Skip to main content

Advertisement

Log in

Waking up the sleepers: shared transcriptional pathways in axonal regeneration and neurogenesis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

In the last several years, relevant progress has been made in our understanding of the transcriptional machinery regulating CNS repair after acute injury, such as following trauma or stroke. In order to survive and functionally reconnect to the synaptic network, injured neurons activate an intrinsic rescue program aimed to increase their plasticity. Perhaps, in the attempt to switch back to a plastic and growth-competent state, post-mitotic neurons wake up and re-express a set of transcription factors that are also critical for the regulation of their younger brothers, the neural stem cells. Here, we review and discuss the transcriptional pathways regulating both axonal regeneration and neurogenesis highlighting the connection between the two. Clarification of their common molecular substrate may help simultaneous targeting of both neurogenesis and axonal regeneration with the hope to enhance functional recovery following CNS injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AKT:

Protein kinase B

ATF3:

Cyclic AMP-dependent transcription factor

BDNF:

Brain-derived neurotrophic factor

BMPs:

Bone morphogenic proteins

cAMP:

Cyclic adenosine monophosphate

cGKI:

Cyclic guanosine monophosphate kinase I

CBP:

CREB binding protein

CNS:

Central nervous system

CNTF:

Ciliary neurotrophic factor

CREB:

cAMP response element-binding protein

CXCL12:

Chemokine (C-X-C motif) ligand 12

DRG:

Dorsal root ganglia

DYRK:

Dual-specificity tyrosine-regulated kinases

FGF:

Fibroblast growth factor

GABA:

Gamma-aminobutyric acid

GAP-43:

Growth associated protein 43

GDNF:

Glial-derived neurotrophic factor

GFAP:

Glial fibrillary acidic protein

GSK:

Glycogen synthase kinase

HDACs:

Histone deacetylases

Hes5:

Hairy and enhancer of split 5

IL6:

Interleukin 6

iPSCs:

Induced pluripotent stem cells

JNK:

c-Jun N-terminal kinases

KLF4:

Krüppel-like factor 4

LIF:

Leukemia inhibitory factor

MAPK:

Mitogen-activated protein kinase

MCP-1:

Monocyte chemotactic protein-1

NSCs:

Neural stem cells

NFAT:

Nuclear factor of activated T-cells

NGF:

Nerve growth factor

PCAF:

P300/CBP-associated factor

PKA:

Protein kinase A

PI3K:

Phosphoinositide 3-kinase

PSA-NCAM:

Polysialylated-neural cell adhesion molecule

PTEN:

Phosphatase and tensin homolog

Oct4:

Octamer binding transcription factor 4

Rab13:

Ras-related protein Rab-13

RAGs:

Regeneration associated genes

RhoA:

Ras homolog gene family, member A

RGC:

Retinal ganglion cells

RMS:

Rostral migratory stream

SGZ:

Subgranular zone

Shh:

Sonic hedgehog homolog

Smad:

Mothers against decapentaplegic homolog 1

SPRR1:

Small proline-rich protein 1

Sox:

Sry sex determining region Y (SRY)-related HMG box

STAT3:

Signal transducer and activator of transcription 3

SVZ:

Subventricular zone

TGFß:

Transforming growth factor beta

Trk:

Tropomyosin-receptor-kinase

Trp53:

Transformation related protein 53

VEGF:

Vascular endothelial growth factor

WNT:

Wingless-type MMTV integration site family, member 1

References

  1. Harel NY, Strittmatter SM (2006) Can regenerating axons recapitulate developmental guidance during recovery from spinal cord injury? Nat Rev Neurosci 7(8):603–616

    Article  PubMed  CAS  Google Scholar 

  2. Muramatsu R, Ueno M, Yamashita T (2009) Intrinsic regenerative mechanisms of central nervous system neurons. Biosci Trends 3(5):179–183

    PubMed  CAS  Google Scholar 

  3. Cafferty WB, McGee AW, Strittmatter SM (2008) Axonal growth therapeutics: regeneration or sprouting or plasticity? Trends Neurosci 31(5):215–220

    Article  PubMed  CAS  Google Scholar 

  4. Raivich G, Makwana M (2007) The making of successful axonal regeneration: genes, molecules and signal transduction pathways. Brain Res Rev 53(2):287–311

    Article  PubMed  CAS  Google Scholar 

  5. Hevner RF (2006) From radial glia to pyramidal-projection neuron: transcription factor cascades in cerebral cortex development. Mol Neurobiol 33(1):33–50

    Article  PubMed  CAS  Google Scholar 

  6. Nobrega-Pereira S, Marin O (2009) Transcriptional control of neuronal migration in the developing mouse brain. Cereb Cortex 19(Suppl 1):i107–i113

    Article  PubMed  Google Scholar 

  7. Chedotal A, Rijli FM (2009) Transcriptional regulation of tangential neuronal migration in the developing forebrain. Curr Opin Neurobiol 19(2):139–145

    Article  PubMed  CAS  Google Scholar 

  8. Polleux F, Ince-Dunn G, Ghosh A (2007) Transcriptional regulation of vertebrate axon guidance and synapse formation. Nat Rev Neurosci 8(5):331–340

    Article  PubMed  CAS  Google Scholar 

  9. Tedeschi A (2011) Tuning the orchestra: transcriptional pathways controlling axon regeneration. Front Mol Neurosci 4:60

    PubMed  Google Scholar 

  10. Moore DL, Goldberg JL (2011) Multiple transcription factor families regulate axon growth and regeneration. Dev Neurobiol 17:1121–1186

    Google Scholar 

  11. Zhang C, Wu H, Zhu X, Wang Y, Guo J (2011) Role of transcription factors in neurogenesis after cerebral ischemia. Rev Neurosci 22(4):457–465

