Skip to main content
Log in

The actin-binding domain of actin filament-associated protein (AFAP) is involved in the regulation of cytoskeletal structure

  • Research article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Actin filament-associated protein (AFAP) plays a critical role in the regulation of actin filament integrity, formation and maintenance of the actin network, function of focal contacts, and cell migration. Here, we show that endogenous AFAP was present not only in the cytoskeletal but also in the cytosolic fraction. Depolymerization of actin filaments with cytochalasin D or latrunculin A increased AFAP in the cytosolic fraction. AFAP harbors an actin-binding domain (ABD) in its C-terminus. AFAPΔABD, an AFAP mutant with selective ABD deletion, was mainly in the cytosolic fraction when overexpressed in the cells, which was associated with a disorganized cytoskeleton with reduced stress fibers, accumulation of F-actin on cellular membrane, and formation of actin-rich small dots. Cortactin, a well-known podosome marker, was colocalized with AFAPΔABD in these small dots at the ventral surface of the cell, indicating that these small dots fulfill certain criteria of podosomes. However, these podosome-like small dots did not digest gelatin matrix. This may be due to the reduced interaction between AFAPΔABD and c-Src. When AFAPΔABD-transfected cells were stimulated with phorbol ester, they formed podosome-like structures with larger sizes, less numerous and longer life span, in comparison with wild-type AFAP-transfected cells. These results indicate that the association of AFAP with F-actin through ABD is crucial for AFAP to regulate cytoskeletal structures. The AFAPΔABD, as cytosolic proteins, may be more accessible to the cellular membrane, podosome-like structures, and thus be more interactive for the regulation of cellular functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Baisden JM, Qian Y, Zot HM, Flynn DC (2001) The actin filament-associated protein AFAP-110 is an adaptor protein that modulates changes in actin filament integrity. Oncogene 20:6435–6447

    Article  PubMed  CAS  Google Scholar 

  2. Flynn DC, Leu TH, Reynolds AB, Parsons JT (1993) Identification and sequence analysis of cDNAs encoding a 110-kilodalton actin filament-associated pp60src substrate. Mol Cell Biol 13:7892–7900

    PubMed  CAS  Google Scholar 

  3. Lodyga M, Bai XH, Mourgeon E, Han B, Keshavjee S, Liu M (2002) Molecular cloning of actin filament-associated protein: a putative adaptor in stretch-induced Src activation. Am J Physiol Lung Cell Mol Physiol 283:L265–L274

    PubMed  CAS  Google Scholar 

  4. Qian Y, Baisden JM, Westin EH, Guappone AC, Koay TC, Flynn DC (1998) Src can regulate carboxy terminal interactions with AFAP-110, which influence self-association, cell localization and actin filament integrity. Oncogene 16:2185–2195

    Article  PubMed  CAS  Google Scholar 

  5. Dorfleutner A, Stehlik C, Zhang J, Gallick GE, Flynn DC (2007) AFAP-110 is required for actin stress fiber formation and cell adhesion in MDA-MB-231 breast cancer cells. J Cell Physiol 213:740–749

    Article  PubMed  CAS  Google Scholar 

  6. Qian Y et al (2004) Analysis of the role of the leucine zipper motif in regulating the ability of AFAP-110 to alter actin filament integrity. J Cell Biochem 91:602–620

    Article  PubMed  CAS  Google Scholar 

  7. Baisden JM, Gatesman AS, Cherezova L, Jiang BH, Flynn DC (2001) The intrinsic ability of AFAP-110 to alter actin filament integrity is linked with its ability to also activate cellular tyrosine kinases. Oncogene 20:6607–6616

    Article  PubMed  CAS  Google Scholar 

  8. Qian Y, Baisden JM, Zot HG, Van Winkle WB, Flynn DC (2000) The carboxy terminus of AFAP-110 modulates direct interactions with actin filaments and regulates its ability to alter actin filament integrity and induce lamellipodia formation. Exp Cell Res 255:102–113

