Skip to main content
Log in

Tumor suppressive pathways in the control of neurogenesis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

An Erratum to this article was published on 21 May 2013

Abstract

The generation of specialized neural cells in the developing and postnatal central nervous system is a highly regulated process, whereby neural stem cells divide to generate committed neuronal progenitors, which then withdraw from the cell cycle and start to differentiate. Cell cycle checkpoints play a major role in regulating the balance between neural stem cell expansion and differentiation. Loss of tumor suppressors involved in checkpoint control can lead to dramatic alterations of neurogenesis, thus contributing to neoplastic transformation. Here we summarize and critically discuss the existing literature on the role of tumor suppressive pathways and their regulatory networks in the control of neurogenesis and transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gage FH (2000) Mammalian neural stem cells. Science 287(5457):1433–1438

    Article  PubMed  CAS  Google Scholar 

  2. Imayoshi I, Sakamoto M, Ohtsuka T, Kageyama R (2009) Continuous neurogenesis in the adult brain. Dev Growth Differ 51(3):379–386. doi:10.1111/j.1440-169X.2009.01094.x

    Article  PubMed  Google Scholar 

  3. Imayoshi I, Sakamoto M, Ohtsuka T, Takao K, Miyakawa T, Yamaguchi M, Mori K, Ikeda T, Itohara S, Kageyama R (2008) Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat Neurosci 11(10):1153–1161. doi:10.1038/nn.2185

    Article  PubMed  CAS  Google Scholar 

  4. Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149–184. doi:10.1146/annurev.neuro.051508.135600

    Article  PubMed  CAS  Google Scholar 

  5. Ming GL, Song H (2005) Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28:223–250. doi:10.1146/annurev.neuro.28.051804.101459

    Article  PubMed  CAS  Google Scholar 

  6. Temple S (2001) The development of neural stem cells. Nature 414(6859):112–117. doi:10.1038/35102174

    Article  PubMed  CAS  Google Scholar 

  7. Gotz M, Huttner WB (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6(10):777–788. doi:10.1038/nrm1739

    Article  PubMed  CAS  Google Scholar 

  8. Lange C, Calegari F (2010) Cdks and cyclins link G1 length and differentiation of embryonic, neural and hematopoietic stem cells. Cell Cycle 9(10):1893–1900

    Article  PubMed  CAS  Google Scholar 

  9. Lange C, Huttner WB, Calegari F (2009) Cdk4/cyclinD1 overexpression in neural stem cells shortens G1, delays neurogenesis, and promotes the generation and expansion of basal progenitors. Cell Stem Cell 5(3):320–331. doi:10.1016/j.stem.2009.05.026

    Article  PubMed  CAS  Google Scholar 

  10. Miller FD, Gauthier-Fisher A (2009) Home at last: neural stem cell niches defined. Cell Stem Cell 4(6):507–510. doi:10.1016/j.stem.2009.05.008

    Article  PubMed  CAS  Google Scholar 

  11. Salomoni P, Calegari F (2010) Cell cycle control of mammalian neural stem cells: putting a speed limit on G1. Trends Cell Biol 20(5):233–243. doi:10.1016/j.tcb.2010.01.006

    Article  PubMed  CAS  Google Scholar 

  12. Kempermann G, Kuhn HG, Gage FH (1997) Genetic influence on neurogenesis in the dentate gyrus of adult mice. Proc Natl Acad Sci USA 94(19):10409–10414

    Article  PubMed  CAS  Google Scholar 

  13. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255(5052):1707–1710

    Article  PubMed  CAS  Google Scholar 

  14. Richards LJ, Kilpatrick TJ, Bartlett PF (1992) De novo generation of neuronal cells from the adult mouse brain. Proc Natl Acad Sci USA 89(18):8591–8595

    Article  PubMed  CAS  Google Scholar 

  15. Lee A, Kessler JD, Read TA, Kaiser C, Corbeil D, Huttner WB, Johnson JE, Wechsler-Reya RJ (2005) Isolation of neural stem cells from the postnatal cerebellum. Nat Neurosci 8(6):723–729. doi:10.1038/nn1473

    Article  PubMed  CAS  Google Scholar 

  16. Lie DC, Dziewczapolski G, Willhoite AR, Kaspar BK, Shults CW, Gage FH (2002) The adult substantia nigra contains progenitor cells with neurogenic potential. J Neurosci 22(15):6639–6649. doi:20026700

    PubMed  CAS  Google Scholar 

  17. Zhao M, Momma S, Delfani K, Carlen M, Cassidy RM, Johansson CB, Brismar H, Shupliakov O, Frisen J, Janson AM (2003) Evidence for neurogenesis in the adult mammalian substantia nigra. Proc Natl Acad Sci USA 100(13):7925–7930. doi:10.1073/pnas.1131955100

    Article  PubMed  CAS  Google Scholar 

  18. Amato MA, Arnault E, Perron M (2004) Retinal stem cells in vertebrates: parallels and divergences. Int J Dev Biol 48(8–9):993–1001. doi:10.1387/ijdb.041879ma

    Article  PubMed  Google Scholar 

  19. Raymond PA, Barthel LK, Bernardos RL, Perkowski JJ (2006) Molecular characterization of retinal stem cells and their niches in adult zebrafish. BMC Dev Biol 6:36. doi:10.1186/1471-213X-6-36

    Article  PubMed  CAS  Google Scholar 

  20. He S, Nakada D, Morrison SJ (2009) Mechanisms of stem cell self-renewal. Annu Rev Cell Dev Biol 25:377–406. doi:10.1146/annurev.cellbio.042308.113248

    Article  PubMed  CAS  Google Scholar 

  21. Zhao T, Xu Y (2010) p53 and stem cells: new developments and new concerns. Trends Cell Biol 20(3):170–175. doi:10.1016/j.tcb.2009.12.004

    Article  PubMed  CAS  Google Scholar 

  22. Hong Y, Cervantes RB, Stambrook PJ (2006) DNA damage response and mutagenesis in mouse embryonic stem cells. Methods Mol Biol 329:313–326. doi:10.1385/1-59745-037-5:313

    PubMed  CAS  Google Scholar 

  23. Hong Y, Cervantes RB, Tichy E, Tischfield JA, Stambrook PJ (2007) Protecting genomic integrity in somatic cells and embryonic stem cells. Mutat Res 614(1–2):48–55. doi:10.1016/j.mrfmmm.2006.06.006

    PubMed  CAS  Google Scholar 

  24. Krtolica A (2005) Stem cell: balancing aging and cancer. Int J Biochem Cell Biol 37(5):935–941. doi:10.1016/j.biocel.2004.10.007

    Article  PubMed  CAS  Google Scholar 

  25. Cunningham JJ, Roussel MF (2001) Cyclin-dependent kinase inhibitors in the development of the central nervous system. Cell Growth Differ 12(8):387–396

    PubMed  CAS  Google Scholar 

  26. Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97(6):703–716

    Article  PubMed  CAS  Google Scholar 

  27. Doetsch F, Petreanu L, Caille I, Garcia-Verdugo JM, Alvarez-Buylla A (2002) EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36(6):1021–1034

    Article  PubMed  CAS  Google Scholar 

  28. Ming GL, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70(4):687–702. doi:10.1016/j.neuron.2011.05.001

    Article  PubMed  CAS  Google Scholar 

  29. Alvarez-Buylla A, Lim DA (2004) For the long run: maintaining germinal niches in the adult brain. Neuron 41(5):683–686

    Article  PubMed  CAS  Google Scholar 

  30. Mirzadeh Z, Merkle FT, Soriano-Navarro M, Garcia-Verdugo JM, Alvarez-Buylla A (2008) Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell 3(3):265–278. doi:10.1016/j.stem.2008.07.004

    Article  PubMed  CAS  Google Scholar 

  31. Shen Q, Wang Y, Kokovay E, Lin G, Chuang SM, Goderie SK, Roysam B, Temple S (2008) Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell–cell interactions. Cell Stem Cell 3(3):289–300. doi:10.1016/j.stem.2008.07.026

    Article  PubMed  CAS  Google Scholar 

  32. Tavazoie M, Van der Veken L, Silva-Vargas V, Louissaint M, Colonna L, Zaidi B, Garcia-Verdugo JM, Doetsch F (2008) A specialized vascular niche for adult neural stem cells. Cell Stem Cell 3(3):279–288. doi:10.1016/j.stem.2008.07.025

    Article  PubMed  CAS  Google Scholar 

  33. Doetsch F (2003) The glial identity of neural stem cells. Nat Neurosci 6(11):1127–1134. doi:10.1038/nn1144

    Article  PubMed  CAS  Google Scholar 

  34. Malumbres M, Barbacid M (2005) Mammalian cyclin-dependent kinases. Trends Biochem Sci 30(11):630–641. doi:10.1016/j.tibs.2005.09.005