    PubMed  Google Scholar 

  12. Mu Y, Lee SW, Gage FH (2010) Signaling in adult neurogenesis. Curr Opin Neurobiol 20(4):416–423

    Article  PubMed  CAS  Google Scholar 

  13. Nicolay DJ, Doucette JR, Nazarali AJ (2006) Transcriptional regulation of neurogenesis in the olfactory epithelium. Cell Mol Neurobiol 26(4–6):803–821

    PubMed  CAS  Google Scholar 

  14. Hevner RF, Hodge RD, Daza RA, Englund C (2006) Transcription factors in glutamatergic neurogenesis: conserved programs in neocortex, cerebellum, and adult hippocampus. Neurosci Res 55(3):223–233

    Article  PubMed  CAS  Google Scholar 

  15. Zhang RL, Zhang ZG, Chopp M (2008) Ischemic stroke and neurogenesis in the subventricular zone. Neuropharmacology 55(3):345–352

    Article  PubMed  CAS  Google Scholar 

  16. Kernie SG, Parent JM (2010) Forebrain neurogenesis after focal Ischemic and traumatic brain injury. Neurobiol Dis 37(2):267–274

    Article  PubMed  Google Scholar 

  17. Barkho BZ, Zhao X (2011) Adult neural stem cells: response to stroke injury and potential for therapeutic applications. Curr Stem Cell Res Ther 6(4):327–338

    Article  PubMed  CAS  Google Scholar 

  18. Lu S, Zhao H, Des Marais DL, Parsons EP, Wen X, Xu X, Bangarusamy DK, Wang G, Rowland O, Juenger T, Bressan RA, Jenks MA (2012) Arabidopsis ECERIFERUM9 involvement in cuticle formation and maintenance of plant water status. Plant Physiol 159:930–944

    Google Scholar 

  19. Liu XS, Zhang ZG, Zhang RL, Gregg S, Morris DC, Wang Y, Chopp M (2007) Stroke induces gene profile changes associated with neurogenesis and angiogenesis in adult subventricular zone progenitor cells. J Cereb Blood Flow Metab 27(3):564–574

    Article  PubMed  CAS  Google Scholar 

  20. Carlen M, Meletis K, Goritz C, Darsalia V, Evergren E, Tanigaki K, Amendola M, Barnabe-Heider F, Yeung MS, Naldini L, Honjo T, Kokaia Z, Shupliakov O, Cassidy RM, Lindvall O, Frisen J (2009) Forebrain ependymal cells are notch-dependent and generate neuroblasts and astrocytes after stroke. Nat Neurosci 12(3):259–267

    Article  PubMed  CAS  Google Scholar 

  21. Qiu J, Takagi Y, Harada J, Rodrigues N, Moskowitz MA, Scadden DT, Cheng T (2004) Regenerative response in ischemic brain restricted by p21cip1/waf1. J Exp Med 199(7):937–945

    Article  PubMed  CAS  Google Scholar 

  22. Tedeschi A, Di Giovanni S (2009) The non-apoptotic role of p53 in neuronal biology: enlightening the dark side of the moon. EMBO Rep 10(6):576–583

    Article  PubMed  CAS  Google Scholar 

  23. Tedeschi A, Nguyen T, Puttagunta R, Gaub P, Di Giovanni S (2009) A p53-CBP/p300 transcription module is required for GAP-43 expression, axon outgrowth, and regeneration. Cell Death Differ 16(4):543–554

    Article  PubMed  CAS  Google Scholar 

  24. Di Giovanni S, Knights CD, Rao M, Yakovlev A, Beers J, Catania J, Avantaggiati ML, Faden AI (2006) The tumor suppressor protein p53 is required for neurite outgrowth and axon regeneration. Embo J 25(17):4084–4096

    Article  PubMed  CAS  Google Scholar 

  25. Liu K, Lu Y, Lee JK, Samara R, Willenberg R, Sears-Kraxberger I, Tedeschi A, Park KK, Jin D, Cai B, Xu B, Connolly L, Steward O, Zheng B, He Z (2010) PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat Neurosci 13(9):1075–1081

    Article  PubMed  CAS  Google Scholar 

  26. Lonze BE, Ginty DD (2002) Function and regulation of CREB family transcription factors in the nervous system. Neuron 35(4):605–623

    Article  PubMed  CAS  Google Scholar 

  27. Gao Y, Deng K, Hou J, Bryson JB, Barco A, Nikulina E, Spencer T, Mellado W, Kandel ER, Filbin MT (2004) Activated CREB is sufficient to overcome inhibitors in myelin and promote spinal axon regeneration in vivo. Neuron 44(4):609–621

    Article  PubMed  CAS  Google Scholar 

  28. Lu Q, Hutchins AE, Doyle CM, Lundblad JR, Kwok RP (2003) Acetylation of cAMP-responsive element-binding protein (CREB) by CREB-binding protein enhances CREB-dependent transcription. J Biol Chem 278(18):15727–15734

    Article  PubMed  CAS  Google Scholar 

  29. Dworkin S, Heath JK, de Jong-Curtain TA, Hogan BM, Lieschke GJ, Malaterre J, Ramsay RG, Mantamadiotis T (2007) CREB activity modulates neural cell proliferation, midbrain-hindbrain organization and patterning in zebrafish. Dev Biol 307(1):127–141

    Article  PubMed  CAS  Google Scholar 

  30. Giachino C, De Marchis S, Giampietro C, Parlato R, Perroteau I, Schutz G, Fasolo A, Peretto P (2005) cAMP response element-binding protein regulates differentiation and survival of newborn neurons in the olfactory bulb. J Neurosci 25(44):10105–10118

    Article  PubMed  CAS  Google Scholar 

  31. Bender RA, Lauterborn JC, Gall CM, Cariaga W, Baram TZ (2001) Enhanced CREB phosphorylation in immature dentate gyrus granule cells precedes neurotrophin expression and indicates a specific role of CREB in granule cell differentiation. Eur J Neurosci 13(4):679–686

