Skip to main content
Log in

Oct-1 cooperates with the TATA binding initiation complex to control rapid transcription of human iNOS

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Expression of the human inducible nitric oxide synthase (hiNOS) is generally undetectable in resting cells, but stimulation by a variety of signals including cytokines induces transcription in most cell types. The tight transcriptional regulation of the enzyme is a complex mechanism many aspects of which remain unknown. Here, we describe an octamer (Oct) element in hiNOS proximal promoter, located close to the TATA box. This site constitutively binds Oct-1 and its deletion abrogates cytokine-induced transcription, showing that it is indispensable though not sufficient for transcription. Increasing the distance between Oct and the TATA box by inserting inert DNA sequence inhibits transcription, and footprinting of this region shows no other protein binding in resting cells, suggesting an interaction between the two complexes. Chromatin immunoprecipitation assays detect the presence of Oct-1, RNA polymerase II and trimethyl K4 histone H3 on the proximal promoter in resting cells, confirming that the gene is primed for transcription before stimulation. RT-PCR of various fragments along the hiNOS gene shows that transcription is initiated in resting cells and this is inhibited by interference with Oct-1 binding to the proximal site of the promoter. We propose that, through interaction with the initiation complex, Oct-1 regulates hiNOS transcription by priming the gene for the rapid response required in an immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. de Vera ME, Shapiro RA, Nussler AK, Mudgett JS, Simmons RL, Morris SM Jr, Billiar TR, Geller DA (1996) Transcriptional regulation of human inducible nitric oxide synthase (NOS2) gene by cytokines: initial analysis of the human NOS2 promoter. Proc Natl Acad Sci USA 93(3):1054–1059

    Article  PubMed  Google Scholar 

  2. Taylor BS, de Vera ME, Ganster RW, Wang Q, Shapiro RA, Morris SM Jr, Billiar TR, Geller DA (1998) Multiple NF-kappaB enhancer elements regulate cytokine induction of the human inducible nitric oxide synthase gene. J Biol Chem 273(24):15148–15156

    Article  PubMed  CAS  Google Scholar 

  3. Ganster RW, Taylor BS, Shao L, Geller DA (2001) Complex regulation of human inducible nitric oxide synthase gene transcription by Stat 1 and NF-kappa B. Proc Natl Acad Sci USA 98(15):8638–8643

    Article  PubMed  CAS  Google Scholar 

  4. Kristof AS, Marks-Konczalik J, Moss J (2001) Mitogen-activated protein kinases mediate activator protein-1-dependent human inducible nitric-oxide synthase promoter activation. J Biol Chem 276(11):8445–8452

    Article  PubMed  CAS  Google Scholar 

  5. Lowenstein CJ, Alley EW, Raval P, Snowman AM, Snyder SH, Russell SW, Murphy WJ (1993) Macrophage nitric oxide synthase gene: two upstream regions mediate induction by interferon gamma and lipopolysaccharide. Proc Natl Acad Sci USA 90(20):9730–9734

    Article  PubMed  CAS  Google Scholar 

  6. Xie QW, Whisnant R, Nathan C (1993) Promoter of the mouse gene encoding calcium-independent nitric oxide synthase confers inducibility by interferon gamma and bacterial lipopolysaccharide. J Exp Med 177(6):1779–1784

    Article  PubMed  CAS  Google Scholar 

  7. Zhang X, Laubach VE, Alley EW, Edwards KA, Sherman PA, Russell SW, Murphy WJ (1996) Transcriptional basis for hyporesponsiveness of the human inducible nitric oxide synthase gene to lipopolysaccharide/interferon-gamma. J Leukoc Biol 59(4):575–585

    PubMed  CAS  Google Scholar 

  8. Chan GC, Fish JE, Mawji IA, Leung DD, Rachlis AC, Marsden PA (2005) Epigenetic basis for the transcriptional hyporesponsiveness of the human inducible nitric oxide synthase gene in vascular endothelial cells. J Immunol 175(6):3846–3861

    PubMed  CAS  Google Scholar 

  9. Goldring CE, Reveneau S, Algarte M, Jeannin JF (1996) In vivo footprinting of the mouse inducible nitric oxide synthase gene: inducible protein occupation of numerous sites including Oct and NF-IL6. Nucleic Acids Res 24(9):1682–1687

    Article  PubMed  CAS  Google Scholar 

  10. Kim YM, Ko CB, Park YP, Kim YJ, Paik SG (1999) Octamer motif is required for the NF-kappaB-mediated induction of the inducible nitric oxide synthase gene expression in RAW 264.7 macrophages. Mol Cells 9(1):99–109

    PubMed  CAS  Google Scholar 

  11. Xie Q (1997) A novel lipopolysaccharide-response element contributes to induction of nitric oxide synthase. J Biol Chem 272(23):14867–14872