    Article  PubMed  CAS  Google Scholar 

  9. Harder J, Xu X, Letourneau P, Lanier LM (2008) The actin cross-linking protein AFAP120 regulates axon elongation in a tyrosine phosphorylation-dependent manner. Neurosci Lett 444:132–136

    Article  PubMed  CAS  Google Scholar 

  10. Walker VG et al (2007) PI3 K activation is required for PMA-directed activation of cSrc by AFAP-110. Am J Physiol Cell Physiol 293:C119–C132

    Article  PubMed  CAS  Google Scholar 

  11. Xu J et al (2007) XB130, a novel adaptor protein for signal transduction. J Biol Chem 282:16401–16412

    Article  PubMed  CAS  Google Scholar 

  12. Buccione R, Orth JD, McNiven MA (2004) Foot and mouth: podosomes, invadopodia and circular dorsal ruffles. Nat Rev Mol Cell Biol 5:647–657

    Article  PubMed  CAS  Google Scholar 

  13. Linder S, Aepfelbacher M (2003) Podosomes: adhesion hot-spots of invasive cells. Trends Cell Biol 13:376–385

    Article  PubMed  CAS  Google Scholar 

  14. Gatesman A, Walker VG, Baisden JM, Weed SA, Flynn DC (2004) Protein kinase Calpha activates c-Src and induces podosome formation via AFAP-110. Mol Cell Biol 24:7578–7597

    Article  PubMed  CAS  Google Scholar 

  15. Dorfleutner A, Cho Y, Vincent D, Cunnick J, Lin H, Weed SA, Stehlik C, Flynn DC (2008) Phosphorylation of AFAP-110 affects podosome lifespan in A7r5 cells. J Cell Sci 121:2394–2405

    Article  PubMed  CAS  Google Scholar 

  16. Crimaldi L, Courtneidge SA, Gimona M (2009) Tks5 recruits AFAP-110, p190RhoGAP, and cortactin for podosome formation. Exp Cell Res 315:2581–2592

    Article  PubMed  CAS  Google Scholar 

  17. Han B, Bai XH, Lodyga M, Xu J, Yang BB, Keshavjee S, Post M, Liu M (2004) Conversion of mechanical force into biochemical signaling. J Biol Chem 279:54793–54801

    Article  PubMed  CAS  Google Scholar 

  18. Han B, Xiao H, Lodyga M, Bai XH, Jin T, Liu M (2011) Actin filament-associated protein mediated c-Src related SRE/AP-1 transcriptional activation. FEBS Lett 585:471–477

    Article  PubMed  CAS  Google Scholar 

  19. Han B, Lodyga M, Liu M (2005) Ventilator-induced lung injury: role of protein-protein interaction in mechanosensation. Proc Am Thorac Soc 2:181–187

    Article  PubMed  CAS  Google Scholar 

  20. Sawada Y, Sheetz MP (2002) Force transduction by triton cytoskeletons. J Cell Biol 156:609–615

    Article  PubMed  CAS  Google Scholar 

  21. Shiozaki A et al (2011) XB130, a novel adaptor protein, promotes thyroid tumor growth. Am J Pathol 178:391–401

    Article  PubMed  CAS  Google Scholar 

  22. Tamada M, Sheetz MP, Sawada Y (2004) Activation of a signaling cascade by cytoskeleton stretch. Dev Cell 7:709–718

    Article  PubMed  CAS  Google Scholar 

  23. Xiao H, Eves R, Yeh C, Kan W, Xu F, Mak AS, Liu M (2009) Phorbol ester-induced podosomes in normal human bronchial epithelial cells. J Cell Physiol 218:366–375

    Article  PubMed  CAS  Google Scholar 

  24. Xiao H, Bai XH, Kapus A, Lu WY, Mak AS, Liu M (2010) The protein kinase C cascade regulates recruitment of matrix metalloprotease 9 to podosomes and its release and activation. Mol Cell Biol 30:5545–5561