    Article  PubMed  CAS  Google Scholar 

  32. Jagasia R, Steib K, Englberger E, Herold S, Faus-Kessler T, Saxe M, Gage FH, Song H, Lie DC (2009) GABA-cAMP response element-binding protein signaling regulates maturation and survival of newly generated neurons in the adult hippocampus. J Neurosci 29(25):7966–7977

    Article  PubMed  CAS  Google Scholar 

  33. Lee S, Lee SK (2010) Crucial roles of histone-modifying enzymes in mediating neural cell-type specification. Curr Opin Neurobiol 20(1):29–36

    Article  PubMed  CAS  Google Scholar 

  34. Lopez-Atalaya JP, Ciccarelli A, Viosca J, Valor LM, Jimenez-Minchan M, Canals S, Giustetto M, Barco A (2011) CBP is required for environmental enrichment-induced neurogenesis and cognitive enhancement. EMBO J 30(20):4287–4298

    Article  PubMed  CAS  Google Scholar 

  35. Riccio A, Ahn S, Davenport CM, Blendy JA, Ginty DD (1999) Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science 286(5448):2358–2361

    Article  PubMed  CAS  Google Scholar 

  36. Riccio A, Pierchala BA, Ciarallo CL, Ginty DD (1997) An NGF-TrkA-mediated retrograde signal to transcription factor CREB in sympathetic neurons. Science 277(5329):1097–1100

    Article  PubMed  CAS  Google Scholar 

  37. Hannila SS, Filbin MT (2008) The role of cyclic AMP signaling in promoting axonal regeneration after spinal cord injury. Exp Neurol 209(2):321–332

    Article  PubMed  CAS  Google Scholar 

  38. Kornhauser JM, Cowan CW, Shaywitz AJ, Dolmetsch RE, Griffith EC, Hu LS, Haddad C, Xia Z, Greenberg ME (2002) CREB transcriptional activity in neurons is regulated by multiple, calcium-specific phosphorylation events. Neuron 34(2):221–233

    Article  PubMed  CAS  Google Scholar 

  39. Cai D, Deng K, Mellado W, Lee J, Ratan RR, Filbin MT (2002) Arginase I and polyamines act downstream from cyclic AMP in overcoming inhibition of axonal growth MAG and myelin in vitro. Neuron 35(4):711–719

    Article  PubMed  CAS  Google Scholar 

  40. Gaub P, Joshi Y, Wuttke A, Naumann U, Schnichels S, Heiduschka P, Di Giovanni S (2011) The histone acetyltransferase p300 promotes intrinsic axonal regeneration. Brain 134(Pt 7):2134–2148

    Article  PubMed  Google Scholar 

  41. Baker SJ, Fearon ER, Nigro JM, Hamilton SR, Preisinger AC, Jessup JM, van Tuinen P, Ledbetter DH, Barker DF, Nakamura Y, White R, Vogelstein B (1989) Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 244(4901):217–221

    Article  PubMed  CAS  Google Scholar 

  42. el-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B (1992) Definition of a consensus binding site for p53. Nat Genet 1(1):45–49

    Article  PubMed  CAS  Google Scholar 

  43. Harms K, Nozell S, Chen X (2004) The common and distinct target genes of the p53 family transcription factors. Cell Mol Life Sci 61(7–8):822–842

    Article  PubMed  CAS  Google Scholar 

  44. Riley T, Sontag E, Chen P, Levine A (2008) Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9(5):402–412

    Article  PubMed  CAS  Google Scholar 

  45. Jacobs WB, Kaplan DR, Miller FD (2006) The p53 family in nervous system development and disease. J Neurochem 97(6):1571–1584

    Article  PubMed  CAS  Google Scholar 

  46. Armstrong JF, Kaufman MH, Harrison DJ, Clarke AR (1995) High-frequency developmental abnormalities in p53-deficient mice. Curr Biol 5(8):931–936

    Article  PubMed  CAS  Google Scholar 

  47. Sah VP, Attardi LD, Mulligan GJ, Williams BO, Bronson RT, Jacks T (1995) A subset of p53-deficient embryos exhibit exencephaly. Nat Genet 10(2):175–180

    Article  PubMed  CAS  Google Scholar 

  48. Armesilla-Diaz A, Bragado P, Del Valle I, Cuevas E, Lazaro I, Martin C, Cigudosa JC, Silva A (2009) p53 regulates the self-renewal and differentiation of neural precursors. Neuroscience 158(4):1378–1389

    Article  PubMed  CAS  Google Scholar 

  49. Tsukada T, Tomooka Y, Takai S, Ueda Y, Nishikawa S, Yagi T, Tokunaga T, Takeda N, Suda Y, Abe S et al (1993) Enhanced proliferative potential in culture of cells from p53-deficient mice. Oncogene 8(12):3313–3322

    PubMed  CAS  Google Scholar 

  50. Meletis K, Wirta V, Hede SM, Nister M, Lundeberg J, Frisen J (2006) p53 suppresses the self-renewal of adult neural stem cells. Development 133(2):363–369

    Article  PubMed  CAS  Google Scholar 

  51. Gil-Perotin S, Marin-Husstege M, Li J, Soriano-Navarro M, Zindy F, Roussel MF, Garcia-Verdugo JM, Casaccia-Bonnefil P (2006) Loss of p53 induces changes in the behavior of subventricular zone cells: implication for the genesis of glial tumors. J Neurosci 26(4):1107–1116

    Article  PubMed  CAS  Google Scholar 

  52. Kippin TE, Martens DJ, van der Kooy D (2005) p21 loss compromises the relative quiescence of forebrain stem cell proliferation leading to exhaustion of their proliferation capacity. Genes Dev 19(6):756–767

    Article  PubMed  CAS  Google Scholar 

  53. Groszer M, Erickson R, Scripture-Adams DD, Dougherty JD, Le Belle J, Zack JA, Geschwind DH, Liu X, Kornblum HI, Wu H (2006) PTEN negatively regulates neural stem cell self-renewal by modulating G0–G1 cell cycle entry. Proc Natl Acad Sci USA 103(1):111–116

