toxin of Streptococcus pneumoniae. Cell 97:647–655

    Article  PubMed  CAS  Google Scholar 

  11. Tilley SJ, Orlova EV, Gilbert RJ, Andrew PW, Saibil HR (2005) Structural basis of pore formation by the bacterial toxin pneumolysin. Cell 121:247–256

    Article  PubMed  CAS  Google Scholar 

  12. Farrand S, Hotze E, Friese P, Hollingshead SK, Smith DF, Cummings RD, Dale GL, Tweten RK (2008) Characterization of a streptococcal cholesterol-dependent cytolysin with a Lewis y and b specific lectin domain. Biochemistry 47:7097–7107

    Article  PubMed  CAS  Google Scholar 

  13. Aleshin AE, Schraufstatter IU, Stec B, Bankston LA, Liddington RC, DiScipio RG (2012) Structure of complement C6 suggests a mechanism for initiation and unidirectional, sequential assembly of membrane attack complex (MAC). J Biol Chem 287:10210–10222

    Article  PubMed  CAS  Google Scholar 

  14. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer EL, Eddy SR, Bateman A, Finn RD (2012) The Pfam protein families database. Nuc Acids Res 40:D290–D301

    Article  CAS  Google Scholar 

  15. van Beurden SJ, Bossers A, Voorbergen-Laarman MH, Haenen OL, Peters S, Abma-Henkens MH, Peeters BP, Rottier PJ, Engelsma MY (2010) Complete genome sequence and taxonomic position of anguillid herpesvirus 1. J Gen Virol 91:880–887

    Article  PubMed  CAS  Google Scholar 

  16. Huang S, Yuan S, Guo L, Yu Y, Li J, Wu T, Liu T, Yang M, Wu K, Liu H, Ge J, Huang H, Dong M, Yu C, Chen S, Xu A (2008) Genomic analysis of the immune gene repertoire of amphioxus reveals extraordinary innate complexity and diversity. Genome Res 18:1112–1126

    Article  PubMed  CAS  Google Scholar 

  17. Ponting CP (1999) Chlamydial homologues of the MACPF (MAC/perforin) domain. Curr Biol 9:R911–R913

    Article  PubMed  CAS  Google Scholar 

  18. Xu Q, Abdubek P, Astakhova T, Axelrod HL, Bakolitsa C, Cai X, Carlton D, Chen C, Chiu HJ, Clayton T, Das D, Deller MC, Duan L, Ellrott K, Farr CL, Feuerhelm J, Grant JC, Grzechnik A, Han GW, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Kozbial P, Krishna SS, Kumar A, Lam WW, Marciano D, Miller MD, Morse AT, Nigoghossian E, Nopakun A, Okach L, Puckett C, Reyes R, Tien HJ, Trame CB, van den Bedem H, Weekes D, Wooten T, Yeh A, Zhou J, Hodgson KO, Wooley J, Elsliger MA, Deacon AM, Godzik A, Lesley SA, Wilson IA (2010) Structure of a membrane-attack complex/perforin (MACPF) family protein from the human gut symbiont Bacteroides thetaiotaomicron. Acta Crystall Sect F Struct Biol Cryst Commun 66:1297–1305

    Article  CAS  Google Scholar 

  19. Voskoboinik I, Smyth MJ, Trapani JA (2006) Perforin-mediated target-cell death and immune homeostasis. Nat Rev Immunol 6:940–952

    Article  PubMed  CAS  Google Scholar 

  20. Podack ER, Deyev V, Shiratsuchi M (2007) Pore formers of the immune system. Adv Exp Med Biol 598:325–341

    Article  PubMed  Google Scholar 

  21. Oshiro N, Kobayashi C, Iwanaga S, Nozaki M, Namikoshi M, Spring J, Nagai H (2004) A new membrane-attack complex/perforin (MACPF) domain lethal toxin from the nematocyst venom of the Okinawan sea anemone Actineria villosa. Toxicon 43:225–228

    Article  PubMed  CAS  Google Scholar 

  22. Wiens M, Korzhev M, Krasko A, Thakur NL, Perovic-Ottstadt S, Breter HJ, Ushijima H, Diehl-Seifert B, Muller IM, Muller WE (2005) Innate immune defense of the sponge Suberites domuncula against bacteria involves a MyD88-dependent signaling pathway. Induction of a perforin-like molecule. J Biol Chem 280:27949–27959