    Article  PubMed  CAS  Google Scholar 

  35. Wuarin J, Nurse P (1996) Regulating S phase: CDKs, licensing and proteolysis. Cell 85(6):785–787

    Article  PubMed  CAS  Google Scholar 

  36. Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13(12):1501–1512

    Article  PubMed  CAS  Google Scholar 

  37. Besson A, Dowdy SF, Roberts JM (2008) CDK inhibitors: cell cycle regulators and beyond. Dev Cell 14(2):159–169. doi:10.1016/j.devcel.2008.01.013

    Article  PubMed  CAS  Google Scholar 

  38. Santamaria D, Ortega S (2006) Cyclins and CDKS in development and cancer: lessons from genetically modified mice. Front Biosci 11:1164–1188

    Article  PubMed  CAS  Google Scholar 

  39. Bally-Cuif L, Hammerschmidt M (2003) Induction and patterning of neuronal development, and its connection to cell cycle control. Curr Opin Neurobiol 13(1):16–25

    Article  PubMed  CAS  Google Scholar 

  40. Dehay C, Kennedy H (2007) Cell-cycle control and cortical development. Nat Rev Neurosci 8(6):438–450. doi:10.1038/nrn2097

    Article  PubMed  CAS  Google Scholar 

  41. Durand B, Raff M (2000) A cell-intrinsic timer that operates during oligodendrocyte development. BioEssays 22(1):64–71. doi:10.1002/(SICI)1521-1878(200001)22:1<64:AID-BIES11>3.0.CO;2-Q

    Article  PubMed  CAS  Google Scholar 

  42. Belachew S, Aguirre AA, Wang H, Vautier F, Yuan X, Anderson S, Kirby M, Gallo V (2002) Cyclin-dependent kinase-2 controls oligodendrocyte progenitor cell cycle progression and is downregulated in adult oligodendrocyte progenitors. J Neurosci 22(19):8553–8562

    PubMed  CAS  Google Scholar 

  43. Ferguson KL, Callaghan SM, O’Hare MJ, Park DS, Slack RS (2000) The Rb-CDK4/6 signaling pathway is critical in neural precursor cell cycle regulation. J Biol Chem 275(43):33593–33600. doi:10.1074/jbc.M004879200

    Article  PubMed  CAS  Google Scholar 

  44. Vandenbosch R, Borgs L, Beukelaers P, Foidart A, Nguyen L, Moonen G, Berthet C, Kaldis P, Gallo V, Belachew S, Malgrange B (2007) CDK2 is dispensable for adult hippocampal neurogenesis. Cell Cycle 6(24):3065–3069

    Article  PubMed  CAS  Google Scholar 

  45. Artegiani B, Lindemann D, Calegari F (2011) Overexpression of cdk4 and cyclinD1 triggers greater expansion of neural stem cells in the adult mouse brain. J Exp Med 208(5):937–948. doi:10.1084/jem.20102167

    Article  PubMed  CAS  Google Scholar 

  46. Beukelaers P, Vandenbosch R, Caron N, Nguyen L, Belachew S, Moonen G, Kiyokawa H, Barbacid M, Santamaria D, Malgrange B (2011) Cdk6-dependent regulation of G(1) length controls adult neurogenesis. Stem Cells 29(4):713–724. doi:10.1002/stem.616

    Article  PubMed  CAS  Google Scholar 

  47. Lane DP, Crawford LV (1979) T antigen is bound to a host protein in SV40-transformed cells. Nature 278(5701):261–263

    Article  PubMed  CAS  Google Scholar 

  48. Linzer DI, Maltzman W, Levine AJ (1979) The SV40 A gene product is required for the production of a 54,000 MW cellular tumor antigen. Virology 98(2):308–318

    Article  PubMed  CAS  Google Scholar 

  49. Prives C (1998) Signaling to p53: breaking the MDM2-p53 circuit. Cell 95(1):5–8

    Article  PubMed  CAS  Google Scholar 

  50. Attardi LD, Jacks T (1999) The role of p53 in tumour suppression: lessons from mouse models. Cell Mol Life Sci 55(1):48–63

    Article  PubMed  CAS  Google Scholar 

  51. Isobe M, Emanuel BS, Givol D, Oren M, Croce CM (1986) Localization of gene for human p53 tumour antigen to band 17p13. Nature 320(6057):84–85. doi:10.1038/320084a0

    Article  PubMed  CAS  Google Scholar 

  52. Jacks T (1996) Lessons from the p53 mutant mouse. J Cancer Res Clin Oncol 122(6):319–327

    Article  PubMed  CAS  Google Scholar 

  53. Kern SE, Kinzler KW, Bruskin A, Jarosz D, Friedman P, Prives C, Vogelstein B (1991) Identification of p53 as a sequence-specific DNA-binding protein. Science 252(5013):1708–1711

    Article  PubMed  CAS  Google Scholar 

  54. Matlashewski G, Lamb P, Pim D, Peacock J, Crawford L, Benchimol S (1984) Isolation and characterization of a human p53 cDNA clone: expression of the human p53 gene. EMBO J 3(13):3257–3262

    PubMed  CAS  Google Scholar 

  55. McBride OW, Merry D, Givol D (1986) The gene for human p53 cellular tumor antigen is located on chromosome 17 short arm (17p13). Proc Natl Acad Sci USA 83(1):130–134

    Article  PubMed  CAS  Google Scholar 

  56. Riley T, Sontag E, Chen P, Levine A (2008) Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9(5):402–412. doi:10.1038/nrm2395

    Article  PubMed  CAS  Google Scholar 

  57. Green DR, Kroemer G (2009) Cytoplasmic functions of the tumour suppressor p53. Nature 458(7242):1127–1130. doi:10.1038/nature07986

    Article  PubMed  CAS  Google Scholar 

  58. Belyi VA, Ak P, Markert E, Wang H, Hu W, Puzio-Kuter A, Levine AJ (2010) The origins and evolution of the p53 family of genes. Cold Spring Harb Perspect Biol 2(6):a001198. doi:10.1101/cshperspect.a001198

    Article  PubMed  CAS  Google Scholar 

  59. Lane D, Levine A (2010) p53 Research: the past thirty years and the next thirty years. Cold Spring Harb Perspect Biol 2(12):a000893. doi:10.1101/cshperspect.a000893

    Article  PubMed  CAS  Google Scholar 

  60. Mills AA (2005) p53: link to the past, bridge to the future. Genes Dev 19(18):2091–2099. doi:10.1101/gad.1362905

    Article  PubMed  CAS  Google Scholar 

  61. Vousden KH, Ryan KM (2009) p53 and metabolism. Nat Rev Cancer 9(10):691–700. doi:10.1038/nrc2715

    Article  PubMed  CAS  Google Scholar 

  62. Maiuri MC, Galluzzi L, Morselli E, Kepp O, Malik SA, Kroemer G (2010) Autophagy regulation by p53. Curr Opin Cell Biol 22(2):181–185. doi:10.1016/j.ceb.2009.12.001

    Article  PubMed  CAS  Google Scholar 

  63. Crighton D, Wilkinson S, O’Prey J, Syed N, Smith P, Harrison PR, Gasco M, Garrone O, Crook T, Ryan KM (2006) DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126(1):121–134. doi:10.1016/j.cell.2006.05.034

    Article  PubMed  CAS  Google Scholar 

  64. Miller FD, Pozniak CD, Walsh GS (2000) Neuronal life and death: an essential role for the p53 family. Cell Death Differ 7(10):880–888. doi:10.1038/sj.cdd.4400736

    Article  PubMed  CAS  Google Scholar 

  65. Meletis K, Wirta V, Hede SM, Nister M, Lundeberg J, Frisen J (2006) p53 suppresses the self-renewal of adult neural stem cells. Development 133(2):363–369. doi:10.1242/dev.02208

    Article  PubMed  CAS  Google Scholar 

  66. van Lookeren Campagne M, Gill R (1998) Tumor-suppressor p53 is expressed in proliferating and newly formed neurons of the embryonic and postnatal rat brain: comparison with expression of the cell cycle regulators p21Waf1/Cip1, p27Kip1, p57Kip2, p16Ink4a, cyclin G1, and the proto-oncogene Bax. J Comp Neurol 397(2):181–198

    Article  Google Scholar 

  67. Poulaki V, Benekou A, Bozas E, Bolaris S, Stylianopoulou F (1999) p53 expression and regulation by NMDA receptors in the developing rat brain. J Neurosci Res 56(4):427–440

    Article  PubMed  CAS  Google Scholar 

  68. Rinon A, Molchadsky A, Nathan E, Yovel G, Rotter V, Sarig R, Tzahor E (2011) p53 coordinates cranial neural crest cell growth and epithelial-mesenchymal transition/delamination processes. Development 138(9):1827–1838. doi:10.1242/dev.053645

    Article  PubMed  CAS  Google Scholar 

  69. Armstrong JF, Kaufman MH, Harrison DJ, Clarke AR (1995) High-frequency developmental abnormalities in p53-deficient mice. Curr Biol 5(8):931–936