    Article  PubMed  CAS  Google Scholar 

  54. Gregorian C, Nakashima J, Le Belle J, Ohab J, Kim R, Liu A, Smith KB, Groszer M, Garcia AD, Sofroniew MV, Carmichael ST, Kornblum HI, Liu X, Wu H (2009) Pten deletion in adult neural stem/progenitor cells enhances constitutive neurogenesis. J Neurosci 29(6):1874–1886

    Article  PubMed  CAS  Google Scholar 

  55. Tedeschi A, Nguyen T, Steele SU, Feil S, Naumann U, Feil R, Di Giovanni S (2009) The tumor suppressor p53 transcriptionally regulates cGKI expression during neuronal maturation and is required for cGMP-dependent growth cone collapse. J Neurosci 29(48):15155–15160

    Article  PubMed  CAS  Google Scholar 

  56. Qin Q, Baudry M, Liao G, Noniyev A, Galeano J, Bi X (2009) A novel function for p53: regulation of growth cone motility through interaction with Rho kinase. J Neurosci 29(16):5183–5192

    Article  PubMed  CAS  Google Scholar 

  57. Levy DE, Darnell JE Jr (2002) Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 3(9):651–662

    Article  PubMed  CAS  Google Scholar 

  58. Dziennis S, Alkayed NJ (2008) Role of signal transducer and activator of transcription 3 in neuronal survival and regeneration. Rev Neurosci 19(4–5):341–361

    PubMed  CAS  Google Scholar 

  59. Deverman BE, Patterson PH (2009) Cytokines and CNS development. Neuron 64(1):61–78

    Article  PubMed  CAS  Google Scholar 

  60. Takeda K, Noguchi K, Shi W, Tanaka T, Matsumoto M, Yoshida N, Kishimoto T, Akira S (1997) Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc Natl Acad Sci USA 94(8):3801–3804

    Article  PubMed  CAS  Google Scholar 

  61. Matsuda T, Nakamura T, Nakao K, Arai T, Katsuki M, Heike T, Yokota T (1999) STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. EMBO J 18(15):4261–4269

    Article  PubMed  CAS  Google Scholar 

  62. Niwa H, Burdon T, Chambers I, Smith A (1998) Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev 12(13):2048–2060

    Article  PubMed  CAS  Google Scholar 

  63. Burdon T, Smith A, Savatier P (2002) Signalling, cell cycle and pluripotency in embryonic stem cells. Trends Cell Biol 12(9):432–438

    Article  PubMed  CAS  Google Scholar 

  64. Cao F, Hata R, Zhu P, Nakashiro K, Sakanaka M (2010) Conditional deletion of Stat3 promotes neurogenesis and inhibits astrogliogenesis in neural stem cells. Biochem Biophys Res Commun 394(3):843–847

    Article  PubMed  CAS  Google Scholar 

  65. Bauer S, Patterson PH (2006) Leukemia inhibitory factor promotes neural stem cell self-renewal in the adult brain. J Neurosci 26(46):12089–12099

    Article  PubMed  CAS  Google Scholar 

  66. Shimazaki T, Shingo T, Weiss S (2001) The ciliary neurotrophic factor/leukemia inhibitory factor/gp130 receptor complex operates in the maintenance of mammalian forebrain neural stem cells. J Neurosci 21(19):7642–7653

    PubMed  CAS  Google Scholar 

  67. Bauer S, Kerr BJ, Patterson PH (2007) The neuropoietic cytokine family in development, plasticity, disease and injury. Nat Rev Neurosci 8(3):221–232

    Article  PubMed  CAS  Google Scholar 

  68. Emsley JG, Hagg T (2003) Endogenous and exogenous ciliary neurotrophic factor enhances forebrain neurogenesis in adult mice. Exp Neurol 183(2):298–310

    Article  PubMed  CAS  Google Scholar 

  69. Muller S, Chakrapani BP, Schwegler H, Hofmann HD, Kirsch M (2009) Neurogenesis in the dentate gyrus depends on ciliary neurotrophic factor and signal transducer and activator of transcription 3 signaling. Stem Cells 27(2):431–441

    Article  PubMed  CAS  Google Scholar 

  70. Schwaiger FW, Hager G, Schmitt AB, Horvat A, Streif R, Spitzer C, Gamal S, Breuer S, Brook GA, Nacimiento W, Kreutzberg GW (2000) Peripheral but not central axotomy induces changes in Janus kinases (JAK) and signal transducers and activators of transcription (STAT). Eur J Neurosci 12(4):1165–1176

    Article  PubMed  CAS  Google Scholar 

  71. Qiu J, Cafferty WB, McMahon SB, Thompson SW (2005) Conditioning injury-induced spinal axon regeneration requires signal transducer and activator of transcription 3 activation. J Neurosci 25(7):1645–1653

    Article  PubMed  CAS  Google Scholar 

  72. Cafferty WB, Gardiner NJ, Das P, Qiu J, McMahon SB, Thompson SW (2004) Conditioning injury-induced spinal axon regeneration fails in interleukin-6 knock-out mice. J Neurosci 24(18):4432–4443

    Article  PubMed  CAS  Google Scholar 

  73. Cafferty WB, Gardiner NJ, Gavazzi I, Powell J, McMahon SB, Heath JK, Munson J, Cohen J, Thompson SW (2001) Leukemia inhibitory factor determines the growth status of injured adult sensory neurons. J Neurosci 21(18):7161–7170

    PubMed  CAS  Google Scholar 

  74. Fischer D, Petkova V, Thanos S, Benowitz LI (2004) Switching mature retinal ganglion cells to a robust growth state in vivo: gene expression and synergy with RhoA inactivation. J Neurosci 24(40):8726–8740