    Article  PubMed  CAS  Google Scholar 

  23. Stevens LM, Frohnhofer HG, Klingler M, Nusslein-Volhard C (1990) Localized requirement for torso-like expression in follicle cells for development of terminal anlagen of the Drosophila embryo. Nature 346:660–663

    Article  PubMed  CAS  Google Scholar 

  24. Adams NC, Tomoda T, Cooper M, Dietz G, Hatten ME (2002) Mice that lack astrotactin have slowed neuronal migration. Development 129:965–972

    PubMed  CAS  Google Scholar 

  25. Zheng C, Heintz N, Hatten ME (1996) CNS gene encoding astrotactin, which supports neuronal migration along glial fibers. Science 272:417–419

    Article  PubMed  CAS  Google Scholar 

  26. Kafsack BF, Carruthers VB (2010) Apicomplexan perforin-like proteins. Commun Integr Biol 3:18–23

    Article  PubMed  Google Scholar 

  27. Morita-Yamamuro C, Tsutsui T, Sato M, Yoshioka H, Tamaoki M, Ogawa D, Matsuura H, Yoshihara T, Ikeda A, Uyeda I, Yamaguchi J (2005) The Arabidopsis gene CAD1 controls programmed cell death in the plant immune system and encodes a protein containing a MACPF domain. Plant Cell Physiol 46:902–912

    Article  PubMed  CAS  Google Scholar 

  28. Lukoyanova N, Saibil HR (2008) Friend or foe: the same fold for attack and defense. Trends Immunol 29:51–53

    Article  PubMed  CAS  Google Scholar 

  29. Anderluh G, Lakey JH (2008) Disparate proteins use similar architectures to damage membranes. Trends Biochem Sci 33:482–490

    Article  PubMed  CAS  Google Scholar 

  30. Baran K, Dunstone M, Chia J, Ciccone A, Browne KA, Clarke CJ, Lukoyanova N, Saibil H, Whisstock JC, Voskoboinik I, Trapani JA (2009) The molecular basis for perforin oligomerization and transmembrane pore assembly. Immunity 30:684–695

    Article  PubMed  CAS  Google Scholar 

  31. Praper T, Sonnen A, Viero G, Kladnik A, Froelich CJ, Anderluh G, Dalla Serra M, Gilbert RJ (2011) Human perforin employs different avenues to damage membranes. J Biol Chem 286:2946–2955

    Article  PubMed  CAS  Google Scholar 

  32. Voskoboinik I, Thia MC, Fletcher J, Ciccone A, Browne K, Smyth MJ, Trapani JA (2005) Calcium-dependent plasma membrane binding and cell lysis by perforin are mediated through its C2 domain: a critical role for aspartate residues 429, 435, 483, and 485 but not 491. J Biol Chem 280:8426–8434

    Article  PubMed  CAS  Google Scholar 

  33. Aleshin AE, Discipio RG, Stec B, Liddington RC (2012) Crystal structure of C5b-6 suggests a structural basis for priming the assembly of the membrane attack complex (MAC). J Biol Chem 287:19642–19652

    Article  PubMed  CAS  Google Scholar 

  34. Hadders MA, Bubeck D, Roversi P, Hakobyan S, Forneris F, Morgan BP, Pangburn MK, Llorca O, Lea SM, Gros P (2012) Assembly and regulation of the membrane attack complex based on structures of C5b6 and sC5b9. Cell Rep 1:1–8

    Article  CAS  Google Scholar 

  35. Lovelace LL, Cooper CL, Sodetz JM, Lebioda L (2011) Structure of human C8 protein provides mechanistic insight into membrane pore formation by complement. J Biol Chem 286:17585–17592

    Article  PubMed  CAS  Google Scholar 

  36. Tomita T, Noguchi K, Mimuro H, Ukaji F, Ito K, Sugawara-Tomita N, Hashimoto Y (2004) Pleurotolysin, a novel sphingomyelin-specific two-component cytolysin from the edible mushroom Pleurotus ostreatus, assembles into a transmembrane pore complex. J Biol Chem 279:26975–26982

    Article  PubMed  CAS  Google Scholar 

  37. Law RH, Lukoyanova N, Voskoboinik I, Caradoc-Davies TT, Baran K, Dunstone MA, D’Angelo ME, Orlova EV, Coulibaly F, Verschoor S, Browne KA, Ciccone A, Kuiper MJ, Bird PI, Trapani JA, Saibil HR, Whisstock JC (2010) The structural basis for membrane binding and pore formation by lymphocyte perforin. Nature 468:447–451