    Article  PubMed  CAS  Google Scholar 

  70. Sah VP, Attardi LD, Mulligan GJ, Williams BO, Bronson RT, Jacks T (1995) A subset of p53-deficient embryos exhibit exencephaly. Nat Genet 10(2):175–180. doi:10.1038/ng0695-175

    Article  PubMed  CAS  Google Scholar 

  71. De Laurenzi V, Melino G (2000) Evolution of functions within the p53/p63/p73 family. Ann NY Acad Sci 926:90–100

    Article  PubMed  Google Scholar 

  72. Dotsch V, Bernassola F, Coutandin D, Candi E, Melino G (2010) p63 and p73, the ancestors of p53. Cold Spring Harb Perspect Biol 2(9):a004887. doi:10.1101/cshperspect.a004887

    Article  PubMed  CAS  Google Scholar 

  73. Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M (1999) The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397(6715):164–168. doi:10.1038/16476

    Article  PubMed  CAS  Google Scholar 

  74. Levrero M, De Laurenzi V, Costanzo A, Gong J, Melino G, Wang JY (1999) Structure, function and regulation of p63 and p73. Cell Death Differ 6(12):1146–1153

    Article  PubMed  CAS  Google Scholar 

  75. Levrero M, De Laurenzi V, Costanzo A, Gong J, Wang JY, Melino G (2000) The p53/p63/p73 family of transcription factors: overlapping and distinct functions. J Cell Sci 113(Pt 10):1661–1670

    PubMed  CAS  Google Scholar 

  76. Gil-Perotin S, Marin-Husstege M, Li J, Soriano-Navarro M, Zindy F, Roussel MF, Garcia-Verdugo JM, Casaccia-Bonnefil P (2006) Loss of p53 induces changes in the behaviour of subventricular zone cells: implication for the genesis of glial tumors. J Neurosci 26(4):1107–1116. doi:10.1523/JNEUROSCI.3970-05.2006

    Article  PubMed  CAS  Google Scholar 

  77. el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75(4):817–825

    Article  PubMed  CAS  Google Scholar 

  78. Cheng T, Rodrigues N, Dombkowski D, Stier S, Scadden DT (2000) Stem cell repopulation efficiency but not pool size is governed by p27(kip1). Nat Med 6(11):1235–1240. doi:10.1038/81335

    Article  PubMed  CAS  Google Scholar 

  79. Doetsch F, Verdugo JM, Caille I, Alvarez-Buylla A, Chao MV, Casaccia-Bonnefil P (2002) Lack of the cell-cycle inhibitor p27Kip1 results in selective increase of transit-amplifying cells for adult neurogenesis. J Neurosci 22(6):2255–2264

    PubMed  CAS  Google Scholar 

  80. Kippin TE, Martens DJ, van der Kooy D (2005) p21 loss compromises the relative quiescence of forebrain stem cell proliferation leading to exhaustion of their proliferation capacity. Genes Dev 19(6):756–767. doi:10.1101/gad.1272305

    Article  PubMed  CAS  Google Scholar 

  81. Francoz S, Froment P, Bogaerts S, De Clercq S, Maetens M, Doumont G, Bellefroid E, Marine JC (2006) Mdm4 and Mdm2 cooperate to inhibit p53 activity in proliferating and quiescent cells in vivo. Proc Natl Acad Sci USA 103(9):3232–3237. doi:10.1073/pnas.0508476103

    Article  PubMed  CAS  Google Scholar 

  82. Medrano S, Burns-Cusato M, Atienza MB, Rahimi D, Scrable H (2009) Regenerative capacity of neural precursors in the adult mammalian brain is under the control of p53. Neurobiol Aging 30(3):483–497. doi:10.1016/j.neurobiolaging.2007.07.016

    Article  PubMed  CAS  Google Scholar 

  83. Pechnick RN, Zonis S, Wawrowsky K, Pourmorady J, Chesnokova V (2008) p21Cip1 restricts neuronal proliferation in the subgranular zone of the dentate gyrus of the hippocampus. Proc Natl Acad Sci USA 105(4):1358–1363. doi:10.1073/pnas.0711030105

    Article  PubMed  CAS  Google Scholar 

  84. Li X, Tang X, Jablonska B, Aguirre A, Gallo V, Luskin MB (2009) p27(KIP1) regulates neurogenesis in the rostral migratory stream and olfactory bulb of the postnatal mouse. J Neurosci 29(9):2902–2914. doi:10.1523/JNEUROSCI.4051-08.2009

    Article  PubMed  CAS  Google Scholar 

  85. Miyazawa K, Himi T, Garcia V, Yamagishi H, Sato S, Ishizaki Y (2000) A role for p27/Kip1 in the control of cerebellar granule cell precursor proliferation. J Neurosci 20(15):5756–5763

    PubMed  CAS  Google Scholar 

  86. Lee MH, Nikolic M, Baptista CA, Lai E, Tsai LH, Massague J (1996) The brain-specific activator p35 allows Cdk5 to escape inhibition by p27Kip1 in neurons. Proc Natl Acad Sci USA 93(8):3259–3263

    Article  PubMed  CAS  Google Scholar 

  87. Nguyen L, Besson A, Heng JI, Schuurmans C, Teboul L, Parras C, Philpott A, Roberts JM, Guillemot F (2006) p27kip1 independently promotes neuronal differentiation and migration in the cerebral cortex. Genes Dev 20(11):1511–1524. doi:10.1101/gad.377106

    Article  PubMed  CAS  Google Scholar 

  88. Nguyen L, Besson A, Roberts JM, Guillemot F (2006) Coupling cell cycle exit, neuronal differentiation and migration in cortical neurogenesis. Cell Cycle 5(20):2314–2318

    Article  PubMed  CAS  Google Scholar 

  89. Gil-Perotin S, Haines JD, Kaur J, Marin-Husstege M, Spinetta MJ, Kim KH, Duran-Moreno M, Schallert T, Zindy F, Roussel MF, Garcia-Verdugo JM, Casaccia P (2011) Roles of p53 and p27(Kip1) in the regulation of neurogenesis in the murine adult subventricular zone. Eur J Neurosci 34(7):1040–1052. doi:10.1111/j.1460-9568.2011.07836.x

    Article  PubMed  Google Scholar 

  90. Stambolic V, MacPherson D, Sas D, Lin Y, Snow B, Jang Y, Benchimol S, Mak TW (2001) Regulation of PTEN transcription by p53. Mol Cell 8(2):317–325

    Article  PubMed  CAS  Google Scholar 

  91. Chalhoub N, Zhu G, Zhu X, Baker SJ (2009) Cell type specificity of PI3K signaling in Pdk1- and Pten-deficient brains. Genes Dev 23(14):1619–1624. doi:10.1101/gad.1799609

    Article  PubMed  CAS  Google Scholar 

  92. Zheng H, Ying H, Yan H, Kimmelman AC, Hiller DJ, Chen AJ, Perry SR, Tonon G, Chu GC, Ding Z, Stommel JM, Dunn KL, Wiedemeyer R, You MJ, Brennan C, Wang YA, Ligon KL, Wong WH, Chin L, DePinho RA (2008) p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature 455(7216):1129–1133. doi:10.1038/nature07443

    Article  PubMed  CAS  Google Scholar 

  93. Zheng H, Ying H, Yan H, Kimmelman AC, Hiller DJ, Chen AJ, Perry SR, Tonon G, Chu GC, Ding Z, Stommel JM, Dunn KL, Wiedemeyer R, You MJ, Brennan C, Wang YA, Ligon KL, Wong WH, Chin L, dePinho RA (2008) Pten and p53 converge on c-Myc to control differentiation, self-renewal, and transformation of normal and neoplastic stem cells in glioblastoma. Cold Spring Harb Symp Quant Biol 73:427–437. doi:10.1101/sqb.2008.73.047

    Article  PubMed  CAS  Google Scholar 

  94. Alcantara Llaguno S, Chen J, Kwon CH, Jackson EL, Li Y, Burns DK, Alvarez-Buylla A, Parada LF (2009) Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model. Cancer Cell 15(1):45–56. doi:10.1016/j.ccr.2008.12.006

    Article  PubMed  CAS  Google Scholar 

  95. Wang Y, Yang J, Zheng H, Tomasek GJ, Zhang P, McKeever PE, Lee EY, Zhu Y (2009) Expression of mutant p53 proteins implicates a lineage relationship between neural stem cells and malignant astrocytic glioma in a murine model. Cancer Cell 15(6):514–526. doi:10.1016/j.ccr.2009.04.001

    Article  PubMed  CAS  Google Scholar 

  96. Liu C, Sage JC, Miller MR, Verhaak RG, Hippenmeyer S, Vogel H, Foreman O, Bronson RT, Nishiyama A, Luo L, Zong H (2011) Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell 146(2):209–221. doi:10.1016/j.cell.2011.06.014

    Article  PubMed  CAS  Google Scholar 

  97. Schmale H, Bamberger C (1997) A novel protein with strong homology to the tumor suppressor p53. Oncogene 15(11):1363–1367. doi:10.1038/sj.onc.1201500

