Skip to main content

Advertisement

Log in

Claudin-17 forms tight junction channels with distinct anion selectivity

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Barrier properties of tight junctions are determined by the claudin protein family. Many claudins seal this barrier, but others form paracellular channels. Among these, no claudins with general and clear-cut anion selectivity have yet been described, while for claudin-10a and claudin-4, only circumstantial or small anion selectivities have been shown. A claudin with unknown function and tissue distribution is claudin-17. We characterized claudin-17 by overexpression and knock-down in two renal cell lines. Overexpression in MDCK C7 cell layers caused a threefold increase in paracellular anion permeability and switched these cells from cation- to anion-selective. Knockdown in LLC-PK1 cells indorsed the finding of claudin-17-based anion channels. Mutagenesis revealed that claudin-17 anion selectivity critically depends on a positive charge at position 65. Claudin-17 expression was found in two organs: marginal in brain but abundant in kidney, where expression was intense in proximal tubules and gradually decreased towards distal segments. As claudin-17 is predominantly expressed in proximal nephrons, which exhibit substantial, though molecularly not defined, paracellular chloride reabsorption, we suggest that claudin-17 has a unique physiological function in this process. In conclusion, claudin-17 forms channels within tight junctions with distinct anion preference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

Cldn:

Claudin

DCT:

Distal convoluted tubule

Occl:

Occludin

PCT:

Proximal convoluted tubule

tAL:

Thin ascending limb of Henle

TAL:

Thick ascending limb of Henle

TJ:

Tight junction

References

  1. Raleigh DR, Marchiando AM, Zhang Y, Shen L, Sasaki H, Wang Y, Long M, Turner JR (2010) Tight junction-associated MARVEL proteins MarvelD3, tricellulin, and occludin have distinct but overlapping functions. Mol Biol Cell 7:1200–1213

    Article  Google Scholar 

  2. Ikenouchi J, Furuse M, Furuse K, Sasaki H, Tsukita S, Tsukita S (2005) Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J Cell Biol 171:939–945

    Article  PubMed  CAS  Google Scholar 

  3. Steed E, Rodrigues NT, Balda MS, Matter K (2009) Identification of MarvelD3 as a tight junction-associated transmembrane protein of the occludin family. BMC Cell Biol 10:95

    Article  PubMed  Google Scholar 

  4. Mineta K, Yamamoto Y, Yamazaki Y, Tanaka H, Tada Y, Saito K, Tamura A, Igarashi M, Endo T, Takeuchi K, Tsukita S (2011) Predicted expansion of the claudin multigene family. FEBS Lett 585:606–612

    Article  PubMed  CAS  Google Scholar 

  5. Furuse M, Hata M, Furuse K, Yoshida Y, Haratake A, Sugitani Y, Noda T, Kubo A, Tsukita S (2002) Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol 156:1099–1111

    Article  PubMed  CAS  Google Scholar 

  6. Milatz S, Krug SM, Rosenthal R, Günzel D, Müller D, Schulzke JD, Amasheh S, Fromm M (2010) Claudin-3 acts as a sealing component of the tight junction for ions of either charge and uncharged solutes. Biochim Biophys Acta Biomembr 1798:2048–2057

    Article  CAS  Google Scholar 

  7. Amasheh S, Schmidt T, Mahn M, Florian P, Mankertz J, Tavalali S, Gitter AH, Schulzke JD, Fromm M (2005) Contribution of claudin-5 to barrier properties in tight junctions of epithelial cells. Cell Tissue Res 321:89–96

    Article  PubMed  CAS  Google Scholar 

  8. Furuse M, Furuse K, Sasaki H, Tsukita S (2001) Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells. J Cell Biol 153:236–272

    Article  Google Scholar 

  9. Amasheh S, Meiri N, Gitter AH, Schöneberg T, Mankertz J, Schulzke JD, Fromm M (2002) Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells. J Cell Sci 115:4969–4976

    Article  PubMed  CAS  Google Scholar 

  10. Tamura A, Hayashi H, Imasato M, Yamazaki Y, Hagiwara A, Wada M, Noda T, Watanabe M, Suzuki Y, Tsukita S (2010) Loss of claudin-15, but not claudin-2, causes Na+ deficiency and glucose malabsorption in mouse small intestine. Gastroenterology 140:913–923

