Skip to main content

Advertisement

Log in

Homeostatic and innate immune responses: role of the transmembrane glycoprotein CD98

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The transmembrane glycoprotein CD98 is a potential regulator of multiple functions, including integrin signaling and amino acid transport. Abnormal expression or function of CD98 and disruption of the interactions between CD98 and its binding partners result in defects in cell homeostasis and immune responses. Indeed, expression of CD98 has been correlated with diseases such as inflammation and tumor metastasis. Modulation of CD98 expression and/or function therefore represents a promising therapeutic strategy for the treatment and prevention of such pathologies. Herein, we review the role of CD98 with focus on its functional importance in homeostasis and immune responses, which could help to better understand the pathogenesis of CD98-associated diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Yan Y, Vasudevan S, Nguyen HT, Merlin D (2008) Intestinal epithelial CD98: an oligomeric and multifunctional protein. Biochim Biophys Acta 1780(10):1087–1092

    Article  PubMed  CAS  Google Scholar 

  2. Deves R, Boyd CA (2000) Surface antigen CD98(4F2): not a single membrane protein, but a family of proteins with multiple functions. J Membr Biol 173(3):165–177

    Article  PubMed  CAS  Google Scholar 

  3. Haynes BF, Hemler ME, Mann DL, Eisenbarth GS, Shelhamer J, Mostowski HS, Thomas CA, Strominger JL, Fauci AS (1981) Characterization of a monoclonal antibody (4F2) that binds to human monocytes and to a subset of activated lymphocytes. J Immunol 126(4):1409–1414

    PubMed  CAS  Google Scholar 

  4. Moretta A, Mingari MC, Haynes BF, Sekaly RP, Moretta L, Fauci AS (1981) Phenotypic characterization of human cytolytic T lymphocytes in mixed lymphocyte culture. J Exp Med 153(1):213–218

    Article  PubMed  CAS  Google Scholar 

  5. Nguyen HT, Dalmasso G, Yan Y, Laroui H, Dahan S, Mayer L, Sitaraman SV, Merlin D (2010) MicroRNA-7 modulates CD98 expression during intestinal epithelial cell differentiation. J Biol Chem 285(2):1479–1489

    Article  PubMed  CAS  Google Scholar 

  6. Schreiber S, MacDermott RP, Raedler A, Pinnau R, Bertovich MJ, Nash GS (1991) Increased activation of isolated intestinal lamina propria mononuclear cells in inflammatory bowel disease. Gastroenterology 101(4):1020–1030

    PubMed  CAS  Google Scholar 

  7. Kaira K, Oriuchi N, Imai H, Shimizu K, Yanagitani N, Sunaga N, Hisada T, Ishizuka T, Kanai Y, Endou H et al (2009) Prognostic significance of L-type amino acid transporter 1 (LAT1) and 4F2 heavy chain (CD98) expression in early stage squamous cell carcinoma of the lung. Cancer Sci 100(2):248–254

    Article  PubMed  CAS  Google Scholar 

  8. Kaira K, Oriuchi N, Imai H, Shimizu K, Yanagitani N, Sunaga N, Hisada T, Ishizuka T, Kanai Y, Nakajima T et al (2009) Prognostic significance of L-type amino acid transporter 1 (LAT1) and 4F2 heavy chain (CD98) expression in stage I pulmonary adenocarcinoma. Lung Cancer 66(1):120–126

    Article  PubMed  Google Scholar 

  9. Kaira K, Oriuchi N, Imai H, Shimizu K, Yanagitani N, Sunaga N, Hisada T, Kawashima O, Kamide Y, Ishizuka T et al (2009) CD98 expression is associated with poor prognosis in resected non-small-cell lung cancer with lymph node metastases. Ann Surg Oncol 16:3473–3481

    Google Scholar 

  10. Kaira K, Oriuchi N, Imai H, Shimizu K, Yanagitani N, Sunaga N, Hisada T, Tanaka S, Ishizuka T, Kanai Y et al (2008) l-type amino acid transporter 1 and CD98 expression in primary and metastatic sites of human neoplasms. Cancer Sci 99(12):2380–2386