    Article  PubMed  CAS  Google Scholar 

  98. Yang A, Kaghad M, Wang Y, Gillett E, Fleming MD, Dotsch V, Andrews NC, Caput D, McKeon F (1998) p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell 2(3):305–316

    Article  PubMed  CAS  Google Scholar 

  99. Kaghad M, Bonnet H, Yang A, Creancier L, Biscan JC, Valent A, Minty A, Chalon P, Lelias JM, Dumont X, Ferrara P, McKeon F, Caput D (1997) Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 90(4):809–819

    Article  PubMed  CAS  Google Scholar 

  100. Jost CA, Marin MC, Kaelin WG Jr (1997) p73 is a simian (correction of human) p53-related protein that can induce apoptosis. Nature 389(6647):191–194. doi:10.1038/38298

    Article  PubMed  CAS  Google Scholar 

  101. Murray-Zmijewski F, Lane DP, Bourdon JC (2006) p53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death Differ 13(6):962–972. doi:10.1038/sj.cdd.4401914

    Article  PubMed  CAS  Google Scholar 

  102. Talos F, Nemajerova A, Flores ER, Petrenko O, Moll UM (2007) p73 suppresses polyploidy and aneuploidy in the absence of functional p53. Mol Cell 27(4):647–659. doi:10.1016/j.molcel.2007.06.036

    Article  PubMed  CAS  Google Scholar 

  103. Tomasini R, Tsuchihara K, Tsuda C, Lau SK, Wilhelm M, Ruffini A, Tsao MS, Iovanna JL, Jurisicova A, Melino G, Mak TW (2009) TAp73 regulates the spindle assembly checkpoint by modulating BubR1 activity. Proc Natl Acad Sci USA 106(3):797–802. doi:10.1073/pnas.0812096106

    Article  PubMed  CAS  Google Scholar 

  104. Tomasini R, Tsuchihara K, Wilhelm M, Fujitani M, Rufini A, Cheung CC, Khan F, Itie-Youten A, Wakeham A, Tsao MS, Iovanna JL, Squire J, Jurisica I, Kaplan D, Melino G, Jurisicova A, Mak TW (2008) TAp73 knockout shows genomic instability with infertility and tumor suppressor functions. Genes Dev 22(19):2677–2691. doi:10.1101/gad.1695308

    Article  PubMed  CAS  Google Scholar 

  105. Fillippovich I, Sorokina N, Gatei M, Haupt Y, Hobson K, Moallem E, Spring K, Mould M, McGuckin MA, Lavin MF, Khanna KK (2001) Transactivation-deficient p73alpha (p73Deltaexon2) inhibits apoptosis and competes with p53. Oncogene 20(4):514–522. doi:10.1038/sj.onc.1204118

    Article  PubMed  CAS  Google Scholar 

  106. Pozniak CD, Radinovic S, Yang A, McKeon F, Kaplan DR, Miller FD (2000) An anti-apoptotic role for the p53 family member, p73, during developmental neuron death. Science 289(5477):304–306

    Article  PubMed  CAS  Google Scholar 

  107. Ravni A, Tissir F, Goffinet AM (2010) DeltaNp73 transcription factors modulate cell survival and tumor development. Cell Cycle 9(8):1523–1527

    Article  PubMed  CAS  Google Scholar 

  108. Tissir F, Ravni A, Achouri Y, Riethmacher D, Meyer G, Goffinet AM (2009) DeltaNp73 regulates neuronal survival in vivo. Proc Natl Acad Sci USA 106(39):16871–16876. doi:10.1073/pnas.0903191106

    Article  PubMed  CAS  Google Scholar 

  109. Yang A, McKeon F (2000) P63 and P73: P53 mimics, menaces and more. Nat Rev Mol Cell Biol 1(3):199–207. doi:10.1038/35043127

    Article  PubMed  CAS  Google Scholar 

  110. Irwin MS, Kaelin WG Jr (2001) Role of the newer p53 family proteins in malignancy. Apoptosis 6(1–2):17–29

    Article  PubMed  CAS  Google Scholar 

  111. Flores ER, Tsai KY, Crowley D, Sengupta S, Yang A, McKeon F, Jacks T (2002) p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 416(6880):560–564. doi:10.1038/416560a

    Article  PubMed  CAS  Google Scholar 

  112. Flores ER, Sengupta S, Miller JB, Newman JJ, Bronson R, Crowley D, Yang A, McKeon F, Jacks T (2005) Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. Cancer Cell 7(4):363–373. doi:10.1016/j.ccr.2005.02.019

    Article  PubMed  CAS  Google Scholar 

  113. Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR, Bradley A (1999) p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398(6729):708–713. doi:10.1038/19531

    Article  PubMed  CAS  Google Scholar 

  114. Yang A, Walker N, Bronson R, Kaghad M, Oosterwegel M, Bonnin J, Vagner C, Bonnet H, Dikkes P, Sharpe A, McKeon F, Caput D (2000) p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature 404(6773):99–103. doi:10.1038/35003607

    Article  PubMed  CAS  Google Scholar 

  115. Agostini M, Tucci P, Killick R, Candi E, Sayan BS, di Val Rivetti, Cervo P, Nicotera P, McKeon F, Knight RA, Mak TW, Melino G (2011) Neuronal differentiation by TAp73 is mediated by microRNA-34a regulation of synaptic protein targets. Proc Natl Acad Sci USA 108(52):21093–21098. doi:10.1073/pnas.1112061109

    Article  PubMed  CAS  Google Scholar 

  116. Fujitani M, Cancino GI, Dugani CB, Weaver IC, Gauthier-Fisher A, Paquin A, Mak TW, Wojtowicz MJ, Miller FD, Kaplan DR (2010) TAp73 acts via the bHLH Hey2 to promote long-term maintenance of neural precursors. Curr Biol 20(22):2058–2065. doi:10.1016/j.cub.2010.10.029

    Article  PubMed  CAS  Google Scholar 

  117. Holembowski L, Schulz R, Talos F, Scheel A, Wolff S, Dobbelstein M, Moll U (2011) While p73 is essential, p63 is completely dispensable for the development of the central nervous system. Cell Cycle 10(4):680–689

    Article  PubMed  CAS  Google Scholar 

  118. Wilhelm MT, Rufini A, Wetzel MK, Tsuchihara K, Inoue S, Tomasini R, Itie-Youten A, Wakeham A, Arsenian-Henriksson M, Melino G, Kaplan DR, Miller FD, Mak TW (2010) Isoform-specific p73 knockout mice reveal a novel role for delta Np73 in the DNA damage response pathway. Genes Dev 24(6):549–560. doi:10.1101/gad.1873910

    Article  PubMed  CAS  Google Scholar 

  119. Packard A, Schnittke N, Romano RA, Sinha S, Schwob JE (2011) DeltaNp63 regulates stem cell dynamics in the mammalian olfactory epithelium. J Neurosci 31(24):8748–8759. doi:10.1523/JNEUROSCI.0681-11.2011

    Article  PubMed  CAS  Google Scholar 

  120. Fletcher RB, Prasol MS, Estrada J, Baudhuin A, Vranizan K, Choi YG, Ngai J (2011) p63 regulates olfactory stem cell self-renewal and differentiation. Neuron 72(5):748–759. doi:10.1016/j.neuron.2011.09.009

    Article  PubMed  CAS  Google Scholar 

  121. Dugani CB, Paquin A, Fujitani M, Kaplan DR, Miller FD (2009) p63 antagonizes p53 to promote the survival of embryonic neural precursor cells. J Neurosci 29(20):6710–6721. doi:10.1523/JNEUROSCI.5878-08.2009

    Article  PubMed  CAS  Google Scholar 

  122. Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM, Albert DM, Dryja TP (1986) A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323(6089):643–646. doi:10.1038/323643a0

    Article  PubMed  CAS  Google Scholar 

  123. Fung YK, Murphree AL, T’Ang A, Qian J, Hinrichs SH, Benedict WF (1987) Structural evidence for the authenticity of the human retinoblastoma gene. Science 236(4809):1657–1661

    Article  PubMed  CAS  Google Scholar 

  124. Lee WH, Bookstein R, Hong F, Young LJ, Shew JY, Lee EY (1987) Human retinoblastoma susceptibility gene: cloning, identification, and sequence. Science 235(4794):1394–1399

    Article  PubMed  CAS  Google Scholar 

  125. Weinberg RA (1991) Tumor suppressor genes. Science 254(5035):1138–1146

    Article  PubMed  CAS  Google Scholar 

  126. Blanquet V, Turleau C, Gross MS, Goossens M, Besmond C (1993) Identification of germline mutations in the RB1 gene by denaturant gradient gel electrophoresis and polymerase chain reaction direct sequencing. Hum Mol Genet 2(7):975–979

    Article  PubMed  CAS  Google Scholar 

  127. Classon M, Harlow E (2002) The retinoblastoma tumour suppressor in development and cancer. Nat Rev Cancer 2(12):910–917. doi:10.1038/nrc950

