Skip to main content
Log in

The LRRK2 G2019S mutant exacerbates basal autophagy through activation of the MEK/ERK pathway

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Mutations in leucine-rich repeat kinase 2 (LRRK2) are a major cause of familial Parkinsonism, and the G2019S mutation of LRRK2 is one of the most prevalent mutations. The deregulation of autophagic processes in nerve cells is thought to be a possible cause of Parkinson’s disease (PD). In this study, we observed that G2019S mutant fibroblasts exhibited higher autophagic activity levels than control fibroblasts. Elevated levels of autophagic activity can trigger cell death, and in our study, G2019S mutant cells exhibited increased apoptosis hallmarks compared to control cells. LRRK2 is able to induce the phosphorylation of MAPK/ERK kinases (MEK). The use of 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene (U0126), a highly selective inhibitor of MEK1/2, reduced the enhanced autophagy and sensibility observed in G2019S LRRK2 mutation cells. These data suggest that the G2019S mutation induces autophagy via MEK/ERK pathway and that the inhibition of this exacerbated autophagy reduces the sensitivity observed in G2019S mutant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Baf A1:

Bafilomycin A1

cDNA:

DNA complementary

CMFDA:

5-chloromethylfluorescein diacetate

Cyt c:

Cytochrome c

SDS-PAGE:

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis

EBSS:

Earle’s balanced salt solution medium

ERK:

MAPK/extracellular signal-regulated protein kinase

ERM:

Ezrin/radixin/moesin

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

Ho:

Hoechst 33342

LAMP-2:

Lysosomal-associated membrane protein 2

LRRK2:

Leucine-rich repeat kinase 2

LTR:

LysoTracker Red DND99

MAPK:

Mitogen-activated protein kinase

MBP:

Myelin basic protein

MEK:

MAPK/ERK kinase

mTOR:

The mammalian target of rapamycin

PBS:

Phosphate buffered saline

PCR:

Polymerase chain reaction

PD:

Parkinson’s disease

PI:

Propidium iodide

ROS:

Reactive oxygen species

U0126:

1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene

Wt:

Wild-type

References

  1. Gerlach M, Riederer P (1996) Animal models of Parkinson’s disease: an empirical comparison with the phenomenology of the disease in man. J Neural Transm 103:987–1041

    Article  PubMed  CAS  Google Scholar 

  2. Martinez-Vicente M, Cuervo AM (2007) Autophagy and neurodegeneration: when the cleaning crew goes on strike. Lancet Neurol 6:352–361

    Article  PubMed  CAS  Google Scholar 

  3. Gonzalez-Polo RA, Niso-Santano M, Ortiz–Ortiz MA, Gomez-Martin A, Moran JM, Garcia-Rubio L, Francisco-Morcillo J, Zaragoza C, Soler G, Fuentes JM (2007) Inhibition of paraquat-induced autophagy accelerates the apoptotic cell death in neuroblastoma SH-SY5Y cells. Toxicol Sci 97:448–458

    Article  PubMed  CAS  Google Scholar 

  4. Paisan-Ruiz C, Jain S, Evans EW, Gilks WP, Simon J, van der Brug M, Lopez de Munain A, Aparicio S, Gil AM, Khan N et al (2004) Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron 44:595–600

    Article  PubMed  CAS  Google Scholar 

  5. Berg D, Schweitzer KJ, Leitner P, Zimprich A, Lichtner P, Belcredi P, Brussel T, Schulte C, Maass S, Nagele T et al (2005) Type and frequency of mutations in the LRRK2 gene in familial and sporadic Parkinson’s disease. Brain 128:3000–3011

    PubMed  Google Scholar 

  6. Ozelius LJ, Senthil G, Saunders-Pullman R, Ohmann E, Deligtisch A, Tagliati M, Hunt AL, Klein C, Henick B, Hailpern SM et al (2006) LRRK2 G2019S as a cause of Parkinson’s disease in Ashkenazi Jews. N Engl J Med 354:424–425

    Article  PubMed  CAS  Google Scholar 

  7. West AB, Moore DJ, Biskup S, Bugayenko A, Smith WW, Ross CA, Dawson VL, Dawson TM (2005) Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci USA 102:16842–16847