    Article  PubMed  CAS  Google Scholar 

  25. Lodyga M, Bai XH, Kapus A, Liu M (2010) Adaptor protein XB130 is a Rac-controlled component of lamellipodia that regulates cell motility and invasion. J Cell Sci 123:4156–4169

    Article  PubMed  CAS  Google Scholar 

  26. Reznikoff CA, Brankow DW, Heidelberger C (1973) Establishment and characterization of a cloned line of C3H mouse embryo cells sensitive to postconfluence inhibition of division. Cancer Res 33:3231–3238

    PubMed  CAS  Google Scholar 

  27. Tang QQ, Otto TC, Lane MD (2004) Commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc Natl Acad Sci USA 101:9607–9611

    Article  PubMed  CAS  Google Scholar 

  28. Qian Y et al (2002) PKC phosphorylation increases the ability of AFAP-110 to cross-link actin filaments. Mol Biol Cell 13:2311–2322

    Article  PubMed  CAS  Google Scholar 

  29. Linder S (2007) The matrix corroded: podosomes and invadopodia in extracellular matrix degradation. Trends Cell Biol 17:107–117

    Article  PubMed  CAS  Google Scholar 

  30. West MA, Prescott AR, Chan KM, Zhou Z, Rose-John S, Scheller J, Watts C (2008) TLR ligand-induced podosome disassembly in dendritic cells is ADAM17 dependent. J Cell Biol 182:993–1005

    Article  PubMed  CAS  Google Scholar 

  31. Mukhopadhyay UK, Eves R, Jia L, Mooney P, Mak AS (2009) p53 suppresses Src-induced podosome and rosette formation and cellular invasiveness through the upregulation of caldesmon. Mol Cell Biol 29:3088–3098

    Article  PubMed  CAS  Google Scholar 

  32. Tatin F, Varon C, Genot E, Moreau V (2006) A signalling cascade involving PKC, Src and Cdc42 regulates podosome assembly in cultured endothelial cells in response to phorbol ester. J Cell Sci 119:769–781

    Article  PubMed  CAS  Google Scholar 

  33. Chellaiah MA, Kuppuswamy D, Lasky L, Linder S (2007) Phosphorylation of a Wiscott–Aldrich syndrome protein-associated signal complex is critical in osteoclast bone resorption. J Biol Chem 282:10104–10116

    Article  PubMed  CAS  Google Scholar 

  34. Mandal S, Johnson KR, Wheelock MJ (2008) TGF-beta induces formation of F-actin cores and matrix degradation in human breast cancer cells via distinct signaling pathways. Exp Cell Res 314:3478–3493

    Article  PubMed  CAS  Google Scholar 

  35. Buschman MD, Bromann PA, Cejudo-Martin P, Wen F, Pass I, Courtneidge SA (2009) The novel adaptor protein Tks4 (SH3PXD2B) is required for functional podosome formation. Mol Biol Cell 20:1302–1311

    Article  PubMed  CAS  Google Scholar 

  36. Zhang J et al (2007) AFAP-110 is overexpressed in prostate cancer and contributes to tumorigenic growth by regulating focal contacts. J Clin Invest 117:2962–2973

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Daniel C. Flynn (West Virginia University) for providing AFAP antibody and plasmids. We thank Ms. Serisha Moodley for technical assistance and Ms. Lauren Turrell for proofreading the manuscript. This work was supported by Canadian Institutes of Health Research operating grants MOP-13270 and MOP-42546. HX was supported by Peterborough K. M. Hunter Graduate Studentship for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingyao Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, H., Han, B., Lodyga, M. et al. The actin-binding domain of actin filament-associated protein (AFAP) is involved in the regulation of cytoskeletal structure. Cell. Mol. Life Sci. 69, 1137–1151 (2012). https://doi.org/10.1007/s00018-011-0812-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0812-5

Keywords

Navigation