    Article  PubMed  CAS  Google Scholar 

  11. Nguyen HT, Dalmasso G, Torkvist L, Halfvarson J, Yan Y, Laroui H, Shmerling D, Tallone T, D’Amato M, Sitaraman SV et al (2011) CD98 expression modulates intestinal homeostasis, inflammation, and colitis-associated cancer in mice. J Clin Invest 121(5):1733–1747

    Article  PubMed  CAS  Google Scholar 

  12. Cantor J, Slepak M, Ege N, Chang JT, Ginsberg MH (2011) Loss of T cell CD98 H chain specifically ablates T cell clonal expansion and protects from autoimmunity. J Immunol 187(2):851–860

    Article  PubMed  CAS  Google Scholar 

  13. Cantor J, Browne CD, Ruppert R, Feral CC, Fassler R, Rickert RC, Ginsberg MH (2009) CD98hc facilitates B cell proliferation and adaptive humoral immunity. Nat Immunol 10(4):412–419

    Article  PubMed  CAS  Google Scholar 

  14. Fogelstrand P, Feral CC, Zargham R, Ginsberg MH (2009) Dependence of proliferative vascular smooth muscle cells on CD98hc (4F2hc, SLC3A2). J Exp Med 206(11):2397–2406

    Article  PubMed  CAS  Google Scholar 

  15. Francke U, Foellmer BE, Haynes BF (1983) Chromosome mapping of human cell surface molecules: monoclonal anti-human lymphocyte antibodies 4F2, A3D8, and A1G3 define antigens controlled by different regions of chromosome 11. Somatic Cell Genet 9(3):333–344

    Article  PubMed  CAS  Google Scholar 

  16. Quackenbush E, Clabby M, Gottesdiener KM, Barbosa J, Jones NH, Strominger JL, Speck S, Leiden JM (1987) Molecular cloning of complementary DNAs encoding the heavy chain of the human 4F2 cell-surface antigen: a type II membrane glycoprotein involved in normal and neoplastic cell growth. Proc Natl Acad Sci USA 84(18):6526–6530

    Article  PubMed  CAS  Google Scholar 

  17. Teixeira S, Di Grandi S, Kuhn LC (1987) Primary structure of the human 4F2 antigen heavy chain predicts a transmembrane protein with a cytoplasmic NH2 terminus. J Biol Chem 262(20):9574–9580

    PubMed  CAS  Google Scholar 

  18. Lumadue JA, Glick AB, Ruddle FH (1987) Cloning, sequence analysis, and expression of the large subunit of the human lymphocyte activation antigen 4F2. Proc Natl Acad Sci USA 84(24):9204–9208

    Article  PubMed  CAS  Google Scholar 

  19. Quackenbush EJ, Gougos A, Baumal R, Letarte M (1986) Differential localization within human kidney of five membrane proteins expressed on acute lymphoblastic leukemia cells. J Immunol 136(1):118–124

    PubMed  CAS  Google Scholar 

  20. Merlin D, Sitaraman S, Liu X, Eastburn K, Sun J, Kucharzik T, Lewis B, Madara JL (2001) CD98-mediated links between amino acid transport and beta 1 integrin distribution in polarized columnar epithelia. J Biol Chem 276(42):39282–39289

    Article  PubMed  CAS  Google Scholar 

  21. Palacin M, Bertran J, Zorzano A (2000) Heteromeric amino acid transporters explain inherited aminoacidurias. Curr Opin Nephrol Hypertens 9(5):547–553

    Article  PubMed  CAS  Google Scholar 

  22. Verrey F, Jack DL, Paulsen IT, Saier MH Jr, Pfeiffer R (1999) New glycoprotein-associated amino acid transporters. J Membr Biol 172(3):181–192

    Article  PubMed  CAS  Google Scholar 

  23. Kanai Y, Segawa H, Miyamoto K, Uchino H, Takeda E, Endou H (1998) Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J Biol Chem 273(37):23629–23632

    Article  PubMed  CAS  Google Scholar 

  24. Mastroberardino L, Spindler B, Pfeiffer R, Skelly PJ, Loffing J, Shoemaker CB, Verrey F (1998) Amino-acid transport by heterodimers of 4F2hc/CD98 and members of a permease family. Nature 395(6699):288–291