    Article  PubMed  CAS  Google Scholar 

  38. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comp Chem 25:1605–1612

    Article  CAS  Google Scholar 

  39. Woese CR (2000) Interpreting the universal phylogenetic tree. Proc Natl Acad Sci USA 97:8392–8396

    Article  PubMed  CAS  Google Scholar 

  40. Riffel N, Harlos K, Iourin O, Rao Z, Kingsman A, Stuart D, Fry E (2002) Atomic resolution structure of Moloney murine leukemia virus matrix protein and its relationship to other retroviral matrix proteins. Structure 10:1627–1636

    Article  PubMed  CAS  Google Scholar 

  41. Bamford DH, Grimes JM, Stuart DI (2005) What does structure tell us about virus evolution? Curr Opin Struct Biol 15:655–663

    Article  PubMed  CAS  Google Scholar 

  42. Graham SC, Bahar MW, Cooray S, Chen RA, Whalen DM, Abrescia NG, Alderton D, Owens RJ, Stuart DI, Smith GL, Grimes JM (2008) Vaccinia virus proteins A52 and B14 Share a Bcl-2-like fold but have evolved to inhibit NF-kappaB rather than apoptosis. PLoS Pathog 4:e1000128

    Article  PubMed  CAS  Google Scholar 

  43. Bahar MW, Graham SC, Stuart DI, Grimes JM (2011) Insights into the evolution of a complex virus from the crystal structure of vaccinia virus D13. Structure 19:1011–1020

    Article  PubMed  CAS  Google Scholar 

  44. Ji X, Sutton G, Evans G, Axford D, Owen R, Stuart DI (2010) How baculovirus polyhedra fit square pegs into round holes to robustly package viruses. EMBO J 29:505–514

    Article  PubMed  CAS  Google Scholar 

  45. Dunstone MA, Tweten RK (2012) Packing a punch: the mechanism of pore formation by cholesterol-dependent cytolysins and membrane attack complex/perforin-like proteins. Curr Opin Struct Biol 22:342–349

    Article  PubMed  CAS  Google Scholar 

  46. Teissie J, Golzio M, Rols MP (2005) Mechanisms of cell membrane electropermeabilization: a minireview of our present (lack of ?) knowledge. Biochim Biophys Acta 1724:270–280

    Article  PubMed  CAS  Google Scholar 

  47. Almers W (2001) Fusion needs more than SNAREs. Nature 409:567–568

    Article  PubMed  CAS  Google Scholar 

  48. Kielian M, Rey FA (2006) Virus membrane-fusion proteins: more than one way to make a hairpin. Nat Rev Microbiol 4:67–76

    Article  PubMed  CAS  Google Scholar 

  49. Song L, Hobaugh MR, Shustak C, Cheley S, Bayley H, Gouaux JE (1996) Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274:1859–1866

    Article  PubMed  CAS  Google Scholar 

  50. Basanez G, Sharpe JC, Galanis J, Brandt TB, Hardwick JM, Zimmerberg J (2002) Bax-type apoptotic proteins porate pure lipid bilayers through a mechanism sensitive to intrinsic monolayer curvature. J Biol Chem 277:49360–49365

    Article  PubMed  CAS  Google Scholar 

  51. Qian S, Wang W, Yang L, Huang HW (2008) Structure of transmembrane pore induced by Bax-derived peptide: evidence for lipidic pores. Proc Natl Acad Sci USA 105:17379–17383

    Article  PubMed  CAS  Google Scholar 

  52. Tsukazaki T, Mori H, Fukai S, Ishitani R, Mori T, Dohmae N, Perederina A, Sugita Y, Vassylyev DG, Ito K, Nureki O (2008) Conformational transition of Sec machinery inferred from bacterial SecYE structures. Nature 455:988–991

    Article  PubMed  CAS  Google Scholar 

  53. Morgan PJ, Hyman SC, Byron O, Andrew PW, Mitchell TJ, Rowe AJ (1994) Modeling the bacterial protein toxin, pneumolysin, in its monomeric and oligomeric form. J Biol Chem 269:25315–25320

    PubMed  CAS  Google Scholar 

  54. Olofsson A, Hebert H, Thelestam M (1993) The projection structure of Perfringolysin O (Clostridium perfringens [theta]-toxin). FEBS Lett 319:125–127