    Article  PubMed  CAS  Google Scholar 

  75. Paulson M, Pisharody S, Pan L, Guadagno S, Mui AL, Levy DE (1999) Stat protein transactivation domains recruit p300/CBP through widely divergent sequences. J Biol Chem 274(36):25343–25349

    Article  PubMed  CAS  Google Scholar 

  76. Wang R, Cherukuri P, Luo J (2005) Activation of Stat3 sequence-specific DNA binding and transcription by p300/CREB-binding protein-mediated acetylation. J Biol Chem 280(12):11528–11534

    Article  PubMed  CAS  Google Scholar 

  77. McConnell BB, Yang VW (2010) Mammalian Kruppel-like factors in health and diseases. Physiol Rev 90(4):1337–1381

    Article  PubMed  CAS  Google Scholar 

  78. Katz JP, Perreault N, Goldstein BG, Lee CS, Labosky PA, Yang VW, Kaestner KH (2002) The zinc-finger transcription factor Klf4 is required for terminal differentiation of goblet cells in the colon. Development 129(11):2619–2628

    PubMed  CAS  Google Scholar 

  79. Segre JA, Bauer C, Fuchs E (1999) Klf4 is a transcription factor required for establishing the barrier function of the skin. Nat Genet 22(4):356–360

    Article  PubMed  CAS  Google Scholar 

  80. Li Y, McClintick J, Zhong L, Edenberg HJ, Yoder MC, Chan RJ (2005) Murine embryonic stem cell differentiation is promoted by SOCS-3 and inhibited by the zinc finger transcription factor Klf4. Blood 105(2):635–637

    Article  PubMed  CAS  Google Scholar 

  81. Jiang J, Chan YS, Loh YH, Cai J, Tong GQ, Lim CA, Robson P, Zhong S, Ng HH (2008) A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat Cell Biol 10(3):353–360

    Article  PubMed  CAS  Google Scholar 

  82. Hall J, Guo G, Wray J, Eyres I, Nichols J, Grotewold L, Morfopoulou S, Humphreys P, Mansfield W, Walker R, Tomlinson S, Smith A (2009) Oct4 and LIF/Stat3 additively induce Kruppel factors to sustain embryonic stem cell self-renewal. Cell Stem Cell 5(6):597–609

    Article  PubMed  CAS  Google Scholar 

  83. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  PubMed  CAS  Google Scholar 

  84. Wei Z, Yang Y, Zhang P, Andrianakos R, Hasegawa K, Lyu J, Chen X, Bai G, Liu C, Pera M, Lu W (2009) Klf4 interacts directly with Oct4 and Sox2 to promote reprogramming. Stem Cells 27(12):2969–2978

    PubMed  CAS  Google Scholar 

  85. Qin S, Liu M, Niu W, Zhang CL (2011) Dysregulation of Kruppel-like factor 4 during brain development leads to hydrocephalus in mice. Proc Natl Acad Sci USA 108(52):21117–21121

    Article  PubMed  CAS  Google Scholar 

  86. Moore DL, Blackmore MG, Hu Y, Kaestner KH, Bixby JL, Lemmon VP, Goldberg JL (2009) KLF family members regulate intrinsic axon regeneration ability. Science 326(5950):298–301

    Article  PubMed  CAS  Google Scholar 

  87. Rowland BD, Bernards R, Peeper DS (2005) The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nat Cell Biol 7(11):1074–1082

    Article  PubMed  CAS  Google Scholar 

  88. Nguyen T, Di Giovanni S (2008) NFAT signaling in neural development and axon growth. Int J Dev Neurosci 26(2):141–145

    Article  PubMed  CAS  Google Scholar 

  89. Muller MR, Rao A (2010) NFAT, immunity and cancer: a transcription factor comes of age. Nat Rev Immunol 10(9):645–656

    Article  PubMed  CAS  Google Scholar 

  90. Graef IA, Chen F, Chen L, Kuo A, Crabtree GR (2001) Signals transduced by Ca(2+)/calcineurin and NFATc3/c4 pattern the developing vasculature. Cell 105(7):863–875

    Article  PubMed  CAS  Google Scholar 

  91. Graef IA, Wang F, Charron F, Chen L, Neilson J, Tessier-Lavigne M, Crabtree GR (2003) Neurotrophins and netrins require calcineurin/NFAT signaling to stimulate outgrowth of embryonic axons. Cell 113(5):657–670

    Article  PubMed  CAS  Google Scholar 

  92. Li X, Zhu L, Yang A, Lin J, Tang F, Jin S, Wei Z, Li J, Jin Y (2011) Calcineurin-NFAT signaling critically regulates early lineage specification in mouse embryonic stem cells and embryos. Cell Stem Cell 8(1):46–58

    Article  PubMed  CAS  Google Scholar 

  93. Kao SC, Wu H, Xie J, Chang CP, Ranish JA, Graef IA, Crabtree GR (2009) Calcineurin/NFAT signaling is required for neuregulin-regulated Schwann cell differentiation. Science 323(5914):651–654

    Article  PubMed  CAS  Google Scholar 

  94. Crabtree GR, Schreiber SL (2009) SnapShot: Ca2+-calcineurin-NFAT signaling. Cell 138(1):210, 210 e211

    Google Scholar 

  95. Quadrato G, Benevento M, Alber S, Jacob C, Floriddia EM, Nguyen T, Elnaggar MY, Pedroarena CM, Molkentin JD, Di Giovanni S (2012) Nuclear factor of activated T cells (NFATc4) is required for BDNF-dependent survival of adult-born neurons and spatial memory formation in the hippocampus. Proc Natl Acad Sci USA 109(23):E1499–E1508

    Article  PubMed  CAS  Google Scholar 

  96. Nguyen T, Lindner R, Tedeschi A, Forsberg K, Green A, Wuttke A, Gaub P, Di Giovanni S (2009) NFAT-3 is a transcriptional repressor of the growth-associated protein 43 during neuronal maturation. J Biol Chem 284(28):18816–18823