    Article  PubMed  CAS  Google Scholar 

  25. Pfeiffer R, Rossier G, Spindler B, Meier C, Kuhn L, Verrey F (1999) Amino acid transport of y+L-type by heterodimers of 4F2hc/CD98 and members of the glycoprotein-associated amino acid transporter family. EMBO J 18(1):49–57

    Article  PubMed  CAS  Google Scholar 

  26. Pineda M, Fernandez E, Torrents D, Estevez R, Lopez C, Camps M, Lloberas J, Zorzano A, Palacin M (1999) Identification of a membrane protein, LAT-2, that Co-expresses with 4F2 heavy chain, an L-type amino acid transport activity with broad specificity for small and large zwitterionic amino acids. J Biol Chem 274(28):19738–19744

    Article  PubMed  CAS  Google Scholar 

  27. Sato H, Tamba M, Ishii T, Bannai S (1999) Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem 274(17):11455–11458

    Article  PubMed  CAS  Google Scholar 

  28. Segawa H, Fukasawa Y, Miyamoto K, Takeda E, Endou H, Kanai Y (1999) Identification and functional characterization of a Na+-independent neutral amino acid transporter with broad substrate selectivity. J Biol Chem 274(28):19745–19751

    Article  PubMed  CAS  Google Scholar 

  29. Rossier G, Meier C, Bauch C, Summa V, Sordat B, Verrey F, Kuhn LC (1999) LAT2, a new basolateral 4F2hc/CD98-associated amino acid transporter of kidney and intestine. J Biol Chem 274(49):34948–34954

    Article  PubMed  CAS  Google Scholar 

  30. Dave MH, Schulz N, Zecevic M, Wagner CA, Verrey F (2004) Expression of heteromeric amino acid transporters along the murine intestine. J Physiol 558(Pt 2):597–610

    Article  PubMed  CAS  Google Scholar 

  31. Gottesdiener KM, Karpinski BA, Lindsten T, Strominger JL, Jones NH, Thompson CB, Leiden JM (1988) Isolation and structural characterization of the human 4F2 heavy-chain gene, an inducible gene involved in T-lymphocyte activation. Mol Cell Biol 8(9):3809–3819

    PubMed  CAS  Google Scholar 

  32. Lindsten T, June CH, Thompson CB, Leiden JM (1988) Regulation of 4F2 heavy-chain gene expression during normal human T-cell activation can be mediated by multiple distinct molecular mechanisms. Mol Cell Biol 8(9):3820–3826

    PubMed  CAS  Google Scholar 

  33. Lindstein T, June CH, Ledbetter JA, Stella G, Thompson CB (1989) Regulation of lymphokine messenger RNA stability by a surface-mediated T cell activation pathway. Science 244(4902):339–343

    Article  PubMed  CAS  Google Scholar 

  34. Karpinski BA, Yang LH, Cacheris P, Morle GD, Leiden JM (1989) The first intron of the 4F2 heavy-chain gene contains a transcriptional enhancer element that binds multiple nuclear proteins. Mol Cell Biol 9(6):2588–2597

    PubMed  CAS  Google Scholar 

  35. Tanaka T, Masuko T, Hashimoto Y (1988) Appearance of a proliferation-associated antigen, gp125, on rat and human lymphocytes by co-stimulation with phorbol ester and calcium ionophore. J Biochem 103(4):644–649

    PubMed  CAS  Google Scholar 

  36. Neckers LM, Cossman J (1983) Transferrin receptor induction in mitogen-stimulated human T lymphocytes is required for DNA synthesis and cell division and is regulated by interleukin 2. Proc Natl Acad Sci USA 80(11):3494–3498

    Article  PubMed  CAS  Google Scholar 

  37. Kumagai N, Benedict SH, Mills GB, Gelfand EW (1987) Requirements for the simultaneous presence of phorbol esters and calcium ionophores in the expression of human T lymphocyte proliferation-related genes. J Immunol 139(5):1393–1399