    Article  PubMed  CAS  Google Scholar 

  55. Mueller M, Grauschopf U, Maier T, Glockshuber R, Ban N (2009) The structure of a cytolytic alpha-helical toxin pore reveals its assembly mechanism. Nature 459:726–730

    Article  PubMed  CAS  Google Scholar 

  56. Fang Y, Cheley S, Bayley H, Yang J (1997) The heptameric prepore of a staphylococcal alpha-hemolysin mutant in lipid bilayers imaged by atomic force microscopy. Biochemistry 36:9518–9522

    Article  PubMed  CAS  Google Scholar 

  57. Smart OS, Coates GM, Sansom MS, Alder GM, Bashford CL (1998) Structure-based prediction of the conductance properties of ion channels. Faraday Discuss 111:185–199

    Article  PubMed  CAS  Google Scholar 

  58. Yamashita K, Kawai Y, Tanaka Y, Hirano N, Kaneko J, Tomita N, Ohta M, Kamio Y, Yao M, Tanaka I (2011) Crystal structure of the octameric pore of staphylococcal gamma-hemolysin reveals the beta-barrel pore formation mechanism by two components. Proc Natl Acad Sci USA 108:17314–17319

    Article  PubMed  CAS  Google Scholar 

  59. Comai M, Dalla Serra M, Coraiola M, Werner S, Colin DA, Monteil H, Prevost G, Menestrina G (2002) Protein engineering modulates the transport properties and ion selectivity of the pores formed by staphylococcal gamma-haemolysins in lipid membranes. Mol Microbiol 44:1251–1267

    Article  PubMed  CAS  Google Scholar 

  60. Sugawara-Tomita N, Tomita T, Kamio Y (2002) Stochastic assembly of two-component staphylococcal gamma-hemolysin into heteroheptameric transmembrane pores with alternate subunit arrangements in ratios of 3:4 and 4:3. J Bacteriol 184:4747–4756

    Article  PubMed  CAS  Google Scholar 

  61. Shatursky O, Heuck AP, Shepard LA, Rossjohn J, Parker MW, Johnson AE, Tweten RK (1999) The mechanism of membrane insertion for a cholesterol-dependent cytolysin: a novel paradigm for pore-forming toxins. Cell 99:293–299

    Article  PubMed  CAS  Google Scholar 

  62. Hotze EM, Wilson-Kubalek EM, Rossjohn J, Parker MW, Johnson AE, Tweten RK (2001) Arresting pore formation of a cholesterol-dependent cytolysin by disulfide trapping synchronizes the insertion of the transmembrane beta-sheet from a prepore intermediate. J Biol Chem 276:8261–8268

    Article  PubMed  CAS  Google Scholar 

  63. Czajkowsky DM, Hotze EM, Shao Z, Tweten RK (2004) Vertical collapse of a cytolysin prepore moves its transmembrane beta-hairpins to the membrane. EMBO J 23:3206–3215

    Article  PubMed  CAS  Google Scholar 

  64. Harris RW, Sims PJ, Tweten RK (1991) Kinetic aspects of the aggregation of Clostridium perfringens theta- toxin on erythrocyte membranes. A fluorescence energy transfer study. J Biol Chem 266:6936–6941

    PubMed  CAS  Google Scholar 

  65. Bhakdi S, Tranum-Jensen J, Sziegoleit A (1985) Mechanism of membrane damage by streptolysin-O. Infect Immun 47:52–60

    PubMed  CAS  Google Scholar 

  66. Palmer M, Harris R, Freytag C, Kehoe M, Tranum-Jensen J, Bhakdi S (1998) Assembly mechanism of the oligomeric streptolysin O pore: the early membrane lesion is lined by a free edge of the lipid membrane and is extended gradually during oligomerization. EMBO J 17:1598–1605

    Article  PubMed  CAS  Google Scholar 

  67. Bernheimer AW, Avigad LS, Kim K (1979) Comparison of metridiolysin from the sea anemone with thiol-activated cytolysins from bacteria. Toxicon 17:69–75

    Article  PubMed  CAS  Google Scholar 

  68. Harris JR, Adrian M, Bhakdi S, Palmer M (1998) Cholesterol-streptolysin O interaction: an EM study of wild-type and mutant streptolysin O. J Struct Biol 121:343–355

