Skip to main content
Log in

Evolution of the Cdk-activator Speedy/RINGO in vertebrates

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Successful completion of the cell cycle relies on the precise activation and inactivation of cyclin-dependent kinases (Cdks) whose activity is mainly regulated by binding to cyclins. Recently, a new family of Cdk regulators termed Speedy/RINGO has been discovered, which can bind and activate Cdks but shares no apparent amino acid sequence homology with cyclins. All Speedy proteins share a conserved domain of approximately 140 amino acids called “Speedy Box”, which is essential for Cdk binding. Speedy/RINGO proteins display an important role in oocyte maturation in Xenopus. Interestingly, a common feature of all Speedy genes is their predominant expression in testis suggesting that meiotic functions may be the most important physiological feature of Speedy genes. Speedy homologs have been reported in mammals and can be traced back to the most primitive clade of chordates (Ciona intestinalis). Here, we investigated the evolution of the Speedy genes and have identified a number of new Speedy/RINGO proteins. Through extensive analysis of numerous species, we discovered diverse evolutionary histories: the number of Speedy genes varies considerably among species, with evidence of substantial gains and losses. Despite the interspecies variation, Speedy is conserved among most species examined. Our results provide a complete picture of the Speedy gene family and its evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Morgan DO (2007) The cell cycle: principles of control. Primers in Biology. New Science Press, London

    Google Scholar 

  2. Ferby I, Blazquez M, Palmer A, Eritja R, Nebreda AR (1999) A novel p34cdc2-binding and activating protein that is necessary and sufficient to trigger G2/M progression in Xenopus oocytes. Genes Dev 13(16):2177–2189

    Article  PubMed  CAS  Google Scholar 

  3. Karaiskou A, Perez LH, Ferby I, Ozon R, Jessus C, Nebreda AR (2001) Differential regulation of Cdc2 and Cdk2 by RINGO and cyclins. J Biol Chem 276(38):36028–36034

    Article  PubMed  CAS  Google Scholar 

  4. Solomon MJ, Lee T, Kirschner MW (1992) Role of phosphorylation in p34cdc2 activation: identification of an activating kinase. Mol Biol Cell 3(1):13–27

    PubMed  CAS  Google Scholar 

  5. Cheng A, Gerry S, Kaldis P, Solomon MJ (2005) Biochemical characterization of Cdk2-Speedy/Ringo A2. BMC Biochem 6:19. doi:10.1186/1471-2091-6-19

    Article  PubMed  Google Scholar 

  6. Lenormand JL, Dellinger RW, Knudsen KE, Subramani S, Donoghue DJ (1999) Speedy: a novel cell cycle regulator of the G2/M transition. EMBO J 18(7):1869–1877. doi:10.1093/emboj/18.7.1869

    Article  PubMed  CAS  Google Scholar 

  7. Cheng A, Xiong W, Ferrell JE Jr, Solomon MJ (2005) Identification and comparative analysis of multiple mammalian Speedy/Ringo proteins. Cell Cycle 4(1):155–165

    Article  PubMed  CAS  Google Scholar 

  8. Dinarina A, Perez LH, Davila A, Schwab M, Hunt T, Nebreda AR (2005) Characterization of a new family of cyclin-dependent kinase activators. Biochem J 386:349–355. doi:10.1042/BJ20041779

    Article  PubMed  CAS  Google Scholar 

  9. Terret ME, Ferby I, Nebreda AR, Verlhac MH (2001) RINGO efficiently triggers meiosis resumption in mouse oocytes and induces cell cycle arrest in embryos. Biol Cell 93(1–2):89–97

    Article  PubMed  CAS  Google Scholar 

  10. Gastwirt RF, McAndrew CW, Donoghue DJ (2007) Speedy/RINGO regulation of CDKs in cell cycle, checkpoint activation and apoptosis. Cell Cycle 6(10):1188–1193

    Article  PubMed  CAS  Google Scholar 

  11. Cheng A, Solomon MJ (2008) Speedy/Ringo C regulates S and G2 phase progression in human cells. Cell Cycle 7(19):3037–3047

    Article  PubMed  CAS  Google Scholar 

  12. Ruiz EJ, Hunt T, Nebreda AR (2008) Meiotic inactivation of Xenopus Myt1 by CDK/XRINGO, but not CDK/cyclin, via site-specific phosphorylation. Mol Cell 32(2):210–220. doi:10.1016/j.molcel.2008.08.029