    PubMed  CAS  Google Scholar 

  38. Kumagai N, Benedict SH, Mills GB, Gelfand EW (1988) Comparison of phorbol ester/calcium ionophore and phytohemagglutinin-induced signaling in human T lymphocytes. Demonstration of interleukin 2-independent transferrin receptor gene expression. J Immunol 140(1):37–43

    PubMed  CAS  Google Scholar 

  39. Reed JC, Alpers JD, Nowell PC, Hoover RG (1986) Sequential expression of protooncogenes during lectin-stimulated mitogenesis of normal human lymphocytes. Proc Natl Acad Sci USA 83(11):3982–3986

    Article  PubMed  CAS  Google Scholar 

  40. Cotner T, Williams JM, Christenson L, Shapiro HM, Strom TB, Strominger J (1983) Simultaneous flow cytometric analysis of human T cell activation antigen expression and DNA content. J Exp Med 157(2):461–472

    Article  PubMed  CAS  Google Scholar 

  41. Nii T, Segawa H, Taketani Y, Tani Y, Ohkido M, Kishida S, Ito M, Endou H, Kanai Y, Takeda E et al (2001) Molecular events involved in up-regulating human Na+-independent neutral amino acid transporter LAT1 during T-cell activation. Biochem J 358(Pt 3):693–704

    Article  PubMed  CAS  Google Scholar 

  42. Teixeira S, Kuhn LC (1991) Post-transcriptional regulation of the transferrin receptor and 4F2 antigen heavy chain mRNA during growth activation of spleen cells. Eur J Biochem 202(3):819–826

    Article  PubMed  CAS  Google Scholar 

  43. Dominguez F, Simon C, Quinonero A, Ramirez MA, Gonzalez-Munoz E, Burghardt H, Cervero A, Martinez S, Pellicer A, Palacin M et al (2010) Human endometrial CD98 is essential for blastocyst adhesion. PLoS One 5(10):e13380

    Article  PubMed  CAS  Google Scholar 

  44. Cai S, Bulus N, Fonseca-Siesser PM, Chen D, Hanks SK, Pozzi A, Zent R (2005) CD98 modulates integrin beta1 function in polarized epithelial cells. J Cell Sci 118(Pt 5):889–899

    Article  PubMed  CAS  Google Scholar 

  45. Yan Y, Dalmasso G, Sitaraman S, Merlin D (2007) Characterization of the human intestinal CD98 promoter and its regulation by interferon-gamma. Am J Physiol Gastrointest Liver Physiol 292(2):G535–G545

    Article  PubMed  CAS  Google Scholar 

  46. Fais S, Pallone F (1989) Ability of human colonic epithelium to express the 4F2 antigen, the common acute lymphoblastic leukemia antigen, and the transferrin receptor. Studies in inflammatory bowel disease and after in vitro exposure to different stimuli. Gastroenterology 97(6):1435–1441

    PubMed  CAS  Google Scholar 

  47. Kucharzik T, Lugering A, Yan Y, Driss A, Charrier L, Sitaraman S, Merlin D (2005) Activation of epithelial CD98 glycoprotein perpetuates colonic inflammation. Lab Invest 85(7):932–941

    Article  PubMed  CAS  Google Scholar 

  48. Sartor RB (2006) Mechanisms of disease: pathogenesis of Crohn’s disease and ulcerative colitis. Nat Clin Pract Gastroenterol Hepatol 3(7):390–407

    Article  PubMed  CAS  Google Scholar 

  49. Parmacek MS, Karpinski BA, Gottesdiener KM, Thompson CB, Leiden JM (1989) Structure, expression and regulation of the murine 4F2 heavy chain. Nucleic Acids Res 17(5):1915–1931

    Article  PubMed  CAS  Google Scholar 

  50. Dixon WT, Sikora LK, Demetrick DJ, Jerry LM (1990) Isolation and characterization of a heterodimeric surface antigen on human melanoma cells and evidence that it is the 4F2 cell activation/proliferation molecule. Int J Cancer 45(1):59–68