    Article  PubMed  CAS  Google Scholar 

  69. Harris JR, Lewis RJ, Baik C, Pokrajac L, Billington SJ, Palmer M (2011) Cholesterol microcrystals and cochleate cylinders: attachment of pyolysin oligomers and domain 4. J Struct Biol 173:38–45

    Article  PubMed  CAS  Google Scholar 

  70. Young JD, Hengartner H, Podack ER, Cohn ZA (1986) Purification and characterization of a cytolytic pore-forming protein from granules of cloned lymphocytes with natural killer activity. Cell 44:849–859

    Article  PubMed  CAS  Google Scholar 

  71. Podack ER, Dennert G (1983) Assembly of two types of tubules with putative cytolytic function by cloned natural killer cells. Nature 302:442–445

    Article  PubMed  CAS  Google Scholar 

  72. Young LH, Joag SV, Zheng LM, Lee CP, Lee YS, Young JD (1990) Perforin-mediated myocardial damage in acute myocarditis. Lancet 336:1019–1021

    Article  PubMed  CAS  Google Scholar 

  73. Bhakdi S, Tranum-Jensen J (1984) On the cause and nature of C9-related heterogeneity of terminal complement complexes generated on target erythrocytes through the action of whole serum. J Immunol 133:1453–1463

    PubMed  CAS  Google Scholar 

  74. Bhakdi S, Tranum-Jensen J (1986) C5b-9 assembly: average binding of one C9 molecule to C5b-8 without poly-C9 formation generates a stable transmembrane pore. J Immunol 136:2999–3005

    PubMed  CAS  Google Scholar 

  75. Zalman LS, Muller-Eberhard HJ (1990) Comparison of channels formed by poly C9, C5b-8 and the membrane attack complex of complement. Mol Immunol 27:533–537

    Article  PubMed  CAS  Google Scholar 

  76. From C, Granum PE, Hardy SP (2008) Demonstration of a cholesterol-dependent cytolysin in a noninsecticidal Bacillus sphaericus strain and evidence for widespread distribution of the toxin within the species. FEMS Microbiol Lett 286:85–92

    Article  PubMed  CAS  Google Scholar 

  77. Korchev YE, Bashford CL, Pasternak CA (1992) Differential sensitivity of pneumolysin-induced channels to gating by divalent cations. J Membr Biol 127:195–203

    PubMed  CAS  Google Scholar 

  78. El-Rachkidy RG, Davies NW, Andrew PW (2008) Pneumolysin generates multiple conductance pores in the membrane of nucleated cells. Biochem Biophys Res Commun 368:786–792

    Article  PubMed  CAS  Google Scholar 

  79. Bavdek A, Kostanjšek R, Antonini V, Lakey JH, Dalla Serra M, Gilbert RJ, Anderluh G (2011) pH dependence of listeriolysin O aggregation and pore-forming ability. FEBS J 279:126–141

    Article  PubMed  CAS  Google Scholar 

  80. Bashford CL, Menestrina G, Henkart PA, Pasternak CA (1988) Cell damage by cytolysin. Spontaneous recovery and reversible inhibition by divalent cations. J Immunol 141:3965–3974

    PubMed  CAS  Google Scholar 

  81. Podack ER, Young JD, Cohn ZA (1985) Isolation and biochemical and functional characterization of perforin 1 from cytolytic T-cell granules. Proc Natl Acad Sci USA 82:8629–8633

    Article  PubMed  CAS  Google Scholar 

  82. Young JD, Nathan CF, Podack ER, Palladino MA, Cohn ZA (1986) Functional channel formation associated with cytotoxic T-cell granules. Proc Natl Acad Sci USA 83:150–154

    Article  PubMed  CAS  Google Scholar 

  83. Young JD, Podack ER, Cohn ZA (1986) Properties of a purified pore-forming protein (perforin 1) isolated from H-2-restricted cytotoxic T cell granules. J Exp Med 164:144–155

    Article  PubMed  CAS  Google Scholar 

  84. Pipkin ME, Lieberman J (2007) Delivering the kiss of death: progress on understanding how perforin works. Curr Opin Immunol 19:301–308

    Article  PubMed  CAS  Google Scholar 

  85. Birmingham CL, Canadien V, Kaniuk NA, Steinberg BE, Higgins DE, Brumell JH (2008) Listeriolysin O allows Listeria monocytogenes replication in macrophage vacuoles. Nature 451:350–354