    Article  PubMed  CAS  Google Scholar 

  97. Rivera A, Maxwell SA (2005) The p53-induced gene-6 (proline oxidase) mediates apoptosis through a calcineurin-dependent pathway. J Biol Chem 280(32):29346–29354

    Article  PubMed  CAS  Google Scholar 

  98. Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113(6):685–700

    Article  PubMed  CAS  Google Scholar 

  99. Liu A, Niswander LA (2005) Bone morphogenetic protein signalling and vertebrate nervous system development. Nat Rev Neurosci 6(12):945–954

    Article  PubMed  CAS  Google Scholar 

  100. Song B, Estrada KD, Lyons KM (2009) Smad signaling in skeletal development and regeneration. Cytokine Growth Factor Rev 20(5–6):379–388

    Article  PubMed  CAS  Google Scholar 

  101. Rios I, Alvarez-Rodriguez R, Marti E, Pons S (2004) Bmp2 antagonizes sonic hedgehog-mediated proliferation of cerebellar granule neurons through Smad5 signalling. Development 131(13):3159–3168

    Article  PubMed  CAS  Google Scholar 

  102. Angley C, Kumar M, Dinsio KJ, Hall AK, Siegel RE (2003) Signaling by bone morphogenetic proteins and Smad1 modulates the postnatal differentiation of cerebellar cells. J Neurosci 23(1):260–268

    PubMed  CAS  Google Scholar 

  103. Bonaguidi MA, McGuire T, Hu M, Kan L, Samanta J, Kessler JA (2005) LIF and BMP signaling generate separate and discrete types of GFAP-expressing cells. Development 132(24):5503–5514

    Article  PubMed  CAS  Google Scholar 

  104. Bonaguidi MA, Peng CY, McGuire T, Falciglia G, Gobeske KT, Czeisler C, Kessler JA (2008) Noggin expands neural stem cells in the adult hippocampus. J Neurosci 28(37):9194–9204

    Article  PubMed  CAS  Google Scholar 

  105. Lim DA, Tramontin AD, Trevejo JM, Herrera DG, Garcia-Verdugo JM, Alvarez-Buylla A (2000) Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 28(3):713–726

    Article  PubMed  CAS  Google Scholar 

  106. Colak D, Mori T, Brill MS, Pfeifer A, Falk S, Deng C, Monteiro R, Mummery C, Sommer L, Gotz M (2008) Adult neurogenesis requires Smad4-mediated bone morphogenic protein signaling in stem cells. J Neurosci 28(2):434–446

    Article  PubMed  CAS  Google Scholar 

  107. Song HW, Kumar BK, Kim SH, Jeon YH, Lee YA, Lee WT, Park KA, Lee JE (2011) Agmatine enhances neurogenesis by increasing ERK1/2 expression, and suppresses astrogenesis by decreasing BMP 2,4 and SMAD 1,5,8 expression in subventricular zone neural stem cells. Life Sci 89(13–14):439–449

    Article  PubMed  CAS  Google Scholar 

  108. Morrison SJ, Spradling AC (2008) Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132(4):598–611

    Article  PubMed  CAS  Google Scholar 

  109. Varga AC, Wrana JL (2005) The disparate role of BMP in stem cell biology. Oncogene 24(37):5713–5721

    Article  PubMed  CAS  Google Scholar 

  110. Mira H, Andreu Z, Suh H, Lie DC, Jessberger S, Consiglio A, San Emeterio J, Hortiguela R, Marques-Torrejon MA, Nakashima K, Colak D, Gotz M, Farinas I, Gage FH (2010) Signaling through BMPR-IA regulates quiescence and long-term activity of neural stem cells in the adult hippocampus. Cell Stem Cell 7(1):78–89

    Article  PubMed  CAS  Google Scholar 

  111. Morrison SJ (2001) Neuronal potential and lineage determination by neural stem cells. Curr Opin Cell Biol 13(6):666–672

    Article  PubMed  CAS  Google Scholar 

  112. Zou H, Ho C, Wong K, Tessier-Lavigne M (2009) Axotomy-induced Smad1 activation promotes axonal growth in adult sensory neurons. J Neurosci 29(22):7116–7123

    Article  PubMed  CAS  Google Scholar 

  113. Parikh P, Hao Y, Hosseinkhani M, Patil SB, Huntley GW, Tessier-Lavigne M, Zou H (2011) Regeneration of axons in injured spinal cord by activation of bone morphogenetic protein/Smad1 signaling pathway in adult neurons. Proc Natl Acad Sci USA 108(19):E99–E107

    Article  PubMed  Google Scholar 

  114. Soullier S, Jay P, Poulat F, Vanacker JM, Berta P, Laudet V (1999) Diversification pattern of the HMG and SOX family members during evolution. J Mol Evol 48(5):517–527

    Article  PubMed  CAS  Google Scholar 

  115. Guth SI, Wegner M (2008) Having it both ways: Sox protein function between conservation and innovation. Cell Mol Life Sci 65(19):3000–3018

    Article  PubMed  CAS  Google Scholar 

  116. Bylund M, Andersson E, Novitch BG, Muhr J (2003) Vertebrate neurogenesis is counteracted by So1–3 activity. Nat Neurosci 6(11):1162–1168

    Article  PubMed  CAS  Google Scholar 

  117. Episkopou V (2005) SOX2 functions in adult neural stem cells. Trends Neurosci 28(5):219–221

    Article  PubMed  CAS  Google Scholar 

  118. Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26(1):101–106

    Article  PubMed  CAS  Google Scholar 

  119. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  PubMed  CAS  Google Scholar 

  120. Scott CE, Wynn SL, Sesay A, Cruz C, Cheung M, Gomez Gaviro MV, Booth S, Gao B, Cheah KS, Lovell-Badge R, Briscoe J (2010) SOX9 induces and maintains neural stem cells. Nat Neurosci 13(10):1181–1189