    Article  PubMed  CAS  Google Scholar 

  12. Park KS, Guo Z, Shao L, Du Q, Geller DA (2009) A far-upstream Oct-1 motif regulates cytokine-induced transcription of the human inducible nitric oxide synthase gene. J Mol Biol 390(4):595–603

    Article  PubMed  CAS  Google Scholar 

  13. Kim TH, Barrera LO, Zheng M, Qu C, Singer MA, Richmond TA, Wu Y, Green RD, Ren B (2005) A high-resolution map of active promoters in the human genome. Nature 436(7052):876–880

    Article  PubMed  CAS  Google Scholar 

  14. Schubeler D, MacAlpine DM, Scalzo D, Wirbelauer C, Kooperberg C, van Leeuwen F, Gottschling DE, O’Neill LP, Turner BM, Delrow J, Bell SP, Groudine M (2004) The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev 18(11):1263–1271. doi:10.1101/gad.1198204

    Article  PubMed  Google Scholar 

  15. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP, Lee W, Mendenhall E, O’Donovan A, Presser A, Russ C, Xie X, Meissner A, Wernig M, Jaenisch R, Nusbaum C, Lander ES, Bernstein BE (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448(7153):553–560. doi:nature06008[pii]10.1038/nature06008

    Article  PubMed  CAS  Google Scholar 

  16. Santos-Rosa H, Schneider R, Bannister AJ, Sherriff J, Bernstein BE, Emre NC, Schreiber SL, Mellor J, Kouzarides T (2002) Active genes are tri-methylated at K4 of histone H3. Nature 419(6905):407–411. doi:10.1038/nature01080

    Article  PubMed  CAS  Google Scholar 

  17. Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA (2007) A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130(1):77–88

    Article  PubMed  CAS  Google Scholar 

  18. Core LJ, Waterfall JJ, Lis JT (2008) Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322 (5909):1845–1848

    Google Scholar 

  19. Muse GW, Gilchrist DA, Nechaev S, Shah R, Parker JS, Grissom SF, Zeitlinger J, Adelman K (2007) RNA polymerase is poised for activation across the genome. Nat Genet 39(12):1507–1511

    Article  PubMed  CAS  Google Scholar 

  20. Cai Z, Korner M, Tarantino N, Chouaib S (1997) IkappaB alpha overexpression in human breast carcinoma MCF7 cells inhibits nuclear factor-kappaB activation but not tumor necrosis factor-alpha-induced apoptosis. J Biol Chem 272(1):96–101

    Article  PubMed  CAS  Google Scholar 

  21. Carter AB, Hunninghake GW (2000) A constitutive active MEK –> ERK pathway negatively regulates NF-kappa B-dependent gene expression by modulating TATA-binding protein phosphorylation. J Biol Chem 275(36):27858–27864

    PubMed  CAS  Google Scholar 

  22. Pance A, Chantome A, Reveneau S, Bentrari F, Jeannin JF (2002) A repressor in the proximal human inducible nitric oxide synthase promoter modulates transcriptional activation. FASEB J 16(6):631–633

    PubMed  CAS  Google Scholar 

  23. Goldring CE, Reveneau S, Chantome A, Pance A, Fleury C, Hume DA, Sester D, Mignotte B, Jeannin JF (2000) Heat shock enhances transcriptional activation of the murine-inducible nitric oxide synthase gene. FASEB J 14(15):2393–2395

    PubMed  CAS  Google Scholar 

  24. Srivastava KK, Cable EE, Donohue SE, Bonkovsky HL (1993) Molecular basis for heme-dependent induction of heme oxygenase in primary cultures of chick embryo hepatocytes. Demonstration of acquired refractoriness to heme. Eur J Biochem 213(3):909–917

    Article  PubMed  CAS  Google Scholar 

  25. Alberts AS, Geneste O, Treisman R (1998) Activation of SRF-regulated chromosomal templates by Rho-family GTPases requires a signal that also induces H4 hyperacetylation. Cell 92(4):475–487

    Article  PubMed  CAS  Google Scholar 

  26. Wingender E, Chen X, Hehl R, Karas H, Liebich I, Matys V, Meinhardt T, Pruss M, Reuter I, Schacherer F (2000) TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Res 28(1):316–319

    Article  PubMed  CAS  Google Scholar 

  27. Gay RD, Dawson SJ, Murphy WJ, Russell SW, Latchman DS (1998) Activation of the iNOS gene promoter by Brn-3 POU family transcription factors is dependent upon the octamer motif in the promoter. Biochim Biophys Acta 1443(3):315–322