    Article  PubMed  CAS  Google Scholar 

  13. Venkatesh B, Kirkness EF, Loh YH, Halpern AL, Lee AP, Johnson J, Dandona N, Viswanathan LD, Tay A, Venter JC, Strausberg RL, Brenner S (2007) Survey sequencing and comparative analysis of the elephant shark (Callorhinchus milii) genome. PLoS Biol 5(4):e101. doi:10.1371/journal.pbio.0050101

    Article  PubMed  Google Scholar 

  14. Gutierrez GJ, Vogtlin A, Castro A, Ferby I, Salvagiotto G, Ronai Z, Lorca T, Nebreda AR (2006) Meiotic regulation of the CDK activator RINGO/Speedy by ubiquitin-proteasome-mediated processing and degradation. Nat Cell Biol 8(10):1084–1094. doi:10.1038/ncb1472

    Article  PubMed  CAS  Google Scholar 

  15. Porter LA, Dellinger RW, Tynan JA, Barnes EA, Kong M, Lenormand JL, Donoghue DJ (2002) Human Speedy: a novel cell cycle regulator that enhances proliferation through activation of Cdk2. J Cell Biol 157(3):357–366. doi:10.1083/jcb.200109045

    Article  PubMed  CAS  Google Scholar 

  16. Dinarina A, Santamaria PG, Nebreda AR (2009) Cell cycle regulation of the mammalian CDK activator RINGO/Speedy A. FEBS Lett 583(17):2772–2778. doi:10.1016/j.febslet.2009.07.028

    Article  PubMed  CAS  Google Scholar 

  17. Al Sorkhy M, Craig R, Market B, Ard R, Porter LA (2009) The cyclin-dependent kinase activator, Spy1A, is targeted for degradation by the ubiquitin ligase NEDD4. J Biol Chem 284(5):2617–2627. doi:10.1074/jbc.M804847200

    Article  PubMed  CAS  Google Scholar 

  18. Kume S, Endo T, Nishimura Y, Kano K, Naito K (2007) Porcine SPDYA2 (RINGO A2) stimulates CDC2 activity and accelerates meiotic maturation of porcine oocytes. Biol Reprod 76(3):440–447. doi:10.1095/biolreprod.106.057588

    Article  PubMed  CAS  Google Scholar 

  19. Cheng YM, Liu ML, Jia MC (2011) LM23 is a novel member of the Speedy/Ringo family at the crossroads of life and death of spermatogenic cell. Asian J Androl 13(3):446–452. doi:10.1038/aja.2011.21

    Article  PubMed  CAS  Google Scholar 

  20. Barnes EA, Porter LA, Lenormand JL, Dellinger RW, Donoghue DJ (2003) Human Spy1 promotes survival of mammalian cells following DNA damage. Cancer Res 63(13):3701–3707

    PubMed  CAS  Google Scholar 

  21. Gastwirt RF, Slavin DA, McAndrew CW, Donoghue DJ (2006) Spy1 expression prevents normal cellular responses to DNA damage: inhibition of apoptosis and checkpoint activation. J Biol Chem 281(46):35425–35435. doi:10.1074/jbc.M604720200

    Article  PubMed  CAS  Google Scholar 

  22. Dinarina A, Perez LH, Davila A, Schwab M, Hunt T, Nebreda AR (2005) Characterization of a new family of cyclin-dependent kinase activators. Biochem J 386(Pt 2):349–355. doi:10.1042/BJ20041779

    PubMed  CAS  Google Scholar 

  23. Dinarina A, Ruiz EJ, O’Loghlen A, Mouron S, Perez L, Nebreda AR (2008) Negative regulation of cell-cycle progression by RINGO/Speedy E. Biochem J 410(3):535–542. doi:10.1042/BJ20071453

    Article  PubMed  CAS  Google Scholar 

  24. Mouron S, de Carcer G, Seco E, Fernandez-Miranda G, Malumbres M, Nebreda AR (2010) RINGO C is required to sustain the spindle-assembly checkpoint. J Cell Sci 123(Pt 15):2586–2595. doi:10.1242/jcs.059964