    Article  PubMed  CAS  Google Scholar 

  121. Hargrave M, Wright E, Kun J, Emery J, Cooper L, Koopman P (1997) Expression of the Sox11 gene in mouse embryos suggests roles in neuronal maturation and epithelio-mesenchymal induction. Dev Dyn 210(2):79–86

    Article  PubMed  CAS  Google Scholar 

  122. Hyodo-Miura J, Urushiyama S, Nagai S, Nishita M, Ueno N, Shibuya H (2002) Involvement of NLK and Sox11 in neural induction in Xenopus development. Genes Cells 7(5):487–496

    Article  PubMed  CAS  Google Scholar 

  123. Rex M, Church R, Tointon K, Ichihashi RM, Mokhtar S, Uwanogho D, Sharpe PT, Scotting PJ (1998) Granule cell development in the cerebellum is punctuated by changes in Sox gene expression. Brain Res Mol Brain Res 55(1):28–34

    Article  PubMed  CAS  Google Scholar 

  124. Haslinger A, Schwarz TJ, Covic M, Chichung Lie D (2009) Expression of Sox11 in adult neurogenic niches suggests a stage-specific role in adult neurogenesis. Eur J Neurosci 29(11):2103–2114

    Article  PubMed  Google Scholar 

  125. Potzner MR, Tsarovina K, Binder E, Penzo-Mendez A, Lefebvre V, Rohrer H, Wegner M, Sock E (2010) Sequential requirement of Sox4 and Sox11 during development of the sympathetic nervous system. Development 137(5):775–784

    Article  PubMed  CAS  Google Scholar 

  126. Bergsland M, Werme M, Malewicz M, Perlmann T, Muhr J (2006) The establishment of neuronal properties is controlled by Sox4 and Sox11. Genes Dev 20(24):3475–3486

    Article  PubMed  CAS  Google Scholar 

  127. Thein DC, Thalhammer JM, Hartwig AC, Crenshaw EB, Lefebvre V, Wegner M, Sock E (2010) The closely related transcription factors Sox4 and Sox11 function as survival factors during spinal cord development. J Neurochem 115(1):131–141

    Google Scholar 

  128. Tanabe K, Bonilla I, Winkles JA, Strittmatter SM (2003) Fibroblast growth factor-inducible-14 is induced in axotomized neurons and promotes neurite outgrowth. J Neurosci 23(29):9675–9686

    PubMed  CAS  Google Scholar 

  129. Jankowski MP, McIlwrath SL, Jing X, Cornuet PK, Salerno KM, Koerber HR, Albers KM (2009) Sox11 transcription factor modulates peripheral nerve regeneration in adult mice. Brain Res 1256:43–54

    Article  PubMed  CAS  Google Scholar 

  130. Jankowski MP, Cornuet PK, McIlwrath S, Koerber HR, Albers KM (2006) SRY-box containing gene 11 (Sox11) transcription factor is required for neuron survival and neurite growth. Neuroscience 143(2):501–514

    Article  PubMed  CAS  Google Scholar 

  131. Jing X, Wang T, Huang S, Glorioso JC, Albers KM (2012) The transcription factor Sox11 promotes nerve regeneration through activation of the regeneration-associated gene Sprr1a. Exp Neurol 233(1):221–232

    Article  PubMed  CAS  Google Scholar 

  132. Wang W, Bu B, Xie M, Zhang M, Yu Z, Tao D (2009) Neural cell cycle dysregulation and central nervous system diseases. Prog Neurobiol 89(1):1–17

    Article  PubMed  CAS  Google Scholar 

  133. Barco A, Patterson SL, Alarcon JM, Gromova P, Mata-Roig M, Morozov A, Kandel ER (2005) Gene expression profiling of facilitated L-LTP in VP16-CREB mice reveals that BDNF is critical for the maintenance of LTP and its synaptic capture. Neuron 48(1):123–137

    Article  PubMed  CAS  Google Scholar 

  134. Barco A, Alarcon JM, Kandel ER (2002) Expression of constitutively active CREB protein facilitates the late phase of long-term potentiation by enhancing synaptic capture. Cell 108(5):689–703

    Article  PubMed  CAS  Google Scholar 

  135. Ben-Yaakov K, Dagan SY, Segal-Ruder Y, Shalem O, Vuppalanchi D, Willis DE, Yudin D, Rishal I, Rother F, Bader M, Blesch A, Pilpel Y, Twiss JL, Fainzilber M (2012) Axonal transcription factors signal retrogradely in lesioned peripheral nerve. EMBO J 1(6):1350–1363

    Article  CAS  Google Scholar 

  136. Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW, Rueger MA, Bae SK, Kittappa R, McKay RD (2006) Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 442(7104):823–826

    Article  PubMed  CAS  Google Scholar 

  137. Guo Z, Jiang H, Xu X, Duan W, Mattson MP (2008) Leptin-mediated cell survival signaling in hippocampal neurons mediated by JAK STAT3 and mitochondrial stabilization. J Biol Chem 283(3):1754–1763

    Article  PubMed  CAS  Google Scholar 

  138. Wang X, Mao X, Xie L, Greenberg DA, Jin K (2009) Involvement of Notch1 signaling in neurogenesis in the subventricular zone of normal and ischemic rat brain in vivo. J Cereb Blood Flow Metab 29(10):1644–1654

    Article  PubMed  Google Scholar 

  139. Bejjani RE, Hammarlund M (2012) Notch signaling inhibits axon regeneration. Neuron 73(2):268–278

    Article  PubMed  CAS  Google Scholar 

  140. Murase S, Horwitz AF (2002) Deleted in colorectal carcinoma and differentially expressed integrins mediate the directional migration of neural precursors in the rostral migratory stream. J Neurosci 22(9):3568–3579

    PubMed  CAS  Google Scholar 

  141. Anton ES, Ghashghaei HT, Weber JL, McCann C, Fischer TM, Cheung ID, Gassmann M, Messing A, Klein R, Schwab MH, Lloyd KC, Lai C (2004) Receptor tyrosine kinase ErbB4 modulates neuroblast migration and placement in the adult forebrain. Nat Neurosci 7(12):1319–1328