    Article  PubMed  CAS  Google Scholar 

  86. Shaughnessy LM, Hoppe AD, Christensen KA, Swanson JA (2006) Membrane perforations inhibit lysosome fusion by altering pH and calcium in Listeria monocytogenes vacuoles. Cell Microbiol 8:781–792

    Article  PubMed  CAS  Google Scholar 

  87. Gekara NO, Westphal K, Ma B, Rohde M, Groebe L, Weiss S (2007) The multiple mechanisms of Ca2+ signalling by listeriolysin O, the cholesterol-dependent cytolysin of Listeria monocytogenes. Cell Microbiol 9:2008–2021

    Article  PubMed  CAS  Google Scholar 

  88. Menestrina G, Bashford CL, Pasternak CA (1990) Pore-forming toxins: experiments with S. aureus alpha-toxin, C. perfringens theta-toxin and E. coli haemolysin in lipid bilayers, liposomes and intact cells. Toxicon 28:477–491

    Article  PubMed  CAS  Google Scholar 

  89. Keefe D, Shi L, Feske S, Massol R, Navarro F, Kirchhausen T, Lieberman J (2005) Perforin triggers a plasma membrane-repair response that facilitates CTL induction of apoptosis. Immunity 23:249–262

    Article  PubMed  CAS  Google Scholar 

  90. Thiery J, Keefe D, Saffarian S, Martinvalet D, Walch M, Boucrot E, Kirchhausen T, Lieberman J (2010) Perforin activates clathrin- and dynamin-dependent endocytosis, which is required for plasma membrane repair and delivery of granzyme B for granzyme-mediated apoptosis. Blood 115:1582–1593

    Article  PubMed  CAS  Google Scholar 

  91. Thiery J, Keefe D, Boulant S, Boucrot E, Walch M, Martinvalet D, Goping IS, Bleackley RC, Kirchhausen T, Lieberman J (2011) Perforin pores in the endosomal membrane trigger the release of endocytosed granzyme B into the cytosol of target cells. Nature Immunol 12:770–777

    Article  CAS  Google Scholar 

  92. Weaver JC (1994) Molecular basis for cell membrane electroporation. Ann New York Acad Sci 720:141–152

    Article  CAS  Google Scholar 

  93. Sobko AA, Kotova EA, Antonenko YN, Zakharov SD, Cramer WA (2004) Effect of lipids with different spontaneous curvature on the channel activity of colicin E1: evidence in favor of a toroidal pore. FEBS Lett 576:205–210

    Article  PubMed  CAS  Google Scholar 

  94. Anderluh G, Dalla Serra M, Viero G, Guella G, Maček P, Menestrina G (2003) Pore formation by equinatoxin II, a eukaryotic protein toxin, occurs by induction of nonlamellar lipid structures. J Biol Chem 278:45216–45223

    Article  PubMed  CAS  Google Scholar 

  95. Epand RF, Martinou JC, Montessuit S, Epand RM, Yip CM (2002) Direct evidence for membrane pore formation by the apoptotic protein Bax. Biochem Biophys Res Commun 298:744–749

    Article  PubMed  CAS  Google Scholar 

  96. Valcarcel CA, Dalla Serra M, Potrich C, Bernhart I, Tejuca M, Martinez D, Pazos F, Lanio ME, Menestrina G (2001) Effects of lipid composition on membrane permeabilization by sticholysin I and II, two cytolysins of the sea anemone Stichodactyla helianthus. Biophys J 80:2761–2774

    Article  PubMed  CAS  Google Scholar 

  97. Dalla Serra M, Tejuca Martínez M (2001) Pore-forming toxins. eLS John Wiley & Sons. doi:10.1002/9780470015902.a0002655.pub2

  98. Anderluh G, Lakey JH (2010) Proteins membrane binding and pore formation. Springer, New York

    Book  Google Scholar 

  99. De Colibus L, Sonnen AFP, Morris KJ, Siebert CA, Abrusci P, Plitzko J, Hodnik V, Leippe M, Volpi E, Anderluh G, Gilbert RJC (2012) Structures of lysenin reveal a shared evolutionary origin for pore-forming proteins and a novel mode of sphingomyelin recognition. Structure 20:1498–1507

    Google Scholar 

  100. Madden JC, Ruiz N, Caparon M (2001) Cytolysin-mediated translocation (CMT): a functional equivalent of type III secretion in Gram-positive bacteria. Cell 104:143–152