    Article  PubMed  CAS  Google Scholar 

  28. Taylor BS, Shao L, Gambotto A, Ganster RW, Geller DA (1999) Inhibition of cytokine-induced nitric oxide synthase expression by gene transfer of adenoviral I kappa B alpha. Surgery 126(2):142–147

    Article  PubMed  CAS  Google Scholar 

  29. Phillips K, Luisi B (2000) The virtuoso of versatility: POU proteins that flex to fit. J Mol Biol 302(5):1023–1039

    Article  PubMed  CAS  Google Scholar 

  30. Seipel K, Georgiev O, Schaffner W (1992) Different activation domains stimulate transcription from remote (‘enhancer’) and proximal (‘promoter’) positions. EMBO J 11(13):4961–4968

    PubMed  CAS  Google Scholar 

  31. Bertolino E, Singh H (2002) POU/TBP cooperativity: a mechanism for enhancer action from a distance. Mol Cell 10(2):397–407

    Article  PubMed  CAS  Google Scholar 

  32. Zwilling S, Annweiler A, Wirth T (1994) The POU domains of the Oct1 and Oct2 transcription factors mediate specific interaction with TBP. Nucleic Acids Res 22(9):1655–1662

    Article  PubMed  CAS  Google Scholar 

  33. Mittal V, Cleary MA, Herr W, Hernandez N (1996) The Oct-1 POU-specific domain can stimulate small nuclear RNA gene transcription by stabilizing the basal transcription complex SNAPc. Mol Cell Biol 16(5):1955–1965

    PubMed  CAS  Google Scholar 

  34. Kim MH, Peterson DO (1995) Oct-1 protein promotes functional transcription complex assembly on the mouse mammary tumor virus promoter. J Biol Chem 270(46):27823–27828

    Article  PubMed  CAS  Google Scholar 

  35. Nakshatri H, Nakshatri P, Currie RA (1995) Interaction of Oct-1 with TFIIB. Implications for a novel response elicited through the proximal octamer site of the lipoprotein lipase promoter. J Biol Chem 270(33):19613–19623

    Article  PubMed  CAS  Google Scholar 

  36. Brasier AR (2008) Expanding role of cyclin dependent kinases in cytokine inducible gene expression. Cell Cycle 17:2661–2666

    Google Scholar 

  37. Kornberg RD (2007) The molecular basis of eukaryotic transcription. Proc Natl Acad Sci USA 104(32):12955–12961

    Article  PubMed  CAS  Google Scholar 

  38. Hargreaves DC, Horng T, Medzhitov R (2009) Control of inducible gene expression by signal-dependent transcriptional elongation. Cell 138(1):129–145

    Article  PubMed  CAS  Google Scholar 

  39. Selth LA, Sigurdsson S, Svejstrup JQ (2010) Transcript elongation by RNA polymerase II. Annu Rev Biochem 79:271–293

    Article  PubMed  CAS  Google Scholar 

  40. Saunders A, Core LJ, Lis JT (2006) Breaking barriers to transcription elongation. Natl Rev Mol Cell Biol 7(8):557–567

    Article  CAS  Google Scholar 

  41. Margaritis T, Holstege FC (2008) Poised RNA polymerase II gives pause for thought. Cell 133(4):581–584

    Article  PubMed  CAS  Google Scholar 

  42. Adelman K, Kennedy MA, Nechaev S, Gilchrist DA, Muse GW, Chinenov Y, Rogatsky I (2009) Immediate mediators of the inflammatory response are poised for gene activation through RNA polymerase II stalling. Proc Natl Acad Sci USA 106(43):18207–18212

    Article  PubMed  CAS  Google Scholar 

  43. Raschke EE, Albert T, Eick D (1999) Transcriptional regulation of the Ig kappa gene by promoter-proximal pausing of RNA polymerase II. J Immunol 163(8):4375–4382

    PubMed  CAS  Google Scholar 

  44. Biragyn A, Nedospasov SA (1995) Lipopolysaccharide-induced expression of TNF-alpha gene in the macrophage cell line ANA-1 is regulated at the level of transcription processivity. J Immunol 155(2):674–683

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the Ligue Bourgignonne Contre Le Cancer. A.P. was funded by the Fondation pour la Recherche Medicale and an Individual Marie Curie Fellowship from the European Commission. S.R. was supported by the Conseil Regional de Bourgogne. The authors are grateful to Ben Luisi and Tony Jackson for helpful scientific discussions, Fatima Bentrari for technical assistance and Julian Rayner for his support for the completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alena Pance.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reveneau, S., Petrakis, T.G., Goldring, C.E. et al. Oct-1 cooperates with the TATA binding initiation complex to control rapid transcription of human iNOS. Cell. Mol. Life Sci. 69, 2609–2619 (2012). https://doi.org/10.1007/s00018-012-0939-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-0939-z

Keywords

Navigation