    Article  PubMed  CAS  Google Scholar 

  51. Esteban F, Ruiz-Cabello F, Concha A (1990) Perez Ayala M, Delgado M, Garrido F: Relationship of 4F2 antigen with local growth and metastatic potential of squamous cell carcinoma of the larynx. Cancer 66(7):1493–1498

    Article  PubMed  CAS  Google Scholar 

  52. Garber ME, Troyanskaya OG, Schluens K, Petersen S, Thaesler Z, Pacyna-Gengelbach M, van de Rijn M, Rosen GD, Perou CM, Whyte RI et al (2001) Diversity of gene expression in adenocarcinoma of the lung. Proc Natl Acad Sci USA 98(24):13784–13789

    Article  PubMed  CAS  Google Scholar 

  53. Esseghir S, Reis-Filho JS, Kennedy A, James M, O’Hare MJ, Jeffery R, Poulsom R, Isacke CM (2006) Identification of transmembrane proteins as potential prognostic markers and therapeutic targets in breast cancer by a screen for signal sequence encoding transcripts. J Pathol 210(4):420–430

    Article  PubMed  CAS  Google Scholar 

  54. Prager GW, Poettler M, Schmidinger M, Mazal PR, Susani M, Zielinski CC, Haitel A (2009) CD98hc (SLC3A2), a novel marker in renal cell cancer. Eur J Clin Invest 39(4):304–310

    Article  PubMed  CAS  Google Scholar 

  55. Osada H, Takahashi T (2007) MicroRNAs in biological processes and carcinogenesis. Carcinogenesis 28(1):2–12

    Article  PubMed  CAS  Google Scholar 

  56. Kumagai N, Benedict SH, Mills GB, Gelfand EW (1988) Induction of competence and progression signals in human T lymphocytes by phorbol esters and calcium ionophores. J Cell Physiol 137(2):329–336

    Article  PubMed  CAS  Google Scholar 

  57. Estevez R, Camps M, Rojas AM, Testar X, Deves R, Hediger MA, Zorzano A, Palacin M (1998) The amino acid transport system y+L/4F2hc is a heteromultimeric complex. FASEB J 12(13):1319–1329

    PubMed  CAS  Google Scholar 

  58. Torrents D, Estevez R, Pineda M, Fernandez E, Lloberas J, Shi YB, Zorzano A, Palacin M (1998) Identification and characterization of a membrane protein (y+L amino acid transporter-1) that associates with 4F2hc to encode the amino acid transport activity y+L. A candidate gene for lysinuric protein intolerance. J Biol Chem 273(49):32437–32445

    Article  PubMed  CAS  Google Scholar 

  59. Fukasawa Y, Segawa H, Kim JY, Chairoungdua A, Kim DK, Matsuo H, Cha SH, Endou H, Kanai Y (2000) Identification and characterization of a Na(+)-independent neutral amino acid transporter that associates with the 4F2 heavy chain and exhibits substrate selectivity for small neutral D- and L-amino acids. J Biol Chem 275(13):9690–9698

    Article  PubMed  CAS  Google Scholar 

  60. Nakauchi J, Matsuo H, Kim DK, Goto A, Chairoungdua A, Cha SH, Inatomi J, Shiokawa Y, Yamaguchi K, Saito I et al (2000) Cloning and characterization of a human brain Na(+)-independent transporter for small neutral amino acids that transports d-serine with high affinity. Neurosci Lett 287(3):231–235

    Article  PubMed  CAS  Google Scholar 

  61. Fenczik CA, Zent R, Dellos M, Calderwood DA, Satriano J, Kelly C, Ginsberg MH (2001) Distinct domains of CD98hc regulate integrins and amino acid transport. J Biol Chem 276(12):8746–8752

    Article  PubMed  CAS  Google Scholar 

  62. Nakamura E, Sato M, Yang H, Miyagawa F, Harasaki M, Tomita K, Matsuoka S, Noma A, Iwai K, Minato N (1999) 4F2 (CD98) heavy chain is associated covalently with an amino acid transporter and controls intracellular trafficking and membrane topology of 4F2 heterodimer. J Biol Chem 274(5):3009–3016