    Article  PubMed  CAS  Google Scholar 

  128. Dyer MA, Bremner R (2005) The search for the retinoblastoma cell of origin. Nat Rev Cancer 5(2):91–101. doi:10.1038/nrc1545

    PubMed  CAS  Google Scholar 

  129. Egan C, Bayley ST, Branton PE (1989) Binding of the Rb1 protein to E1A products is required for adenovirus transformation. Oncogene 4(3):383–388

    PubMed  CAS  Google Scholar 

  130. Harbour JW, Lai SL, Whang-Peng J, Gazdar AF, Minna JD, Kaye FJ (1988) Abnormalities in structure and expression of the human retinoblastoma gene in SCLC. Science 241(4863):353–357

    Article  PubMed  CAS  Google Scholar 

  131. Horowitz JM, Park SH, Bogenmann E, Cheng JC, Yandell DW, Kaye FJ, Minna JD, Dryja TP, Weinberg RA (1990) Frequent inactivation of the retinoblastoma anti-oncogene is restricted to a subset of human tumor cells. Proc Natl Acad Sci USA 87(7):2775–2779

    Article  PubMed  CAS  Google Scholar 

  132. Whyte P, Buchkovich KJ, Horowitz JM, Friend SH, Raybuck M, Weinberg RA, Harlow E (1988) Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature 334(6178):124–129. doi:10.1038/334124a0

    Article  PubMed  CAS  Google Scholar 

  133. DeCaprio JA, Ludlow JW, Figge J, Shew JY, Huang CM, Lee WH, Marsilio E, Paucha E, Livingston DM (1988) SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 54(2):275–283

    Article  PubMed  CAS  Google Scholar 

  134. Dyson N, Howley PM, Munger K, Harlow E (1989) The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243(4893):934–937

    Article  PubMed  CAS  Google Scholar 

  135. Munger K, Werness BA, Dyson N, Phelps WC, Harlow E, Howley PM (1989) Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. Embo J 8(13):4099–4105

    PubMed  CAS  Google Scholar 

  136. Hu QJ, Dyson N, Harlow E (1990) The regions of the retinoblastoma protein needed for binding to adenovirus E1A or SV40 large T antigen are common sites for mutations. Embo J 9(4):1147–1155

    PubMed  CAS  Google Scholar 

  137. Harbour JW, Dean DC (2000) Rb function in cell-cycle regulation and apoptosis. Nat Cell Biol 2(4):E65–E67. doi:10.1038/35008695

    Article  PubMed  CAS  Google Scholar 

  138. Weinberg RA (1995) The retinoblastoma protein and cell cycle control. Cell 81(3):323–330

    Article  PubMed  CAS  Google Scholar 

  139. Buchkovich K, Duffy LA, Harlow E (1989) The retinoblastoma protein is phosphorylated during specific phases of the cell cycle. Cell 58(6):1097–1105

    Article  PubMed  CAS  Google Scholar 

  140. Cooper S, Shayman JA (2001) Revisiting retinoblastoma protein phosphorylation during the mammalian cell cycle. Cell Mol Life Sci 58(4):580–595

    Article  PubMed  CAS  Google Scholar 

  141. Luo RX, Postigo AA, Dean DC (1998) Rb interacts with histone deacetylase to repress transcription. Cell 92(4):463–473

    Article  PubMed  CAS  Google Scholar 

  142. Coschi CH, Martens AL, Ritchie K, Francis SM, Chakrabarti S, Berube NG, Dick FA (2010) Mitotic chromosome condensation mediated by the retinoblastoma protein is tumor-suppressive. Genes Dev 24(13):1351–1363. doi:10.1101/gad.1917610

    Article  PubMed  CAS  Google Scholar 

  143. Manning AL, Dyson NJ (2012) RB: mitotic implications of a tumour suppressor. Nat Rev Cancer 12(3):220–226. doi:10.1038/nrc3216

    PubMed  CAS  Google Scholar 

  144. van Harn T, Foijer F, van Vugt M, Banerjee R, Yang F, Oostra A, Joenje H, te Riele H (2010) Loss of Rb proteins causes genomic instability in the absence of mitogenic signaling. Genes Dev 24(13):1377–1388. doi:10.1101/gad.580710

    Article  PubMed  CAS  Google Scholar 

  145. Sage J, Straight AF (2010) RB’s original CIN? Genes Dev 24(13):1329–1333. doi:10.1101/gad.1948010

    Article  PubMed  CAS  Google Scholar 

  146. Clarke AR, Maandag ER, van Roon M, van der Lugt NM, van der Valk M, Hooper ML, Berns A, te Riele H (1992) Requirement for a functional Rb-1 gene in murine development. Nature 359(6393):328–330. doi:10.1038/359328a0

    Article  PubMed  CAS  Google Scholar 

  147. Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA (1992) Effects of an Rb mutation in the mouse. Nature 359(6393):295–300. doi:10.1038/359295a0

    Article  PubMed  CAS  Google Scholar 

  148. Lee EY, Chang CY, Hu N, Wang YC, Lai CC, Herrup K, Lee WH, Bradley A (1992) Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359(6393):288–294. doi:10.1038/359288a0

    Article  PubMed  CAS  Google Scholar 

  149. Zacksenhaus E, Jiang Z, Chung D, Marth JD, Phillips RA, Gallie BL (1996) pRb controls proliferation, differentiation, and death of skeletal muscle cells and other lineages during embryogenesis. Genes Dev 10(23):3051–3064

    Article  PubMed  CAS  Google Scholar 

  150. Lee EY, Hu N, Yuan SS, Cox LA, Bradley A, Lee WH, Herrup K (1994) Dual roles of the retinoblastoma protein in cell cycle regulation and neuron differentiation. Genes Dev 8(17):2008–2021

    Article  PubMed  CAS  Google Scholar 

  151. Lipinski MM, Macleod KF, Williams BO, Mullaney TL, Crowley D, Jacks T (2001) Cell-autonomous and non-cell-autonomous functions of the Rb tumor suppressor in developing central nervous system. Embo J 20(13):3402–3413. doi:10.1093/emboj/20.13.3402

    Article  PubMed  CAS  Google Scholar 

  152. Ferguson KL, Vanderluit JL, Hebert JM, McIntosh WC, Tibbo E, MacLaurin JG, Park DS, Wallace VA, Vooijs M, McConnell SK, Slack RS (2002) Telencephalon-specific Rb knockouts reveal enhanced neurogenesis, survival and abnormal cortical development. Embo J 21(13):3337–3346. doi:10.1093/emboj/cdf338

    Article  PubMed  CAS  Google Scholar 

  153. MacPherson D, Sage J, Kim T, Ho D, McLaughlin ME, Jacks T (2004) Cell type-specific effects of Rb deletion in the murine retina. Genes Dev 18(14):1681–1694. doi:10.1101/gad.1203304

    Article  PubMed  CAS  Google Scholar 

  154. Marino S, Hoogervoorst D, Brandner S, Berns A (2003) Rb and p107 are required for normal cerebellar development and granule cell survival but not for Purkinje cell persistence. Development 130(15):3359–3368

    Article  PubMed  CAS  Google Scholar 

  155. Ferguson KL, McClellan KA, Vanderluit JL, McIntosh WC, Schuurmans C, Polleux F, Slack RS (2005) A cell-autonomous requirement for the cell cycle regulatory protein, Rb, in neuronal migration. Embo J 24(24):4381–4391. doi:10.1038/sj.emboj.7600887

    Article  PubMed  CAS  Google Scholar 

  156. Ewen ME, Faha B, Harlow E, Livingston DM (1992) Interaction of p107 with cyclin A independent of complex formation with viral oncoproteins. Science 255(5040):85–87

    Article  PubMed  CAS  Google Scholar 

  157. Ewen ME, Xing YG, Lawrence JB, Livingston DM (1991) Molecular cloning, chromosomal mapping, and expression of the cDNA for p107, a retinoblastoma gene product-related protein. Cell 66(6):1155–1164

    Article  PubMed  CAS  Google Scholar 

  158. Hannon GJ, Demetrick D, Beach D (1993) Isolation of the Rb-related p130 through its interaction with CDK2 and cyclins. Genes Dev 7(12A):2378–2391

    Article  PubMed  CAS  Google Scholar 

  159. Li Y, Graham C, Lacy S, Duncan AM, Whyte P (1993) The adenovirus E1A-associated 130-kD protein is encoded by a member of the retinoblastoma gene family and physically interacts with cyclins A and E. Genes Dev 7(12A):2366–2377

    Article  PubMed  CAS  Google Scholar 

  160. Mayol X, Grana X, Baldi A, Sang N, Hu Q, Giordano A (1993) Cloning of a new member of the retinoblastoma gene family (pRb2) which binds to the E1A transforming domain. Oncogene 8(9):2561–2566