    Article  PubMed  CAS  Google Scholar 

  142. Conover JC, Doetsch F, Garcia-Verdugo JM, Gale NW, Yancopoulos GD, Alvarez-Buylla A (2000) Disruption of Eph/ephrin signaling affects migration and proliferation in the adult subventricular zone. Nat Neurosci 3(11):1091–1097

    Article  PubMed  CAS  Google Scholar 

  143. Chiaramello S, Dalmasso G, Bezin L, Marcel D, Jourdan F, Peretto P, Fasolo A, De Marchis S (2007) BDNF/TrkB interaction regulates migration of SVZ precursor cells via PI3-K and MAP-K signalling pathways. Eur J Neurosci 26(7):1780–1790

    Article  PubMed  CAS  Google Scholar 

  144. Seki T, Namba T, Mochizuki H, Onodera M (2007) Clustering, migration, and neurite formation of neural precursor cells in the adult rat hippocampus. J Comp Neurol 502(2):275–290

    Article  PubMed  CAS  Google Scholar 

  145. Burgess A, Wainwright SR, Shihabuddin LS, Rutishauser U, Seki T, Aubert I (2008) Polysialic acid regulates the clustering, migration, and neuronal differentiation of progenitor cells in the adult hippocampus. Dev Neurobiol 68(14):1580–1590

    Article  PubMed  Google Scholar 

  146. Snyder EY, Yoon C, Flax JD, Macklis JD (1997) Multipotent neural precursors can differentiate toward replacement of neurons undergoing targeted apoptotic degeneration in adult mouse neocortex. Proc Natl Acad Sci USA 94(21):11663–11668

    Article  PubMed  CAS  Google Scholar 

  147. Aboody KS, Brown A, Rainov NG, Bower KA, Liu S, Yang W, Small JE, Herrlinger U, Ourednik V, Black PM, Breakefield XO, Snyder EY (2000) Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci USA 97(23):12846–12851

    Article  PubMed  CAS  Google Scholar 

  148. Zhang RL, Zhang ZG, Zhang L, Chopp M (2001) Proliferation and differentiation of progenitor cells in the cortex and the subventricular zone in the adult rat after focal cerebral ischemia. Neuroscience 105(1):33–41

    Article  PubMed  CAS  Google Scholar 

  149. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8(9):963–970

    Article  PubMed  CAS  Google Scholar 

  150. Jin K, Minami M, Lan JQ, Mao XO, Batteur S, Simon RP, Greenberg DA (2001) Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci USA 98(8):4710–4715

    Article  PubMed  CAS  Google Scholar 

  151. Dohn M, Jiang J, Chen X (2001) Receptor tyrosine kinase EphA2 is regulated by p53-family proteins and induces apoptosis. Oncogene 20(45):6503–6515

    Article  PubMed  CAS  Google Scholar 

  152. Arakawa H (2005) p53, apoptosis and axon-guidance molecules. Cell Death Differ 12(8):1057–1065

    Article  PubMed  CAS  Google Scholar 

  153. Tanikawa C, Matsuda K, Fukuda S, Nakamura Y, Arakawa H (2003) p53RDL1 regulates p53-dependent apoptosis. Nat Cell Biol 5(3):216–223

    Article  PubMed  CAS  Google Scholar 

  154. Nakagawa S, Kim JE, Lee R, Chen J, Fujioka T, Malberg J, Tsuji S, Duman RS (2002) Localization of phosphorylated cAMP response element-binding protein in immature neurons of adult hippocampus. J Neurosci 22(22):9868–9876

    PubMed  CAS  Google Scholar 

  155. Huang D, Han Y, Rani MR, Glabinski A, Trebst C, Sorensen T, Tani M, Wang J, Chien P, O’Bryan S, Bielecki B, Zhou ZL, Majumder S, Ransohoff RM (2000) Chemokines and chemokine receptors in inflammation of the nervous system: manifold roles and exquisite regulation. Immunol Rev 177:52–67

    Article  PubMed  CAS  Google Scholar 

  156. Aarum J, Sandberg K, Haeberlein SL, Persson MA (2003) Migration and differentiation of neural precursor cells can be directed by microglia. Proc Natl Acad Sci USA 100(26):15983–15988

    Article  PubMed  CAS  Google Scholar 

  157. Belmadani A, Tran PB, Ren D, Miller RJ (2006) Chemokines regulate the migration of neural progenitors to sites of neuroinflammation. J Neurosci 26(12):3182–3191

    Article  PubMed  CAS  Google Scholar 

  158. Xu Q, Wang S, Jiang X, Zhao Y, Gao M, Zhang Y, Wang X, Tano K, Kanehara M, Zhang W, Ishida T (2007) Hypoxia-induced astrocytes promote the migration of neural progenitor cells via vascular endothelial factor, stem cell factor, stromal-derived factor-1alpha and monocyte chemoattractant protein-1 upregulation in vitro. Clin Exp Pharmacol Physiol 34(7):624–631

    Article  PubMed  CAS  Google Scholar 

  159. Lonze BE, Riccio A, Cohen S, Ginty DD (2002) Apoptosis, axonal growth defects, and degeneration of peripheral neurons in mice lacking CREB. Neuron 34(3):371–385

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by funds granted by the Hertie Foundation; the Center for Integrative Neuroscience (CIN), University of Tuebingen; the DFG (all granted to Simone Di Giovanni).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Giorgia Quadrato or Simone Di Giovanni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quadrato, G., Di Giovanni, S. Waking up the sleepers: shared transcriptional pathways in axonal regeneration and neurogenesis. Cell. Mol. Life Sci. 70, 993–1007 (2013). https://doi.org/10.1007/s00018-012-1099-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1099-x

Keywords

Navigation