    Article  PubMed  CAS  Google Scholar 

  63. Broer A, Friedrich B, Wagner CA, Fillon S, Ganapathy V, Lang F, Broer S (2001) Association of 4F2hc with light chains LAT1, LAT2 or y+LAT2 requires different domains. Biochem J 355(Pt 3):725–731

    PubMed  CAS  Google Scholar 

  64. Liu X, Charrier L, Gewirtz A, Sitaraman S, Merlin D (2003) CD98 and intracellular adhesion molecule I regulate the activity of amino acid transporter LAT-2 in polarized intestinal epithelia. J Biol Chem 278(26):23672–23677

    Article  PubMed  CAS  Google Scholar 

  65. Chubb S, Kingsland AL, Broer A, Broer S (2006) Mutation of the 4F2 heavy-chain carboxy terminus causes y+LAT2 light-chain dysfunction. Mol Membr Biol 23(3):255–267

    Article  PubMed  CAS  Google Scholar 

  66. Simmons D, Makgoba MW, Seed B (1988) ICAM, an adhesion ligand of LFA-1, is homologous to the neural cell adhesion molecule NCAM. Nature 331(6157):624–627

    Article  PubMed  CAS  Google Scholar 

  67. Dustin ML, Rothlein R, Bhan AK, Dinarello CA, Springer TA (1986) Induction by IL 1 and interferon-gamma: tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-1). J Immunol 137(1):245–254

    PubMed  CAS  Google Scholar 

  68. Fenczik CA, Sethi T, Ramos JW, Hughes PE, Ginsberg MH (1997) Complementation of dominant suppression implicates CD98 in integrin activation. Nature 390(6655):81–85

    Article  PubMed  CAS  Google Scholar 

  69. Hynes RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69(1):11–25

    Article  PubMed  CAS  Google Scholar 

  70. Albelda SM (1993) Role of integrins and other cell adhesion molecules in tumor progression and metastasis. Lab Invest 68(1):4–17

    PubMed  CAS  Google Scholar 

  71. Zent R, Fenczik CA, Calderwood DA, Liu S, Dellos M, Ginsberg MH (2000) Class- and splice variant-specific association of CD98 with integrin beta cytoplasmic domains. J Biol Chem 275(7):5059–5064

    Article  PubMed  CAS  Google Scholar 

  72. Henderson NC, Collis EA, Mackinnon AC, Simpson KJ, Haslett C, Zent R, Ginsberg M, Sethi T (2004) CD98hc (SLC3A2) interaction with beta 1 integrins is required for transformation. J Biol Chem 279(52):54731–54741

    Article  PubMed  CAS  Google Scholar 

  73. Feral CC, Nishiya N, Fenczik CA, Stuhlmann H, Slepak M, Ginsberg MH (2005) CD98hc (SLC3A2) mediates integrin signaling. Proc Natl Acad Sci USA 102(2):355–360

    Article  PubMed  CAS  Google Scholar 

  74. Feral CC, Zijlstra A, Tkachenko E, Prager G, Gardel ML, Slepak M, Ginsberg MH (2007) CD98hc (SLC3A2) participates in fibronectin matrix assembly by mediating integrin signaling. J Cell Biol 178(4):701–711

    Article  PubMed  CAS  Google Scholar 

  75. Prager GW, Feral CC, Kim C, Han J, Ginsberg MH (2007) CD98hc (SLC3A2) interaction with the integrin beta subunit cytoplasmic domain mediates adhesive signaling. J Biol Chem 282(33):24477–24484

    Article  PubMed  CAS  Google Scholar 

  76. Lemaitre G, Stella A, Feteira J, Baldeschi C, Vaigot P, Martin MT, Monsarrat B, Waksman G (2011) CD98hc (SLC3A2) is a key regulator of keratinocyte adhesion. J Dermatol Sci 61(3):169–179

    Article  PubMed  CAS  Google Scholar 

  77. Higuchi S, Tabata N, Tajima M, Ito M, Tsurudome M, Sudo A, Uchida A, Ito Y (1998) Induction of human osteoclast-like cells by treatment of blood monocytes with anti-fusion regulatory protein-1/CD98 monoclonal antibodies. J Bone Miner Res 13(1):44–49