    Article  PubMed  Google Scholar 

  11. Günzel D, Stuiver M, Kausalya PJ, Haisch L, Rosenthal R, Krug SM, Meij IC, Hunziker W, Fromm M, Müller D (2009) Claudin-10 exists in six alternatively spliced isoforms which exhibit distinct localization and function. J Cell Sci 122:1507–1517

    Article  PubMed  Google Scholar 

  12. Van Itallie CM, Rogan S, Yu A, Vidal LS, Holmes J, Anderson JM (2006) Two splice variants of claudin-10 in the kidney create paracellular pores with different ion selectivities. Am J Physiol Renal Physiol 291:F1288–F1299

    Article  PubMed  Google Scholar 

  13. Hou J, Renigunta A, Yang J, Waldegger S (2010) Claudin-4 forms paracellular chloride channel in the kidney and requires claudin-8 for tight junction localization. Proc Natl Acad Sci USA 107:18010–18015

    Article  PubMed  CAS  Google Scholar 

  14. Coyne CB, Gambling TM, Boucher RC, Carson JL, Johnson LG (2003) Role of claudin interactions in airway tight junctional permeability. Am J Physiol Lung Cell Mol Physiol 285:1166–1178

    Google Scholar 

  15. Michikawa H, Fujita-Yoshigaki J, Sugiya H (2008) Enhancement of barrier function by overexpression of claudin-4 in tight junctions of submandibular gland cells. Cell Tissue Res 334:255–264

    Article  PubMed  CAS  Google Scholar 

  16. Katoh M, Katoh M (2003) CLDN23 gene, frequently down-regulated in intestinal-type gastric cancer, is a novel member of CLAUDIN gene family. Int J Mol Med 11:683–689

    PubMed  CAS  Google Scholar 

  17. Hewitt KJ, Agarwal R, Morin PJ (2006) The claudin gene family: expression in normal and neoplastic tissues. BMC Cancer 6:186

    Article  PubMed  Google Scholar 

  18. Gekle M, Wünsch S, Oberleithner H, Silbernagl S (1994) Characterization of two MDCK-cell subtypes as a model system to study principal cell and intercalated cell properties. Pflügers Arch 428:157–162

    Article  PubMed  CAS  Google Scholar 

  19. Krug SM, Amasheh S, Richter JF, Milatz S, Günzel D, Westphal JK, Huber O, Schulzke JD, Fromm M (2009) Tricellulin forms a barrier to macromolecules in tricellular tight junctions without affecting ion permeability. Mol Biol Cell 20:3713–3724

    Article  PubMed  CAS  Google Scholar 

  20. Kreusel KM, Fromm M, Schulzke JD, Hegel U (1991) Cl secretion in epithelial monolayers of mucus-forming human colon cells (HT-29/B6). Am J Physiol 261:C574–C582

    PubMed  CAS  Google Scholar 

  21. Krug SM, Fromm M, Günzel D (2009) Two-path impedance spectroscopy for measuring paracellular and transcellular epithelial resistance. Biophys J 97:2202–2211

    Article  PubMed  CAS  Google Scholar 

  22. Rosenthal R, Milatz S, Krug SM, Oelrich B, Schulzke JD, Amasheh S, Günzel D, Fromm M (2010) Claudin-2, a component of the tight junction, forms a paracellular water channel. J Cell Sci 123:1913–1921

    Article  PubMed  CAS  Google Scholar 

  23. Zeissig S, Bürgel N, Günzel D, Richter JF, Mankertz J, Wahnschaffe U, Kroesen AJ, Zeitz M, Fromm M, Schulzke JD (2007) Changes in expression and distribution of claudin-2, -5 and -8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut 56:61–72

    Article  PubMed  CAS  Google Scholar 

  24. Stevenson BR, Anderson JM, Goodenough DA, Mooseker MS (1988) Tight junction structure and ZO-1 content are identical in two strains of Madin-Darby canine kidney cells which differ in transepithelial resistance. J Cell Biol 107:2401–2408