    Article  PubMed  CAS  Google Scholar 

  8. Greggio E, Jain S, Kingsbury A, Bandopadhyay R, Lewis P, Kaganovich A, van der Brug MP, Beilina A, Blackinton J, Thomas KJ et al (2006) Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiol Dis 23:329–341

    Article  PubMed  CAS  Google Scholar 

  9. Jaleel M, Nichols RJ, Deak M, Campbell DG, Gillardon F, Knebel A, Alessi DR (2007) LRRK2 phosphorylates moesin at threonine-558: characterization of how Parkinson’s disease mutants affect kinase activity. Biochem J 405:307–317

    Article  PubMed  CAS  Google Scholar 

  10. Gillardon F (2009) Leucine-rich repeat kinase 2 phosphorylates brain tubulin-beta isoforms and modulates microtubule stability—a point of convergence in parkinsonian neurodegeneration? J Neurochem 110:1514–1522

    Article  PubMed  CAS  Google Scholar 

  11. Gandhi PN, Wang X, Zhu X, Chen SG, Wilson-Delfosse AL (2008) The Roc domain of leucine-rich repeat kinase 2 is sufficient for interaction with microtubules. J Neurosci Res 86:1711–1720

    Article  PubMed  CAS  Google Scholar 

  12. Imai Y, Gehrke S, Wang HQ, Takahashi R, Hasegawa K, Oota E, Lu B (2008) Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. EMBO J 27:2432–2443

    Article  PubMed  CAS  Google Scholar 

  13. Webber PJ, Smith AD, Sen S, Renfrow MB, Mobley JA, West AB (2011) Autophosphorylation in the leucine-rich repeat kinase 2 (LRRK2) GTPase domain modifies kinase and GTP-binding activities. J Mol Biol 412:94–110

    Article  PubMed  CAS  Google Scholar 

  14. Kamikawaji S, Ito G, Iwatsubo T (2009) Identification of the autophosphorylation sites of LRRK2. Biochemistry 48:10963–10975

    Article  PubMed  CAS  Google Scholar 

  15. Doggett EA, Zhao J, Mork CN, Hu D, Nichols RJ (2012) Phosphorylation of LRRK2 serines 955 and 973 is disrupted by Parkinson’s disease mutations and LRRK2 pharmacological inhibition. J Neurochem 120:37–45

    Article  PubMed  CAS  Google Scholar 

  16. Dzamko N, Deak M, Hentati F, Reith AD, Prescott AR, Alessi DR, Nichols RJ (2010) Inhibition of LRRK2 kinase activity leads to dephosphorylation of Ser(910)/Ser(935), disruption of 14-3-3 binding and altered cytoplasmic localization. Biochem J 430:405–413

    Article  PubMed  CAS  Google Scholar 

  17. Plowey ED, Cherra SJ 3rd, Liu YJ, Chu CT (2008) Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells. J Neurochem 105:1048–1056

    Article  PubMed  CAS  Google Scholar 

  18. Liou AK, Leak RK, Li L, Zigmond MJ (2008) Wild-type LRRK2 but not its mutant attenuates stress-induced cell death via ERK pathway. Neurobiol Dis 32:116–124

    Article  PubMed  CAS  Google Scholar 

  19. Meredith GE, Totterdell S, Petroske E, Santa Cruz K, Callison RC Jr, Lau YS (2002) Lysosomal malfunction accompanies alpha-synuclein aggregation in a progressive mouse model of Parkinson’s disease. Brain Res 956:156–165

    Article  PubMed  CAS  Google Scholar 

  20. Smith WW, Pei Z, Jiang H, Moore DJ, Liang Y, West AB, Dawson VL, Dawson TM, Ross CA (2005) Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration. Proc Natl Acad Sci USA 102:18676–18681

    Article  PubMed  CAS  Google Scholar 

  21. Shin N, Jeong H, Kwon J, Heo HY, Kwon JJ, Yun HJ, Kim CH, Han BS, Tong Y, Shen J et al (2008) LRRK2 regulates synaptic vesicle endocytosis. Exp Cell Res 314:2055–2065