    Article  PubMed  CAS  Google Scholar 

  78. Suga K, Katagiri K, Kinashi T, Harazaki M, Iizuka T, Hattori M, Minato N (2001) CD98 induces LFA-1-mediated cell adhesion in lymphoid cells via activation of Rap1. FEBS Lett 489(2–3):249–253

    Article  PubMed  CAS  Google Scholar 

  79. Nguyen HT, Dalmasso G, Yan Y, Obertone TS, Sitaraman SV, Merlin D (2008) Ecto-phosphorylation of CD98 regulates cell–cell interactions. PLoS One 3(12):e3895

    Article  PubMed  CAS  Google Scholar 

  80. Redegeld FA, Caldwell CC, Sitkovsky MV (1999) Ecto-protein kinases: ecto-domain phosphorylation as a novel target for pharmacological manipulation? Trends Pharmacol Sci 20(11):453–459

    Article  PubMed  CAS  Google Scholar 

  81. Tsumura H, Suzuki N, Saito H, Kawano M, Otake S, Kozuka Y, Komada H, Tsurudome M, Ito Y (2003) The targeted disruption of the CD98 gene results in embryonic lethality. Biochem Biophys Res Commun 308(4):847–851

    Article  PubMed  CAS  Google Scholar 

  82. Sato Y, Heimeier RA, Li C, Deng C, Shi YB (2011) Extracellular domain of CD98hc is required for early murine development. Cell Biosci 1(1):7

    Article  PubMed  CAS  Google Scholar 

  83. Chandrasekaran S, Guo NH, Rodrigues RG, Kaiser J, Roberts DD (1999) Pro-adhesive and chemotactic activities of thrombospondin-1 for breast carcinoma cells are mediated by alpha3beta1 integrin and regulated by insulin-like growth factor-1 and CD98. J Biol Chem 274(16):11408–11416

    Article  PubMed  CAS  Google Scholar 

  84. Collier-Hyams LS, Neish AS (2005) Innate immune relationship between commensal flora and the mammalian intestinal epithelium. Cell Mol Life Sci 62(12):1339–1348

    Article  PubMed  CAS  Google Scholar 

  85. Chillaron J, Roca R, Valencia A, Zorzano A, Palacin M (2001) Heteromeric amino acid transporters: biochemistry, genetics, and physiology. Am J Physiol Renal Physiol 281(6):F995–F1018

    PubMed  CAS  Google Scholar 

  86. Hara K, Kudoh H, Enomoto T, Hashimoto Y, Masuko T (1999) Malignant transformation of NIH3T3 cells by overexpression of early lymphocyte activation antigen CD98. Biochem Biophys Res Commun 262(3):720–725

    Article  PubMed  CAS  Google Scholar 

  87. Shishido T, Uno S, Kamohara M, Tsuneoka-Suzuki T, Hashimoto Y, Enomoto T, Masuko T (2000) Transformation of BALB3T3 cells caused by over-expression of rat CD98 heavy chain (HC) requires its association with light chain: mis-sense mutation in a cysteine residue of CD98HC eliminates its transforming activity. Int J Cancer 87(3):311–316

    Article  PubMed  CAS  Google Scholar 

  88. Oshima M, Oshima H, Kitagawa K, Kobayashi M, Itakura C, Taketo M (1995) Loss of Apc heterozygosity and abnormal tissue building in nascent intestinal polyps in mice carrying a truncated Apc gene. Proc Natl Acad Sci USA 92(10):4482–4486

    Article  PubMed  CAS  Google Scholar 

  89. Su LK, Kinzler KW, Vogelstein B, Preisinger AC, Moser AR, Luongo C, Gould KA, Dove WF (1992) Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science 256(5057):668–670

    Article  PubMed  CAS  Google Scholar 

  90. Diaz LA Jr (1997) Friedman AW, He X, Kuick RD, Hanash SM, Fox DA: Monocyte-dependent regulation of T lymphocyte activation through CD98. Int Immunol 9(9):1221–1231