    Article  PubMed  CAS  Google Scholar 

  25. Ohno S, Wolf U, Atkin NB (1968) Evolution from fish to mammals by gene duplication. Hereditas 59(1):169–187

    Article  PubMed  CAS  Google Scholar 

  26. Ohno S (1970) Evolution by gene duplication. Springer, Berlin

    Google Scholar 

  27. Gu X, Wang Y, Gu J (2002) Age distribution of human gene families shows significant roles of both large- and small-scale duplications in vertebrate evolution. Nat Genet 31(2):205–209. doi:10.1038/ng902

    Article  PubMed  CAS  Google Scholar 

  28. Ehrenborg E, Vilhelmsdotter S, Bajalica S, Larsson C, Stern I, Koch J, Brondum-Nielsen K, Luthman H (1991) Structure and localization of the human insulin-like growth factor-binding protein 2 gene. Biochem Biophys Res Commun 176(3):1250–1255

    Article  PubMed  CAS  Google Scholar 

  29. Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151(4):1531–1545

    PubMed  CAS  Google Scholar 

  30. Merla G, Brunetti-Pierri N, Micale L, Fusco C (2010) Copy number variants at Williams-Beuren syndrome 7q11.23 region. Hum Genet 128(1):3–26. doi:10.1007/s00439-010-0827-2

    Article  PubMed  CAS  Google Scholar 

  31. Savina NV, Smal MP, Kuzhir TD, Egorova TM, Khurs OM, Polityko AD, Goncharova RI (2011) Chromosomal instability at the 7q11.23 region impacts on DNA-damage response in lymphocytes from Williams-Beuren syndrome patients. Mutat Res 724(1–2):46–51. doi:10.1016/j.mrgentox.2011.05.009

    PubMed  CAS  Google Scholar 

  32. Kriek M, White SJ, Szuhai K, Knijnenburg J, van Ommen GJ, den Dunnen JT, Breuning MH (2006) Copy number variation in regions flanked (or unflanked) by duplicons among patients with developmental delay and/or congenital malformations; detection of reciprocal and partial Williams-Beuren duplications. Eur J Hum Genet 14(2):180–189. doi:10.1038/sj.ejhg.5201540

    Article  PubMed  CAS  Google Scholar 

  33. Morris CA (2010) The behavioral phenotype of Williams syndrome: a recognizable pattern of neurodevelopment. Am J Med Genet C Semin Med Genet 154C(4):427–431. doi:10.1002/ajmg.c.30286

    Article  PubMed  Google Scholar 

  34. Merla G, Ucla C, Guipponi M, Reymond A (2002) Identification of additional transcripts in the Williams-Beuren syndrome critical region. Hum Genet 110(5):429–438. doi:10.1007/s00439-002-0710-x

    Article  PubMed  CAS  Google Scholar 

  35. Berthet C, Aleem E, Coppola V, Tessarollo L, Kaldis P (2003) Cdk2 knockout mice are viable. Curr Biol 13(20):1775–1785

    Article  PubMed  CAS  Google Scholar 

  36. Ortega S, Prieto I, Odajima J, Martin A, Dubus P, Sotillo R, Barbero JL, Malumbres M, Barbacid M (2003) Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nat Genet 35(1):25–31. doi:10.1038/ng1232

    Article  PubMed  CAS  Google Scholar 

  37. Viera A, Rufas JS, Martinez I, Barbero JL, Ortega S, Suja JA (2009) CDK2 is required for proper homologous pairing, recombination and sex-body formation during male mouse meiosis. J Cell Sci 122(Pt 12):2149–2159. doi:10.1242/jcs.046706

    Article  PubMed  CAS  Google Scholar 

  38. Liu D, Matzuk MM, Sung WK, Guo Q, Wang P, Wolgemuth DJ (1998) Cyclin A1 is required for meiosis in the male mouse. Nat Genet 20(4):377–380. doi:10.1038/3855

    Article  PubMed  CAS  Google Scholar 

  39. Nickerson HD, Joshi A, Wolgemuth DJ (2007) Cyclin A1-deficient mice lack histone H3 serine 10 phosphorylation and exhibit altered aurora B dynamics in late prophase of male meiosis. Dev Biol 306(2):725–735. doi:10.1016/j.ydbio.2007.04.009

    Article  PubMed  CAS  Google Scholar 

  40. Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I (2004) VISTA: computational tools for comparative genomics. Nucleic Acids Res 32(Web Server issue):W273–279. doi:10.1093/nar/gkh458