    Article  PubMed  CAS  Google Scholar 

  25. Kiuchi-Saishin Y, Gotoh S, Furuse M, Takasuga A, Tano Y, Tsukita S (2002) Differential expression patterns of claudins, tight junction membrane proteins, in mouse nephron segments. J Am Soc Nephrol 13:875–886

    PubMed  CAS  Google Scholar 

  26. Angelow S, Kim KJ, Yu AS (2006) Claudin-8 modulates paracellular permeability to acidic and basic ions in MDCK II cells. J Physiol 571:15–26

    Article  PubMed  CAS  Google Scholar 

  27. Angelow S, Schneeberger EE, Yu AS (2007) Claudin-8 expression in renal epithelial cells augments the paracellular barrier by replacing endogenous claudin-2. J Membr Biol 215:147–59

    Google Scholar 

  28. Enck AH, Berger UV, Yu AS (2001) Claudin-2 is selectively expressed in proximal nephron in mouse kidney. Am J Physiol Renal Physiol 281:F966–F974

    PubMed  CAS  Google Scholar 

  29. Muto S, Hata M, Taniguchi J, Tsuruoka S, Moriwaki K, Saitou M, Furuse K, Sasaki H, Fujimura A, Imai M, Kusano E, Tsukita S, Furuse M (2010) Claudin-2-deficient mice are defective in the leaky and cation-selective paracellular permeability properties of renal proximal tubules. Proc Natl Acad Sci USA 107:8011–8016

    Article  PubMed  CAS  Google Scholar 

  30. Furuse M, Sasaki H, Tsukita S (1999) Manner of interaction of heterogeneous claudin species within and between tight junction strands. J Cell Biol 147:891–903

    Google Scholar 

  31. Alpern RJ, Howlin KJ, Preisig PA (1985) Active and passive components of chloride transport in the rat proximal convoluted tubule. J Clin Invest 76:1360–1366

    Article  PubMed  CAS  Google Scholar 

  32. Aronson PS, Giebisch G (1997) Mechanisms of chloride transport in the proximal tubule. Am J Physiol 273:F179–F192

    PubMed  CAS  Google Scholar 

  33. Cogan MG, Maddox DA, Lucci MS, Rector FC (1979) Control of proximal bicarbonate reabsorption in normal and acidotic rats. J Clin Invest 64:1168–1180

    Article  PubMed  CAS  Google Scholar 

  34. Lang F, Neuman S, Oberleithner H, Greger R, Messner G (1982) Carbonic anhydrase independent bicarbonate reabsorption. Pflügers Arch 395:121–125

    Article  PubMed  CAS  Google Scholar 

  35. Alpern RJ, Cogan MG, Rector FC (1982) Effect of luminal bicarbonate concentration on proximal acidification in the rat. Am J Physiol 243:F53–F59

    PubMed  CAS  Google Scholar 

  36. Yu AS, Cheng MH, Angelow S, Günzel D, Kanzawa SA, Schneeberger EE, Fromm M, Coalson RD (2008) Molecular basis for cation selectivity in claudin-2–based paracellular pores: identification of an electrostatic interaction site. J Gen Physiol 133:111–127

    Article  Google Scholar 

  37. Sansom MS, Kerr ID, Breed J, Sankararamakrishnan R (1996) Water in channel-like cavities: structure and dynamics. Biophys J 70:693–702

    Article  PubMed  CAS  Google Scholar 

  38. Colegio OR, Van Itallie CM, McCrea HJ, Rahner HJ, Anderson JM (2002) Claudins create charge-selective channels in the paracellular pathway between epithelial cells. Am J Physiol Cell Physiol 283:C142–C147

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank In-Fah M. Lee and Detlef Sorgenfrei for their excellent technical assistance. This work was supported by grants of the Deutsche Forschungsgemeinschaft (DFG FOR 721) and the Sonnenfeld-Stiftung Berlin.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Fromm.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 154 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krug, S.M., Günzel, D., Conrad, M.P. et al. Claudin-17 forms tight junction channels with distinct anion selectivity. Cell. Mol. Life Sci. 69, 2765–2778 (2012). https://doi.org/10.1007/s00018-012-0949-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-0949-x

Keywords

Navigation