    Article  PubMed  CAS  Google Scholar 

  101. Praper T, Beseničar MP, Istinič H, Podlesek Z, Metkar SS, Froelich CJ, Anderluh G (2010) Human perforin permeabilizing activity, but not binding to lipid membranes, is affected by pH. Mol Immunol 47:2492–2504

    Article  PubMed  CAS  Google Scholar 

  102. Metkar SS, Wang B, Catalan E, Anderluh G, Gilbert RJ, Pardo J, Froelich CJ (2011) Perforin rapidly induces plasma membrane phospholipid flip-flop. PLoS ONE 6:e24286

    Article  PubMed  CAS  Google Scholar 

  103. Pinkoski MJ, Hobman M, Heibein JA, Tomaselli K, Li F, Seth P, Froelich CJ, Bleackley RC (1998) Entry and trafficking of granzyme B in target cells during granzyme B-perforin-mediated apoptosis. Blood 92:1044–1054

    PubMed  CAS  Google Scholar 

  104. Froelich CJ, Orth K, Turbov J, Seth P, Gottlieb R, Babior B, Shah GM, Bleackley RC, Dixit VM, Hanna W (1996) New paradigm for lymphocyte granule-mediated cytotoxicity. Target cells bind and internalize granzyme B, but an endosomolytic agent is necessary for cytosolic delivery and subsequent apoptosis. J Biol Chem 271:29073–29079

    Article  PubMed  CAS  Google Scholar 

  105. Shi L, Mai S, Israels S, Browne K, Trapani JA, Greenberg AH (1997) Granzyme B (GraB) autonomously crosses the cell membrane and perforin initiates apoptosis and GraB nuclear localization. J Exp Med 185:855–866

    Article  PubMed  CAS  Google Scholar 

  106. Praper T, Sonnen AF, Kladnik A, Andrighetti AO, Viero G, Morris KJ, Volpi E, Lunelli L, Dalla Serra M, Froelich CJ, Gilbert RJ, Anderluh G (2011) Perforin activity at membranes leads to invaginations and vesicle formation. Proc Natl Acad Sci USA 108(52):21016–21021

    Article  PubMed  CAS  Google Scholar 

  107. Stewart SE, D’Angelo ME, Bird PI (2012) Intercellular communication via the endo-lysosomal system: translocation of granzymes through membrane barriers. Biochim Biophys Acta 1824:59–67

    Article  PubMed  CAS  Google Scholar 

  108. Romer W, Berland L, Chambon V, Gaus K, Windschiegl B, Tenza D, Aly MR, Fraisier V, Florent JC, Perrais D, Lamaze C, Raposo G, Steinem C, Sens P, Bassereau P, Johannes L (2007) Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature 450:670–675

    Article  PubMed  CAS  Google Scholar 

  109. Wollert T, Wunder C, Lippincott-Schwartz J, Hurley JH (2009) Membrane scission by the ESCRT-III complex. Nature 458:172–177

    Article  PubMed  CAS  Google Scholar 

  110. Farsad K, Ringstad N, Takei K, Floyd SR, Rose K, De CP (2001) Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J Cell Biol 155:193–200

    Article  PubMed  CAS  Google Scholar 

  111. Bonev BB, Gilbert RJ, Andrew PW, Byron O, Watts A (2001) Structural analysis of the protein/lipid complexes associated with pore formation by the bacterial toxin pneumolysin. J Biol Chem 276:5714–5719

    Article  PubMed  CAS  Google Scholar 

  112. Miller LH, Baruch DI, Marsh K, Doumbo OK (2002) The pathogenic basis of malaria. Nature 415:673–679

    Article  PubMed  CAS  Google Scholar 

  113. Ecker A, Pinto SB, Baker KW, Kafatos FC, Sinden RE (2007) Plasmodium berghei: plasmodium perforin-like protein 5 is required for mosquito midgut invasion in Anopheles stephensi. Exp Parasitol 116:504–508

    Article  PubMed  CAS  Google Scholar 

  114. Ecker A, Bushell ES, Tewari R, Sinden RE (2008) Reverse genetics screen identifies six proteins important for malaria development in the mosquito. Mol Microbiol 70:209–220

    Article  PubMed  CAS  Google Scholar 

  115. Amino R, Giovannini D, Thiberge S, Gueirard P, Boisson B, Dubremetz JF, Prevost MC, Ishino T, Yuda M, Menard R (2008) Host cell traversal is important for progression of the malaria parasite through the dermis to the liver. Cell Host Microbe 3:88–96