    Article  PubMed  CAS  Google Scholar 

  22. Ko HS, Bailey R, Smith WW, Liu Z, Shin JH, Lee YI, Zhang YJ, Jiang H, Ross CA, Moore DJ et al (2009) CHIP regulates leucine-rich repeat kinase-2 ubiquitination, degradation, and toxicity. Proc Natl Acad Sci USA 106:2897–2902

    Article  PubMed  CAS  Google Scholar 

  23. Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477

    Article  PubMed  CAS  Google Scholar 

  24. Kondo Y, Kondo S (2006) Autophagy and cancer therapy. Autophagy 2:85–90

    PubMed  Google Scholar 

  25. Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, Omiya S, Mizote I, Matsumura Y, Asahi M et al (2007) The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med 13:619–624

    Article  PubMed  CAS  Google Scholar 

  26. Gonzalez-Polo R, Niso-Santano M, Moran JM, Ortiz–Ortiz MA, Bravo-San Pedro JM, Soler G, Fuentes JM (2009) Silencing DJ-1 reveals its contribution in paraquat-induced autophagy. J Neurochem 109:889–898

    Article  PubMed  CAS  Google Scholar 

  27. Anglade P, Vyas S, Javoy-Agid F, Herrero MT, Michel PP, Marquez J, Mouatt-Prigent A, Ruberg M, Hirsch EC, Agid Y (1997) Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol Histopathol 12:25–31

    PubMed  CAS  Google Scholar 

  28. Baehrecke EH (2005) Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol 6:505–510

    Article  PubMed  CAS  Google Scholar 

  29. Bursch W (2001) The autophagosomal–lysosomal compartment in programmed cell death. Cell Death Differ 8:569–581

    Article  PubMed  CAS  Google Scholar 

  30. Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293

    Article  PubMed  CAS  Google Scholar 

  31. Reggiori F, Klionsky DJ (2002) Autophagy in the eukaryotic cell. Eukaryot Cell 1:11–21

    Article  PubMed  CAS  Google Scholar 

  32. Djavaheri-Mergny M, Amelotti M, Mathieu J, Besancon F, Bauvy C, Souquere S, Pierron G, Codogno P (2006) NF-kappaB activation represses tumor necrosis factor-alpha-induced autophagy. J Biol Chem 281:30373–30382

    Article  PubMed  CAS  Google Scholar 

  33. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122:927–939

    Article  PubMed  CAS  Google Scholar 

  34. Petiot A, Ogier-Denis E, Blommaart EF, Meijer AJ, Codogno P (2000) Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 275:992–998

    Article  PubMed  CAS  Google Scholar 

  35. Gonzalez-Polo RA, Soler G, Alvarez A, Fabregat I, Fuentes JM (2003) Vitamin E blocks early events induced by 1-methyl-4-phenylpyridinium (MPP+) in cerebellar granule cells. J Neurochem 84:305–315

    Article  PubMed  CAS  Google Scholar 

  36. Sivaprasad U, Basu A (2008) Inhibition of ERK attenuates autophagy and potentiates tumour necrosis factor-alpha-induced cell death in MCF-7 cells. J Cell Mol Med 12:1265–1271

    Article  PubMed  CAS  Google Scholar 

  37. Wang J, Whiteman MW, Lian H, Wang G, Singh A, Huang D, Denmark T (2009) A non-canonical MEK/ERK signaling pathway regulates autophagy via regulating Beclin 1. J Biol Chem 284:21412–21424

    Article  PubMed  CAS  Google Scholar 

  38. Criollo A, Senovilla L, Authier H, Maiuri MC, Morselli E, Vitale I, Kepp O, Tasdemir E, Galluzzi L, Shen S et al (2010) The IKK complex contributes to the induction of autophagy. EMBO J 29:619–631

    Article  PubMed  CAS  Google Scholar 

  39. Pungaliya PP, Bai Y, Lipinski K, Anand VS, Sen S, Brown EL, Bates B, Reinhart PH, West AB, Hirst WD et al (2010) Identification and characterization of a leucine-rich repeat kinase 2 (LRRK2) consensus phosphorylation motif. PLoS One 5:e13672