    Article  PubMed  CAS  Google Scholar 

  91. Nakao M, Kubo K, Hara A, Hirohashi N, Futagami E, Shichijo S, Sagawa K, Itoh K (1993) A monoclonal antibody (H227) recognizing a new epitope of 4F2 molecular complex associated with T cell activation. Cell Immunol 152(1):226–233

    Article  PubMed  CAS  Google Scholar 

  92. Freidman AW, Diaz LA Jr, Moore S, Schaller J, Fox DA (1994) The human 4F2 antigen: evidence for cryptic and noncryptic epitopes and for a role of 4F2 in human T lymphocyte activation. Cell Immunol 154(1):253–263

    Article  PubMed  CAS  Google Scholar 

  93. Warren AP, Patel K, Miyamoto Y, Wygant JN, Woodside DG, McIntyre BW (2000) Convergence between CD98 and integrin-mediated T-lymphocyte co-stimulation. Immunology 99(1):62–68

    Article  PubMed  CAS  Google Scholar 

  94. Miyamoto YJ, Mitchell JS, McIntyre BW (2003) Physical association and functional interaction between beta1 integrin and CD98 on human T lymphocytes. Mol Immunol 39(12):739–751

    Article  PubMed  CAS  Google Scholar 

  95. Komada H, Imai A, Hattori E, Ito M, Tsumura H, Onoda T, Kuramochi M, Tani M, Yamamoto K, Yamane M et al (2006) Possible activation of murine T lymphocyte through CD98 is independent of interleukin 2/interleukin 2 receptor system. Biomed Res 27(2):61–67

    Article  PubMed  CAS  Google Scholar 

  96. Melchior A, Denys A, Deligny A, Mazurier J, Allain F (2008) Cyclophilin B induces integrin-mediated cell adhesion by a mechanism involving CD98-dependent activation of protein kinase C-delta and p44/42 mitogen-activated protein kinases. Exp Cell Res 314(3):616–628

    Article  PubMed  CAS  Google Scholar 

  97. Abraham RT (1998) Mammalian target of rapamycin: immunosuppressive drugs uncover a novel pathway of cytokine receptor signaling. Curr Opin Immunol 10(3):330–336

    Article  PubMed  CAS  Google Scholar 

  98. Mondino A, Mueller DL (2007) mTOR at the crossroads of T cell proliferation and tolerance. Semin Immunol 19(3):162–172

    Article  PubMed  CAS  Google Scholar 

  99. Turner JR (2009) Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 9(11):799–809

    Article  PubMed  CAS  Google Scholar 

  100. Agace WW, Higgins JM, Sadasivan B, Brenner MB, Parker CM (2000) T-lymphocyte-epithelial-cell interactions: integrin alpha(E)(CD103)beta(7), LEEP-CAM and chemokines. Curr Opin Cell Biol 12(5):563–568

    Article  PubMed  CAS  Google Scholar 

  101. Dong S, Hughes RC (1997) Macrophage surface glycoproteins binding to galectin-3 (Mac-2-antigen). Glycoconj J 14(2):267–274

    Article  PubMed  CAS  Google Scholar 

  102. Dalton P, Christian HC, Redman CW, Sargent IL, Boyd CA (2007) Membrane trafficking of CD98 and its ligand galectin 3 in BeWo cells—implication for placental cell fusion. FEBS J 274(11):2715–2727

    Article  PubMed  CAS  Google Scholar 

  103. Sundblad V, Croci DO, Rabinovich GA (2011) Regulated expression of galectin-3, a multifunctional glycan-binding protein, in haematopoietic and non-haematopoietic tissues. Histol Histopathol 26(2):247–265

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Department of Veterans Affairs and the National Institutes of Health of Diabetes and Digestive and Kidney by the grant RO1-DK-071594 (to D.M). We dedicate this article to the memory of Prof. Shanthi V. Sitaraman, a brilliant scientist, dedicated physician, passionate humanitarian and dearest friend.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hang Thi Thu Nguyen or Didier Merlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, H.T.T., Merlin, D. Homeostatic and innate immune responses: role of the transmembrane glycoprotein CD98. Cell. Mol. Life Sci. 69, 3015–3026 (2012). https://doi.org/10.1007/s00018-012-0963-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-0963-z

Keywords

Navigation