    Article  PubMed  CAS  Google Scholar 

  116. Tardieux I, Menard R (2008) Migration of Apicomplexa across biological barriers: the Toxoplasma and Plasmodium rides. Traffic 9:627–635

    Article  PubMed  CAS  Google Scholar 

  117. Frevert U, Engelmann S, Zougbede S, Stange J, Ng B, Matuschewski K, Liebes L, Yee H (2005) Intravital observation of Plasmodium berghei sporozoite infection of the liver. PLoS Biol 3:e192

    Article  PubMed  CAS  Google Scholar 

  118. Ishino T, Yano K, Chinzei Y, Yuda M (2004) Cell-passage activity is required for the malarial parasite to cross the liver sinusoidal cell layer. PLoS Biol 2:e4

    Article  PubMed  CAS  Google Scholar 

  119. Mota MM, Rodriguez A (2002) Invasion of mammalian host cells by Plasmodium sporozoites. BioEssays 24:149–156

    Article  PubMed  Google Scholar 

  120. Florens L, Washburn MP, Raine JD, Anthony RM, Grainger M, Haynes JD, Moch JK, Muster N, Sacci JB, Tabb DL, Witney AA, Wolters D, Wu Y, Gardner MJ, Holder AA, Sinden RE, Yates JR, Carucci DJ (2002) A proteomic view of the Plasmodium falciparum life cycle. Nature 419:520–526

    Article  PubMed  CAS  Google Scholar 

  121. Kadota K, Ishino T, Matsuyama T, Chinzei Y, Yuda M (2004) Essential role of membrane-attack protein in malarial transmission to mosquito host. Proc Natl Acad Sci USA 101:16310–16315

    Article  PubMed  CAS  Google Scholar 

  122. Hall N, Karras M, Raine JD, Carlton JM, Kooij TW, Berriman M, Florens L, Janssen CS, Pain A, Christophides GK, James K, Rutherford K, Harris B, Harris D, Churcher C, Quail MA, Ormond D, Doggett J, Trueman HE, Mendoza J, Bidwell SL, Rajandream MA, Carucci DJ, Yates JR 3rd, Kafatos FC, Janse CJ, Barrell B, Turner CM, Waters AP, Sinden RE (2005) A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, and proteomic analyses. Science 307:82–86

    Article  PubMed  CAS  Google Scholar 

  123. Raibaud A, Brahimi K, Roth CW, Brey PT, Faust DM (2006) Differential gene expression in the ookinete stage of the malaria parasite Plasmodium berghei. Mol Biochem Parasitol 150:107–113

    Article  PubMed  CAS  Google Scholar 

  124. Kafsack BF, Pena JD, Coppens I, Ravindran S, Boothroyd JC, Carruthers VB (2009) Rapid membrane disruption by a perforin-like protein facilitates parasite exit from host cells. Science 323:530–533

    Article  PubMed  CAS  Google Scholar 

  125. Rossjohn J, Feil SC, McKinstry WJ, Tweten RK, Parker MW (1997) Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form. Cell 89:685–692

    Article  PubMed  CAS  Google Scholar 

  126. Stuart DI, Levine M, Muirhead H, Stammers DK (1979) Crystal structure of cat muscle pyruvate kinase at a resolution of 2.6 A. J Mol Biol 134:109–142

    Article  PubMed  CAS  Google Scholar 

  127. Felsenstein J (1997) An alternating least squares approach to inferring phylogenies from pairwise distances. Syst Biol 46:101–111

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Tilen Praper for the work performed with planar lipid bilayers and Robert Liddington and Alexander Aleshin for discussion and for providing the model of the complement membrane attack complex. R.J.C.G. is a Royal Society University Research Fellow and the Oxford Division of Structural Biology is part of the Wellcome Trust Centre for Human Genetics, Wellcome Trust Core Award Grant Number 090532/Z/09/Z.M.D.S. would like to thank the Nanosmart project from the Provincia Autonoma di Trento for support. G. A. would like to thank the Slovenian Research Agency for support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robert J. C. Gilbert or Gregor Anderluh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilbert, R.J.C., Mikelj, M., Dalla Serra, M. et al. Effects of MACPF/CDC proteins on lipid membranes. Cell. Mol. Life Sci. 70, 2083–2098 (2013). https://doi.org/10.1007/s00018-012-1153-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1153-8

Keywords

Navigation