    Article  PubMed  Google Scholar 

  40. Gomez-Suaga P, Luzon-Toro B, Churamani D, Zhang L, Bloor-Young D, Patel S, Woodman PG, Churchill GC, Hilfiker S (2012) Leucine-rich repeat kinase 2 regulates autophagy through a calcium-dependent pathway involving NAADP. Hum Mol Genet 21:511–525

    Article  PubMed  CAS  Google Scholar 

  41. Parisiadou L, Xie C, Cho HJ, Lin X, Gu XL, Long CX, Lobbestael E, Baekelandt V, Taymans JM, Sun L et al (2009) Phosphorylation of ezrin/radixin/moesin proteins by LRRK2 promotes the rearrangement of actin cytoskeleton in neuronal morphogenesis. J Neurosci 29:13971–13980

    Article  PubMed  CAS  Google Scholar 

  42. Lee JY, Koga H, Kawaguchi Y, Tang W, Wong E, Gao YS, Pandey UB, Kaushik S, Tresse E, Lu J et al (2010) HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J 29:969–980

    Article  PubMed  CAS  Google Scholar 

  43. Andres-Mateos E, Mejias R, Sasaki M, Li X, Lin BM, Biskup S, Zhang L, Banerjee R, Thomas B, Yang L et al (2009) Unexpected lack of hypersensitivity in LRRK2 knock-out mice to MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). J Neurosci 29:15846–15850

    Article  PubMed  CAS  Google Scholar 

  44. Gloeckner CJ, Schumacher A, Boldt K, Ueffing M (2009) The Parkinson disease-associated protein kinase LRRK2 exhibits MAPKKK activity and phosphorylates MKK3/6 and MKK4/7, in vitro. J Neurochem 109:959–968

    Article  PubMed  CAS  Google Scholar 

  45. Carballo-Carbajal I, Weber-Endress S, Rovelli G, Chan D, Wolozin B, Klein CL, Patenge N, Gasser T, Kahle PJ (2010) Leucine-rich repeat kinase 2 induces alpha-synuclein expression via the extracellular signal-regulated kinase pathway. Cell Signal 22:821–827

    Article  PubMed  CAS  Google Scholar 

  46. Gelb DJ, Oliver E, Gilman S (1999) Diagnostic criteria for Parkinson disease. Arch Neurol 56:33–39

    Article  PubMed  CAS  Google Scholar 

  47. Fuentes JM, Lompre AM, Moller JV, Falson P, le Maire M (2000) Clean Western blots of membrane proteins after yeast heterologous expression following a shortened version of the method of Perini et al. Anal Biochem 285:276–278

    Article  PubMed  CAS  Google Scholar 

  48. Pattingre S, Bauvy C, Codogno P (2003) Amino acids interfere with the ERK1/2-dependent control of macroautophagy by controlling the activation of Raf-1 in human colon cancer HT-29 cells. J Biol Chem 278:16667–16674

    Article  PubMed  CAS  Google Scholar 

  49. Mortiboys H, Johansen KK, Aasly JO, Bandmann O (2010) Mitochondrial impairment in patients with Parkinson disease with the G2019S mutation in LRRK2. Neurology 75:2017–2020

    Article  PubMed  CAS  Google Scholar 

  50. Alegre-Abarrategui J, Christian H, Lufino MM, Mutihac R, Venda LL, Ansorge O, Wade-Martins R (2009) LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model. Hum Mol Genet 18:4022–4034

    Article  PubMed  CAS  Google Scholar 

  51. Noda T, Ohsumi Y (1998) Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem 273:3963–3966

    Article  PubMed  CAS  Google Scholar 

  52. Klionsky DJ, Elazar Z, Seglen PO, Rubinsztein DC (2008) Does bafilomycin A1 block the fusion of autophagosomes with lysosomes? Autophagy 4:849–950

    PubMed  CAS  Google Scholar 

  53. Rakovic A, Grunewald A, Seibler P, Ramirez A, Kock N, Orolicki S, Lohmann K, Klein C (2010) Effect of endogenous mutant and wild-type PINK1 on Parkin in fibroblasts from Parkinson disease patients. Hum Mol Genet 19:3124–3137