    PubMed  CAS  Google Scholar 

  161. Cobrinik D (2005) Pocket proteins and cell cycle control. Oncogene 24(17):2796–2809. doi:10.1038/sj.onc.1208619

    Article  PubMed  CAS  Google Scholar 

  162. Trimarchi JM, Lees JA (2002) Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol 3(1):11–20. doi:10.1038/nrm714

    Article  PubMed  CAS  Google Scholar 

  163. Mulligan G, Jacks T (1998) The retinoblastoma gene family: cousins with overlapping interests. Trends Genet 14(6):223–229

    Article  PubMed  CAS  Google Scholar 

  164. Cobrinik D, Lee MH, Hannon G, Mulligan G, Bronson RT, Dyson N, Harlow E, Beach D, Weinberg RA, Jacks T (1996) Shared role of the pRB-related p130 and p107 proteins in limb development. Genes Dev 10(13):1633–1644

    Article  PubMed  CAS  Google Scholar 

  165. Lee MH, Williams BO, Mulligan G, Mukai S, Bronson RT, Dyson N, Harlow E, Jacks T (1996) Targeted disruption of p107: functional overlap between p107 and Rb. Genes Dev 10(13):1621–1632

    Article  PubMed  CAS  Google Scholar 

  166. Callaghan DA, Dong L, Callaghan SM, Hou YX, Dagnino L, Slack RS (1999) Neural precursor cells differentiating in the absence of Rb exhibit delayed terminal mitosis and deregulated E2F 1 and 3 activity. Dev Biol 207(2):257–270. doi:10.1006/dbio.1998.9162

    Article  PubMed  CAS  Google Scholar 

  167. Donovan SL, Schweers B, Martins R, Johnson D, Dyer MA (2006) Compensation by tumor suppressor genes during retinal development in mice and humans. BMC Biol 4:14. doi:10.1186/1741-7007-4-14

    Article  PubMed  CAS  Google Scholar 

  168. Ajioka I, Martins RA, Bayazitov IT, Donovan S, Johnson DA, Frase S, Cicero SA, Boyd K, Zakharenko SS, Dyer MA (2007) Differentiated horizontal interneurons clonally expand to form metastatic retinoblastoma in mice. Cell 131(2):378–390. doi:10.1016/j.cell.2007.09.036

    Article  PubMed  CAS  Google Scholar 

  169. Xu XL, Fang Y, Lee TC, Forrest D, Gregory-Evans C, Almeida D, Liu A, Jhanwar SC, Abramson DH, Cobrinik D (2009) Retinoblastoma has properties of a cone precursor tumor and depends upon cone-specific MDM2 signaling. Cell 137(6):1018–1031. doi:10.1016/j.cell.2009.03.051

    Article  PubMed  CAS  Google Scholar 

  170. Jacques TS, Swales A, Brzozowski MJ, Henriquez NV, Linehan JM, Mirzadeh Z, O’Malley C, Naumann H, Alvarez-Buylla A, Brandner S (2010) Combinations of genetic mutations in the adult neural stem cell compartment determine brain tumour phenotypes. Embo J 29(1):222–235. doi:10.1038/emboj.2009.327

    Article  PubMed  CAS  Google Scholar 

  171. Marino S, Vooijs M, van Der Gulden H, Jonkers J, Berns A (2000) Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev 14(8):994–1004

    PubMed  CAS  Google Scholar 

  172. Xiao A, Wu H, Pandolfi PP, Louis DN, Van Dyke T (2002) Astrocyte inactivation of the pRb pathway predisposes mice to malignant astrocytoma development that is accelerated by PTEN mutation. Cancer Cell 1(2):157–168

    Article  PubMed  CAS  Google Scholar 

  173. Vanderluit JL, Ferguson KL, Nikoletopoulou V, Parker M, Ruzhynsky V, Alexson T, McNamara SM, Park DS, Rudnicki M, Slack RS (2004) p107 regulates neural precursor cells in the mammalian brain. J Cell Biol 166(6):853–863. doi:10.1083/jcb.200403156

    Article  PubMed  CAS  Google Scholar 

  174. Vanderluit JL, Wylie CA, McClellan KA, Ghanem N, Fortin A, Callaghan S, MacLaurin JG, Park DS, Slack RS (2007) The Retinoblastoma family member p107 regulates the rate of progenitor commitment to a neuronal fate. J Cell Biol 178(1):129–139. doi:10.1083/jcb.200703176

    Article  PubMed  CAS  Google Scholar 

  175. McClellan KA, Vanderluit JL, Julian LM, Andrusiak MG, Dugal-Tessier D, Park DS, Slack RS (2009) The p107/E2F pathway regulates fibroblast growth factor 2 responsiveness in neural precursor cells. Mol Cell Biol 29(17):4701–4713. doi:10.1128/MCB.01767-08

    Article  PubMed  CAS  Google Scholar 

  176. Borrow J, Goddard AD, Sheer D, Solomon E (1990) Molecular analysis of acute promyelocytic leukemia breakpoint cluster region on chromosome 17. Science 249(4976):1577–1580

    Article  PubMed  CAS  Google Scholar 

  177. de The H, Chomienne C, Lanotte M, Degos L, Dejean A (1990) The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus. Nature 347(6293):558–561. doi:10.1038/347558a0

    Article  PubMed  Google Scholar 

  178. de The H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A (1991) The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 66(4):675–684

    Article  PubMed  Google Scholar 

  179. Longo L, Pandolfi PP, Biondi A, Rambaldi A, Mencarelli A, Lo Coco F, Diverio D, Pegoraro L, Avanzi G, Tabilio A et al (1990) Rearrangements and aberrant expression of the retinoic acid receptor alpha gene in acute promyelocytic leukemias. J Exp Med 172(6):1571–1575

    Article  PubMed  CAS  Google Scholar 

  180. Melnick A, Licht JD (1999) Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood 93(10):3167–3215

    PubMed  CAS  Google Scholar 

  181. Pandolfi PP, Grignani F, Alcalay M, Mencarelli A, Biondi A, LoCoco F, Pelicci PG (1991) Structure and origin of the acute promyelocytic leukemia myl/RAR alpha cDNA and characterization of its retinoid-binding and transactivation properties. Oncogene 6(7):1285–1292

    PubMed  CAS  Google Scholar 

  182. Kakizuka A, Miller WH Jr, Umesono K, Warrell RP Jr, Frankel SR, Murty VV, Dmitrovsky E, Evans RM (1991) Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML. Cell 66(4):663–674

    Article  PubMed  CAS  Google Scholar 

  183. Pandolfi PP, Alcalay M, Fagioli M, Zangrilli D, Mencarelli A, Diverio D, Biondi A, Lo Coco F, Rambaldi A, Grignani F et al (1992) Genomic variability and alternative splicing generate multiple PML/RAR alpha transcripts that encode aberrant PML proteins and PML/RAR alpha isoforms in acute promyelocytic leukaemia. Embo J 11(4):1397–1407

    PubMed  CAS  Google Scholar 

  184. Salomoni P, Pandolfi PP (2002) The role of PML in tumor suppression. Cell 108(2):165–170

    Article  PubMed  CAS  Google Scholar 

  185. Wang ZG, Ruggero D, Ronchetti S, Zhong S, Gaboli M, Rivi R, Pandolfi PP (1998) PML is essential for multiple apoptotic pathways. Nat Genet 20(3):266–272. doi:10.1038/3073

    Article  PubMed  CAS  Google Scholar 

  186. Ishov AM, Sotnikov AG, Negorev D, Vladimirova OV, Neff N, Kamitani T, Yeh ET, Strauss JF 3rd, Maul GG (1999) PML is critical for ND10 formation and recruits the PML-interacting protein DAXX to this nuclear structure when modified by SUMO-1. J Cell Biol 147(2):221–234

    Article  PubMed  CAS  Google Scholar 

  187. Lallemand-Breitenbach V, de The H (2010) PML nuclear bodies. Cold Spring Harb Perspect Biol 2(5):a000661. doi:10.1101/cshperspect.a000661

    Article  PubMed  CAS  Google Scholar 

  188. Shen TH, Lin HK, Scaglioni PP, Yung TM, Pandolfi PP (2006) The mechanisms of PML-nuclear body formation. Mol Cell 24(3):331–339. doi:10.1016/j.molcel.2006.09.013

    Article  PubMed  CAS  Google Scholar 

  189. Borden KL, Culjkovic B (2009) Perspectives in PML: a unifying framework for PML function. Front Biosci 14:497–509

    Article  PubMed  CAS  Google Scholar 

  190. Bourdeau V, Baudry D, Ferbeyre G (2009) PML links aberrant cytokine signaling and oncogenic stress to cellular senescence. Front Biosci 14:475–485

    Article  PubMed  CAS  Google Scholar 

  191. Hofmann TG, Will H (2003) Body language: the function of PML nuclear bodies in apoptosis regulation. Cell Death Differ 10(12):1290–1299. doi:10.1038/sj.cdd.4401313

    Article  PubMed  CAS  Google Scholar 

  192. Pearson M, Pelicci PG (2001) PML interaction with p53 and its role in apoptosis and replicative senescence. Oncogene 20(49):7250–7256. doi:10.1038/sj.onc.1204856