Download references

Acknowledgments

We are thankful to Kaldis laboratory members for support, discussions, and comments on the manuscript. We are grateful to Ernesto Guccione and Antonis Giannakakis for providing cDNA from human tissues and Alice Tay and the DNA Sequencing Facility for sequencing. This work was supported by the Biomedical Research Council of A*STAR (Agency for Science, Technology and Research), Singapore.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Byrappa Venkatesh or Philipp Kaldis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

18_2012_1050_MOESM1_ESM.jpg

Supplementary Figure 1A. Localization of different SpeedyB2 and B2-like genes on human chromosome 7 Schematic diagram of chromosome 7, copied from UCSC Genome browser, Human Feb. 2009 (GRch37/hg19). Region 7q11.23 and 7q22.1 are zoomed out and modified to show the copy number variations and localization of Speedy gene on chromosome 7 (not to scale). The WBSCR gene is highlighted to indicate its vicinity to the SpeedyB2 genes. (JPEG 845 kb)

18_2012_1050_MOESM2_ESM.jpg

Supplementary Figure 1B. Localization of different SpeedyB2 and B2-like genes on human chromosome 7 Schematic diagram of region 7q11.23, a region known for high copy number variations, taken from UCSC Genome browser, Human Feb. 2009 (GRch37/hg19). Position of SpeedyE3, SpeedyE5, SpeedyE8P (SpeedyB2 and B2-like genes) are highlighted with red boxes. Multiple copies of WBSCR and GTF2IRD2 genes in region 7q11.23 are shown. (JPEG 907 kb)

18_2012_1050_MOESM3_ESM.jpg

Supplementary Figure 1C. Localization of different SpeedyB2 and B2-like genes on human chromosome 7 A Schematic diagram of region 7q22.1, taken from UCSC Genome browser, Human Feb. 2009 (GRch37/hg19). Position of SpeedyB2like1 (SpeedyE6/E2L) is highlighted in red. Multiple copies of POLRJ2 (yellow), RASA4 (purple), UPK3BL (blue), and BC041025 (green) genes in region 7q22.1 are shown. (JPEG 783 kb)

18_2012_1050_MOESM4_ESM.jpg

Supplementary Figure 2. Conserved sequences in the SpeedyB1 locus in mouse and human. VISTA plot displaying the extent of sequence conservation in the genomic regions of mouse SpeedyB1a, SpeedyB1b, and human SpeedyB1. MULTI-LAGAN alignment was performed using mouse SpeedyB1a as the base sequence. A higher conservation was found between mouse SpeedyB1a and SpeedyB1b than with human SpeedyB1. Conserved regions in the UTR are shown in cyan, introns in pink, and exons in purple. (JPEG 4969 kb)

18_2012_1050_MOESM5_ESM.jpg

Supplementary Figure 3. Conserved sequences in human SpeedyB2 genes. VISTA plot displaying the extent of conservation in the genomic regions of the human SpeedyB2, SpeedyB2-like1 and SpeedyB2-like2 genes. MULTI-LAGAN was performed using SpeedyB2-like1 as the base sequence. A high level of conservation is evident across UTR, introns and exons. (JPEG 662 kb)

18_2012_1050_MOESM6_ESM.jpg

Supplementary Figure 4. Sequence alignment of human SpeedyB2, SpeedyB2-like1, and SpeedyB2-like2 proteins highlighting repetitive sequences. Sequence alignment of human SpeedyB2, SpeedyB2-like1, and SpeedyB2-like2 proteins. A stretch of repetitive sequence (72 amino acid) is highlighted in purple and green. The number of repeats is indicated on top of the sequence alignment. For convenience, only one complete repeat is shown (repeat 1). Repeats 2 and 5 are only partly shown while repeats 3 and 4 are entirely removed. SpeedyB2-like1 and 2 display two repeats only: repeat 1 (same as repeat 1 of SpeedyB2) and repeat 2 (yellow box). Area marked with dashed line indicates the absence of extra repeats (3-5) in SpeedyB2-like1 and 2. (JPEG 2078 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chauhan, S., Zheng, X., Tan, Y.Y. et al. Evolution of the Cdk-activator Speedy/RINGO in vertebrates. Cell. Mol. Life Sci. 69, 3835–3850 (2012). https://doi.org/10.1007/s00018-012-1050-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1050-1

Keywords

Navigation