    Article  PubMed  CAS  Google Scholar 

  54. Dagda RK, Zhu J, Kulich SM, Chu CT (2008) Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress: implications for Parkinson’s disease. Autophagy 4:770–782

    PubMed  CAS  Google Scholar 

  55. Eriksen JL, Wszolek Z, Petrucelli L (2005) Molecular pathogenesis of Parkinson disease. Arch Neurol 62:353–357

    Article  PubMed  Google Scholar 

  56. Kondo K, Obitsu S, Teshima R (2011) Alpha-synuclein aggregation and transmission are enhanced by leucine-rich repeat kinase 2 in human neuroblastoma SH-SY5Y cells. Biol Pharm Bull 34:1078–1083

    Article  PubMed  CAS  Google Scholar 

  57. Lin X, Parisiadou L, Gu XL, Wang L, Shim H, Sun L, Xie C, Long CX, Yang WJ, Ding J et al (2009) Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson’s-disease-related mutant alpha-synuclein. Neuron 64:807–827

    Article  PubMed  CAS  Google Scholar 

  58. Jellinger KA (2011) Interaction between alpha-synuclein and other proteins in neurodegenerative disorders. ScientificWorldJournal 11:1893–1907

    Article  PubMed  CAS  Google Scholar 

  59. Qing H, Wong W, McGeer EG, McGeer PL (2009) Lrrk2 phosphorylates alpha synuclein at serine 129: Parkinson disease implications. Biochem Biophys Res Commun 387:149–152

    Article  PubMed  CAS  Google Scholar 

  60. Tong Y, Shen J (2009) Alpha-synuclein and LRRK2: partners in crime. Neuron 64:771–773

    Article  PubMed  CAS  Google Scholar 

  61. Goedert M (2001) Alpha-synuclein and neurodegenerative diseases. Nat Rev Neurosci 2:492–501

    Article  PubMed  CAS  Google Scholar 

  62. Vekrellis K, Xilouri M, Emmanouilidou E, Rideout HJ, Stefanis L (2011) Pathological roles of alpha-synuclein in neurological disorders. Lancet Neurol 10:1015–1025

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank P. Delgado, R. Ronco, S.M.S.Y. Diop, V. Llorente-Vera, J. Bragado, J. Correa, R. Tarazona, and R. Rodriguez for invaluable technical assistance. The authors also thank FUNDESALUD. José M. Bravo-San Pedro was supported by a Junta de Extremadura predoctoral fellowship. Mireia Niso-Santano was supported as a postdoctoral researcher by the University of Extremadura. Ruben Gómez-Sánchez was supported by a Spanish Ministerio de Educación predoctoral fellowship. Ana Aiastui-Pujana and Ana Gorostidi were supported by the Ilundain Fundazioa. Rosa-Ana González-Polo was supported by a “Miguel Servet” contract (ISCIII, Ministerio de Ciencia e Innovación, Spain). Dr. Sánchez-Pernaute received research support from the Ministerio de Ciencia e Innovación, Spain (SAF 2008-04615). Dr. López de Munain received research support from the Basque Government, Spain (SAIOTEK SA-2009/00071). Dr. González-Polo received research support from ISCIII (Ministerio de Ciencia e Innovación, Spain (CP0800010, PI11/0040) and FUNDESALUD (PRIS11014). Dr. José M. Fuentes received research support from the Ministerio de Ciencia e Innovación, Spain (SAF2010-14993), FUNDESALUD (PRIS10013, PRIS11019), CIBERNED (CB06/05/004) and Consejería, Economía, Comercio e Innovación Junta de Extremadura (GRU10054).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to José M. Fuentes or Rosa A. González-Polo.

Additional information

J. M. Fuentes and R. A. González-Polo contributed equally to this paper.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bravo-San Pedro, J.M., Niso-Santano, M., Gómez-Sánchez, R. et al. The LRRK2 G2019S mutant exacerbates basal autophagy through activation of the MEK/ERK pathway. Cell. Mol. Life Sci. 70, 121–136 (2013). https://doi.org/10.1007/s00018-012-1061-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1061-y

Keywords

Navigation