    Article  PubMed  CAS  Google Scholar 

  193. Salomoni P, Ferguson BJ, Wyllie AH, Rich T (2008) New insights into the role of PML in tumour suppression. Cell Res 18(6):622–640. doi:10.1038/cr.2008.58

    Article  PubMed  CAS  Google Scholar 

  194. Takahashi Y, Lallemand-Breitenbach V, Zhu J, de The H (2004) PML nuclear bodies and apoptosis. Oncogene 23(16):2819–2824. doi:10.1038/sj.onc.1207533

    Article  PubMed  CAS  Google Scholar 

  195. Regad T, Bellodi C, Nicotera P, Salomoni P (2009) The tumor suppressor PML regulates cell fate in the developing neocortex. Nat Neurosci 12(2):132–140. doi:10.1038/nn.2251

    Article  PubMed  CAS  Google Scholar 

  196. Michod D, Bartesaghi S, Khelifi A, Bellodi C, Berliocchi L, Nicotera P, Salomoni P (2012) Calcium-dependent dephosphorylation of the histone chaperone DAXX regulates H3.3 loading and transcription upon neuronal activation. Neuron 74(1):122–135. doi:10.1016/j.neuron.2012.02.021

    Article  PubMed  CAS  Google Scholar 

  197. Drane P, Ouararhni K, Depaux A, Shuaib M, Hamiche A (2010) The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev 24(12):1253–1265. doi:10.1101/gad.566910

    Article  PubMed  CAS  Google Scholar 

  198. Lewis PW, Elsaesser SJ, Noh KM, Stadler SC, Allis CD (2010) DAXX is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc Natl Acad Sci USA 107(32):14075–14080. doi:10.1073/pnas.1008850107

    Article  PubMed  CAS  Google Scholar 

  199. Berube NG, Mangelsdorf M, Jagla M, Vanderluit J, Garrick D, Gibbons RJ, Higgs DR, Slack RS, Picketts DJ (2005) The chromatin-remodeling protein ATRX is critical for neuronal survival during corticogenesis. J Clin Invest 115(2):258–267. doi:10.1172/JCI22329

    PubMed  CAS  Google Scholar 

  200. Ito K, Bernardi R, Morotti A, Matsuoka S, Saglio G, Ikeda Y, Rosenblatt J, Avigan DE, Teruya-Feldstein J, Pandolfi PP (2008) PML targeting eradicates quiescent leukaemia-initiating cells. Nature 453(7198):1072–1078. doi:10.1038/nature07016

    Article  PubMed  CAS  Google Scholar 

  201. Milyavsky M, Gan OI, Trottier M, Komosa M, Tabach O, Notta F, Lechman E, Hermans KG, Eppert K, Konovalova Z, Ornatsky O, Domany E, Meyn MS, Dick JE (2010) A distinctive DNA damage response in human hematopoietic stem cells reveals an apoptosis-independent role for p53 in self-renewal. Cell Stem Cell 7(2):186–197. doi:10.1016/j.stem.2010.05.016

    Article  PubMed  CAS  Google Scholar 

  202. Li W, Ferguson BJ, Khaled WT, Tevendale M, Stingl J, Poli V, Rich T, Salomoni P, Watson CJ (2009) PML depletion disrupts normal mammary gland development and skews the composition of the mammary luminal cell progenitor pool. Proc Natl Acad Sci USA 106(12):4725–4730. doi:10.1073/pnas.0807640106

    Article  PubMed  CAS  Google Scholar 

  203. Salomoni P, Betts-Henderson J (2011) The role of PML in the nervous system. Mol Neurobiol 43(2):114–123. doi:10.1007/s12035-010-8156-y

    Article  PubMed  CAS  Google Scholar 

  204. Gurrieri C, Capodieci P, Bernardi R, Scaglioni PP, Nafa K, Rush LJ, Verbel DA, Cordon-Cardo C, Pandolfi PP (2004) Loss of the tumor suppressor PML in human cancers of multiple histologic origins. J Natl Cancer Inst 96(4):269–279

    Article  PubMed  CAS  Google Scholar 

  205. Huse JT, Holland EC (2010) Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat Rev Cancer 10(5):319–331. doi:10.1038/nrc2818

    Article  PubMed  CAS  Google Scholar 

  206. Jeanne M, Lallemand-Breitenbach V, Ferhi O, Koken M, Le Bras M, Duffort S, Peres L, Berthier C, Soilihi H, Raught B, de The H (2010) PML/RARA oxidation and arsenic binding initiate the antileukemia response of As2O3. Cancer Cell 18(1):88–98. doi:10.1016/j.ccr.2010.06.003

    Article  PubMed  CAS  Google Scholar 

  207. Zhang XW, Yan XJ, Zhou ZR, Yang FF, Wu ZY, Sun HB, Liang WX, Song AX, Lallemand-Breitenbach V, Jeanne M, Zhang QY, Yang HY, Huang QH, Zhou GB, Tong JH, Zhang Y, Wu JH, Hu HY, de The H, Chen SJ, Chen Z (2010) Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML. Science 328(5975):240–243. doi:10.1126/science.1183424

    Article  PubMed  CAS  Google Scholar 

  208. Alkema MJ, Wiegant J, Raap AK, Berns A, van Lohuizen M (1993) Characterization and chromosomal localization of the human proto-oncogene BMI-1. Hum Mol Genet 2(10):1597–1603

    Article  PubMed  CAS  Google Scholar 

  209. Tavares L, Dimitrova E, Oxley D, Webster J, Poot R, Demmers J, Bezstarosti K, Taylor S, Ura H, Koide H, Wutz A, Vidal M, Elderkin S, Brockdorff N (2012) RYBP-PRC1 complexes mediate H2A ubiquitylation at Polycomb target sites independently of PRC2 and H3 K27me3. Cell 148(4):664–678. doi:10.1016/j.cell.2011.12.029

    Article  PubMed  CAS  Google Scholar 

  210. Shah N, Sukumar S (2010) The Hox genes and their roles in oncogenesis. Nat Rev Cancer 10(5):361–371. doi:10.1038/nrc2826

    Article  PubMed  CAS  Google Scholar 

  211. Brookes E, de Santiago I, Hebenstreit D, Morris KJ, Carroll T, Xie SQ, Stock JK, Heidemann M, Eick D, Nozaki N, Kimura H, Ragoussis J, Teichmann SA, Pombo A (2012) Polycomb associates genome-wide with a specific RNA polymerase II variant, and regulates metabolic genes in ESCs. Cell Stem Cell 10(2):157–170. doi:10.1016/j.stem.2011.12.017

    Article  PubMed  CAS  Google Scholar 

  212. Molofsky AV, Pardal R, Iwashita T, Park IK, Clarke MF, Morrison SJ (2003) Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425(6961):962–967. doi:10.1038/nature02060

    Article  PubMed  CAS  Google Scholar 

  213. van der Lugt NM, Domen J, Linders K, van Roon M, Robanus-Maandag E, te Riele H, van der Valk M, Deschamps J, Sofroniew M, van Lohuizen M et al (1994) Posterior transformation, neurological abnormalities, and severe hematopoietic defects in mice with a targeted deletion of the bmi-1 proto-oncogene. Genes Dev 8(7):757–769

    Article  PubMed  Google Scholar 

  214. Quelle DE, Zindy F, Ashmun RA, Sherr CJ (1995) Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83(6):993–1000

    Article  PubMed  CAS  Google Scholar 

  215. Sharpless NE, DePinho RA (1999) The INK4A/ARF locus and its two gene products. Curr Opin Genet Dev 9(1):22–30

    Article  PubMed  CAS  Google Scholar 

  216. Sherr CJ (2006) Divorcing ARF and p53: an unsettled case. Nat Rev Cancer 6(9):663–673. doi:10.1038/nrc1954

    Article  PubMed  CAS  Google Scholar 

  217. Park IK, Morrison SJ, Clarke MF (2004) Bmi1, stem cells, and senescence regulation. J Clin Invest 113(2):175–179. doi:10.1172/JCI20800

    PubMed  CAS  Google Scholar 

  218. Marine JC (2010) p53 stabilization: the importance of nuclear import. Cell Death Differ 17(2):191–192. doi:10.1038/cdd.2009.183

    Article  PubMed  Google Scholar 

  219. Vonlanthen S, Heighway J, Altermatt HJ, Gugger M, Kappeler A, Borner MM, van Lohuizen M, Betticher DC (2001) The bmi-1 oncoprotein is differentially expressed in non-small cell lung cancer and correlates with INK4A-ARF locus expression. Br J Cancer 84(10):1372–1376. doi:10.1054/bjoc.2001.1791

    Article  PubMed  CAS  Google Scholar 

  220. Fasano CA, Dimos JT, Ivanova NB, Lowry N, Lemischka IR, Temple S (2007) shRNA knockdown of Bmi-1 reveals a critical role for p21-Rb pathway in NSC self-renewal during development. Cell Stem Cell 1(1):87–99. doi:10.1016/j.stem.2007.04.001

    Article  PubMed  CAS  Google Scholar 

  221. Subkhankulova T, Zhang X, Leung C, Marino S (2010) Bmi1 directly represses p21Waf1/Cip1 in Shh-induced proliferation of cerebellar granule cell progenitors. Mol Cell Neurosci 45(2):151–162. doi:10.1016/j.mcn.2010.06.006

    Article  PubMed  CAS  Google Scholar 

  222. Fasano CA, Phoenix TN, Kokovay E, Lowry N, Elkabetz Y, Dimos JT, Lemischka IR, Studer L, Temple S (2009) Bmi-1 cooperates with Foxg1 to maintain neural stem cell self-renewal in the forebrain. Genes Dev 23(5):561–574. doi:10.1101/gad.1743709

    Article  PubMed  CAS  Google Scholar 

  223. Leung C, Lingbeek M, Shakhova O, Liu J, Tanger E, Saremaslani P, Van Lohuizen M, Marino S (2004) Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature 428(6980):337–341. doi:10.1038/nature02385

    Article  PubMed  CAS  Google Scholar 

  224. Marino S (2005) Medulloblastoma: developmental mechanisms out of control. Trends Mol Med 11(1):17–22. doi:10.1016/j.molmed.2004.11.008

    Article  PubMed  CAS  Google Scholar 

  225. Alvarez-Buylla A, Kohwi M, Nguyen TM, Merkle FT (2008) The heterogeneity of adult neural stem cells and the emerging complexity of their niche. Cold Spring Harb Symp Quant Biol 73:357–365. doi:10.1101/sqb.2008.73.019

    Article  PubMed  CAS  Google Scholar 

  226. Alvarez-Buylla A, Temple S (1998) Stem cells in the developing and adult nervous system. J Neurobiol 36(2):105–110

    Article  PubMed  CAS  Google Scholar 

  227. Morshead CM, Craig CG, van der Kooy D (1998) In vivo clonal analyses reveal the properties of endogenous neural stem cell proliferation in the adult mammalian forebrain. Development 125(12):2251–2261

    PubMed  CAS  Google Scholar 

  228. Kruger GM, Mosher JT, Bixby S, Joseph N, Iwashita T, Morrison SJ (2002) Neural crest stem cells persist in the adult gut but undergo changes in self-renewal, neuronal subtype potential, and factor responsiveness. Neuron 35(4):657–669

    Article  PubMed  CAS  Google Scholar 

  229. Molofsky AV, He S, Bydon M, Morrison SJ, Pardal R (2005) Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev 19(12):1432–1437. doi:10.1101/gad.1299505

    Article  PubMed  CAS  Google Scholar 

  230. Liu J, Cao L, Chen J, Song S, Lee IH, Quijano C, Liu H, Keyvanfar K, Chen H, Cao LY, Ahn BH, Kumar NG, Rovira II, Xu XL, van Lohuizen M, Motoyama N, Deng CX, Finkel T (2009) Bmi1 regulates mitochondrial function and the DNA damage response pathway. Nature 459(7245):387–392. doi:10.1038/nature08040

    Article  PubMed  CAS  Google Scholar 

  231. Chatoo W, Abdouh M, David J, Champagne MP, Ferreira J, Rodier F, Bernier G (2009) The Polycomb group gene Bmi1 regulates antioxidant defenses in neurons by repressing p53 pro-oxidant activity. J Neurosci 29(2):529–542. doi:10.1523/JNEUROSCI.5303-08.2009

    Article  PubMed  CAS  Google Scholar 

  232. Ito K, Hirao A, Arai F, Matsuoka S, Takubo K, Hamaguchi I, Nomiyama K, Hosokawa K, Sakurada K, Nakagata N, Ikeda Y, Mak TW, Suda T (2004) Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431(7011):997–1002. doi:10.1038/nature02989

    Article  PubMed  CAS  Google Scholar 

  233. Le Belle JE, Orozco NM, Paucar AA, Saxe JP, Mottahedeh J, Pyle AD, Wu H, Kornblum HI (2011) Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell 8(1):59–71. doi:10.1016/j.stem.2010.11.028

    Article  PubMed  CAS  Google Scholar 

  234. Hayry V, Tynninen O, Haapasalo HK, Wolfer J, Paulus W, Hasselblatt M, Sariola H, Paetau A, Sarna S, Niemela M, Wartiovaara K, Nupponen NN (2008) Stem cell protein BMI-1 is an independent marker for poor prognosis in oligodendroglial tumours. Neuropathol Appl Neurobiol 34(5):555–563. doi:10.1111/j.1365-2990.2008.00949.x

    Article  PubMed  CAS  Google Scholar 

  235. Tirabosco R, De Maglio G, Skrap M, Falconieri G, Pizzolitto S (2008) Expression of the Polycomb-group protein BMI1 and correlation with p16 in astrocytomas an immunohistochemical study on 80 cases. Pathol Res Pract 204(9):625–631. doi:10.1016/j.prp.2008.02.007

    Article  PubMed  Google Scholar 

  236. Hayry V, Tanner M, Blom T, Tynninen O, Roselli A, Ollikainen M, Sariola H, Wartiovaara K, Nupponen NN (2008) Copy number alterations of the Polycomb gene BMI1 in gliomas. Acta Neuropathol 116(1):97–102. doi:10.1007/s00401-008-0376-0

    Article  PubMed  CAS  Google Scholar 

  237. Abdouh M, Facchino S, Chatoo W, Balasingam V, Ferreira J, Bernier G (2009) BMI1 sustains human glioblastoma multiforme stem cell renewal. J Neurosci 29(28):8884–8896. doi:10.1523/JNEUROSCI.0968-09.2009

    Article  PubMed  CAS  Google Scholar 

  238. Michael LE, Westerman BA, Ermilov AN, Wang A, Ferris J, Liu J, Blom M, Ellison DW, van Lohuizen M, Dlugosz AA (2008) Bmi1 is required for Hedgehog pathway-driven medulloblastoma expansion. Neoplasia 10(12):1343–1349 1345p following 1349

    PubMed  Google Scholar 

  239. Wiederschain D, Chen L, Johnson B, Bettano K, Jackson D, Taraszka J, Wang YK, Jones MD, Morrissey M, Deeds J, Mosher R, Fordjour P, Lengauer C, Benson JD (2007) Contribution of Polycomb homologues Bmi-1 and Mel-18 to medulloblastoma pathogenesis. Mol Cell Biol 27(13):4968–4979. doi:10.1128/MCB.02244-06

    Article  PubMed  CAS  Google Scholar 

  240. Bruggeman SW, Hulsman D, Tanger E, Buckle T, Blom M, Zevenhoven J, van Tellingen O, van Lohuizen M (2007) Bmi1 controls tumor development in an Ink4a/Arf-independent manner in a mouse model for glioma. Cancer Cell 12(4):328–341. doi:10.1016/j.ccr.2007.08.032

    Article  PubMed  CAS  Google Scholar 

  241. Dirks P (2007) Bmi1 and cell of origin determinants of brain tumor phenotype. Cancer Cell 12(4):295–297. doi:10.1016/j.ccr.2007.10.003

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge members of the PS lab for critical discussion. PS is supported by the Samantha Dickson Brain Tumour Trust (SDBTT). Special thanks are due to the Brian Cross family for their generous support of the Samantha Dickson Brain Cancer Unit. SB is supported by the SDBTT. We also thank David Hunter and Wendy Tansey for a generous donation in memory of Peter Clark.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Salomoni.

Glossary

Glossary

Neural stem cells (NSCs):

Neural stem cells are the self-renewing, multi-potent stem cells of the nervous system. Neural stem cells have the potential to give rise to offspring cells that grow and differentiate in neurons and glia cells.

Transit amplifying cells:

Transit amplifying cells are mitotic cells of the neural lineage with a fast dividing cell cycle that retain the ability to proliferate and to give rise to terminally differentiated cells but are not capable of indefinite self-renewal.

Neural precursor cells (NPCs):

Neural precursor cells (NPCs) general term to identify any neural stem or progenitor cells.

Note:

Controversy about the exact definition remains and the concept is still evolving [1, 2628].

Self-renewal:

The process by which a stem cell divides asymmetrically or symmetrically over an extended period of time (for example, during the life-span of an animal) to generate one or two daughter stem cells that have a developmental potential similar to the mother cell. Self-renewal is used by neural stem cells to expand during development, within niche of the adult brain, and upon brain injury.

Quiescent cell:

A cell whose cell cycle has been temporary arrested, although, strictly speaking, it might still be cycling but with a particular long cell cycle. Note! Adult neural stem cells can be quiescent.

Post-mitotic cells:

A cell that is incapable of proliferation, such as a neuron, in which cell cycle is irreversibly blocked.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartesaghi, S., Salomoni, P. Tumor suppressive pathways in the control of neurogenesis. Cell. Mol. Life Sci. 70, 581–597 (2013). https://doi.org/10.1007/s00018-012-1063-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1063-9

Keywords

Navigation